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ABSTRACT ARTICLE HISTORY
The relationship between Cyclin-Dependent Kinase Inhibitors 2B Antisense RNA 1 (CDKN2B-AST) Received 23 July 2020
variants rs1333049 G/C and rs4977574 A/G and the risk of coronary heart disease is unclear. We  Revised 22 September 2020
conducted an update analysis incorporating odds ratios and 95% confidence intervals to assess the Accepted 22 September
correlation. Furthermore, we used in silico analysis to investigate the genes and proteins that interact 2020

with CDKNZ2B. Fifty case-control studies with a sample size of 35,915 cases and 48,873 controls were KEYWORDS

involved. We revealed that the rs1333049 C allele could increase the risk of coronary heart disease in Coronary heart disease;
the overall analysis (allele comparison, OR = 1.13, 95%Cl = 1.05-1.21, P = 0.001; homozygous contrast, CDKN2B-AST1; Genetic
OR = 1.29, 95%Cl = 1.11-1.49, P = 0.001; dominant comparison, OR = 1.14, 95%Cl = 1.03-1.27, variation; Variant; Analysis
P = 0.011; recessive comparison, OR = 1.21, 95%Cl = 1.10-1.34, P < 0.001). In subgroup analysis,

positive correlations were detected in studies involving West and East Asians and in population-based

control studies. The rs4977574 G allele was also a risk factor for coronary heart disease (allelic

comparison, P = 0.001; heterozygous comparison, P = 0.003; homozygous comparison, P < 0.001;

dominant comparison, P = 0.001). These results indicate correlation of CDKN2B-AST rs1333049 G/C and

rs4977574 A/G variants may be correlated with the risk of coronary heart disease.

Abbreviations CDK: Cyclin Dependent Kinase; CCND: G1/S-specific cyclin-D; CDKN: Cyclin Dependent

Kinase Inhibitor; GWAS: Genome-wide association study; CDKN2B-AS1: Cyclin-Dependent Kinase

Inhibitors 2B Antisense RNA 1; CHD: Coronary heart disease; MAF: minor allele frequencies; HWE:

Hardy-Weinberg equilibrium of controls; Cl: confidence interval; COL8A2: Collagen type VIII alpha 2

chain; HB: Hospital-based; ORs: odds ratios; ITGA11: Integrin subunit alpha 11; LTBP: Latent transform-

ing factor beta binding protein; PB: Population-based; IBC: Itmat Broad Care; NA: Not applicable; PCR-

RFLP: polymerase chain reaction-restriction fragment length polymorphism; MI: Myocardial Infarction;

SNP: single nucleotide polymorphism; SMAD: Mothers against decapentaplegic homolog; RT-PCR:

Real-time polymerase chain reaction; UK: United Kingdom

Records identified A total of 50 case- Five genetic The STRING tools CDKN2B-AS1
through database control studies models were and online variants might
searching. with 35,915 CHD adopted to database were serve as genetic
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polymorphisms.
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Introduction This disease is one of the leading causes of dis-
ability and death globally [1]. The exact pathogen-
esis of CHD is unclear; however, evidence indicate
a crucial role of genetic factors in the development

Coronary heart disease (CHD) is characterized by
coronary artery stenosis and leading to occlusion.
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of CHD [2]. Genome-wide association studies
have provided evidence of a correlation between
common variations on specific chromosome loca-
tion 9p21.3 and susceptibility to cardiovascular
diseases including atherosclerosis-related ischemia
and coronary heart disease [3,4].

Cyclin-Dependent ~ Kinase  Inhibitors 2B
Antisense RNA 1 (CDKN2B-ASI) also known as
Antisense Noncoding RNA in the INK4 locus
(ANRIL) is a potential CHD candidate gene
located within the CDKN2A-CDKN2B gene clus-
ter on human chromosome 9 (9p21.3). CDKN2B-
ASI can also encode a large antisense non-coding
RNA, and prior studies have suggested the role of
CDKNZ2B-ASI gene in the progression of CHD by
regulating the expression of CDKN2B and other
genes in cardiac tissue [5]. Inhibition of CDKN2B-
ASI in vascular smooth muscle could affect the
expression of extra-cellular matrix remodeling
genes, indicating a pivotal role in vascular function
[6]. Abnormal CDKN2B-AS1 expression in ather-
osclerotic lesions can promote atherosclerosis and
thrombosis [7,8]. Therefore, it is plausible that
variants in the CDKN2B-ASI gene are associated
with atherosclerosis-related diseases, includ-
ing CHD.

Polymorphisms of CDKN2B-ASI have been
investigated previously and have been correlated
with susceptibility to various diseases that include
ischemic stroke, glaucoma, gout, and cancer [9-12].
Prior studies have assessed the potential association
between CDKN2B-AS1 variants and the likelihood
of CHD. The variant rs4977574 (A/G) is considered
as a non-protein-coding variation located on chro-
mosome 9p21.3 adjacent to Cyclin-Dependent
Kinase Inhibitor 2B (CDKN2B). Up to now, the
A to G variation can be correlated with early
onset of CHD. This variation affects the expression
level of CDKN2B in many tissues including coron-
ary artery smooth muscle cells [5,13]. For
rs1333049, the carrying of C allele was found to
be a risk factor for CHD patients in West Siberia.
The SNP (single nucleotide polymorphism) allele C,
when present in the heterozygous genotype (GC)
elevated CHD risk by 15-20% and when present in
the homozygous SNP genotype (CC) elevated CHD
risk by 30-40% [14,15]. Most of these studies are
pilot researches, and their findings are far from
conclusive [16,17]. In 2018, two meta-analyses
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explored the association between CDKN2B-ASI
polymorphisms and coronary artery disease. One
analysis involved only 9 studies based on the
rs1333049 variant [18] and the other included 6
studies involving the rs4977574 polymorphism
[19]. Up to now, there is still no prior study to
determine whether CDKN2B-AS1  rs1333049
C and rs4977574 G allele can be used as a marker
for the diagnosis or prognosis of CHD. The aim of
the present research was to identify all eligible case-
control studies to comprehensively investigate the
correlation of CDKN2B-ASI polymorphisms and
CHD [20-58]. Furthermore, we used in silico ana-
lysis to investigate the genes and proteins that inter-
act with CDKN2B.

Materials and methods
Search strategy

A literature search of Embase, PMC, Google Scholar,
and Chinese Wanfang databases for relevant pub-
lished articles was performed using the search term
(‘rs4977574’ OR ‘rs1333049° OR “CDKN2B antisense
RNA” OR “CDKN2B-AS” OR “9p21” OR “ANRIL”)
AND (“variant” OR “variant” OR “SNP”) AND
(“myocardial infarction” OR ”coronary artery dis-
ease’). The most recent search update was
1 June 2020. Besides the use of databases, eligible
studies were also retrieved by searching the refer-
ences cited in the published articles.

Inclusion criteria and exclusion criteria

A publication was included in the analysis only if it
met the following criteria: (a) Case—control study
addressing the relationship between CDKN2B-AS]
rs1333049 and rs4977574 variants and CHD; (b)
Study providing available genotypic frequencies of
9p21 region polymorphisms; and (c) Full text in
English or other languages. Major exclusion criteria
were (a) Duplicated studies using the same data; (b)
Absence of a control group; and (c) No relevant to
CDKN2B-AS1 variants and CHD.

Data extraction

Information retrieved from the included studies
was as follows: First author name, date of
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publication, region, and ethnicity of populations
used, primary outcome, source of the control sam-
ples, total sample size, gene distribution of
CDKN2B-AS1 variants, evaluation of Hardy-
Weinberg equilibrium (HWE), and the genotyping
method. In addition, studies including Asian
population were divided into East Asia and West
Asia. Two investigators independently carried out
data extraction and quality evaluation and differ-
ences between them were resolved by discussions
until a consensus was reached.

Statistical analyses

Strength of the correlation between CDKN2B-ASI
rs1333049 and rs4977574 variants and CHD sus-
ceptibility was investigated using odds ratios (ORs)
together with 95% confidence intervals. Five
genetic models were adopted to assess the likeli-
hood of CDKN2B-ASI polymorphisms. For SNP
rs1333049 G/C, the allele comparison represents
C-allele versus (vs.) G-allele; heterozygous contrast
refers to CG vs. GG; homozygous contrast repre-
sents CC vs. GG; dominant model represents CC +
CG vs. GG; and recessive model refers to CC vs.
CG + GG. For SNP rs4977574 A/G, the five
genetic models were G-allele vs. A-allele, GA vs.
AA, GG vs. AA, GG+GA vs. AA, and GG vs. GA +
AA. Cochran’s Q statistic was performed to calcu-
late the heterogeneity between ORs. If the prob-
ability (P) value < 0.05 was considered as
statistically significant, indicating heterogeneity
among studies. In this case, a random-effects
model was adopted. Otherwise, we carried out
a fixed-effects model. The HWE P value was cal-
culated using the Fisher’s exact test, with a P value
< 0.05 indicating significant bias. Stratification
analyses were carried out to investigate the
strength of ethnicity, control source, and type of
primary outcome. Begg’s funnel plot was adopted
to assess the potential publication bias. P < 0.05
represents the significance exists. Sensitivity ana-
lyses were used to test the reliability of the
included studies. All statistical methods were refer-
ring to the STATA 11.0 software of StataCorp
(College Station, TX).

In silico analysis of CDKN2B

Differentially expressed genes between the CHD
and control groups in the overall population were
evaluated using an online database. Moreover, we
checked the minor allele frequencies (MAFs) in
worldwide populations based on the online data-
base (https://www.ncbi.nlm.nih.gov/snp). The pro-
tein—protein interactions of CDKN2B were
investigated using the STRING tools (https://
string-db.org/cgi/input.pl).

Results
Characteristics of eligible studies

Fifty case-control studies comprising 35,915 CHD
patients and 48,873 control subjects met the inclu-
sion criteria and were summarized in the present
study (Table 1). For the rs1333049 G/C variant, 33
studies with 20,365 cases and 29,413 controls were
involved. In subgroup analysis by ethnicity, the
sample population of 14 studies was of
Europeans, 18 studies were of Asian descendants
(divided into West Asians and East Asians), and
one study was on the African population.
Stratification analysis based on the source of con-
trols used revealed that 14 studies were hospital
based and 17 studies were population based. In
a subgroup analysis by disease type, 22 studies
focused on unclassified coronary artery disease
and 11 studies focused on myocardial infarction.
For the rs4977574 A/G polymorphism, the sample
population of 8 studies was of European descen-
dants and 9 studies was of Asian populations (4
studies were of West Asians and 5 were of East
Asians). Stratification analysis based on the source
of controls revealed 7 studies as hospital based and
10 studies as population based. We also deter-
mined the MAFs in the overall and sub-
populations. The MAFs for the SNP rs1333049
G/C variant were as follows: global population,

0.418; Africans, 0.213; East Asians, 0.537;
European descendants, 0.472; South Asians,
0.491; and Americans, 0.455. In the current

study, the MAF in case was 0.521; and in control
was 0.489. The MAFs for the SNP rs4977574 were
as follows: global population, 0.395; Africans,


https://www.ncbi.nlm.nih.gov/snp
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Table 1. (Continued).

Method
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West Asian
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Philadelphia

Atlanta
Durham

2010
2007
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2007
2007
2007

Helgadottir
Helgadottir
Helgadottir
Helgadottir

GeneChip

CAD: Coronary artery disease; HWE: P value for Hardy-Weinberg equilibrium in controls; GWAS: Genome-wide association study; IBC: Itmat Broad Care; MI: Myocardial Infarction; NA: Not applicable; PCR-RFLP

698 1435

382

2937 605 937

1924

ation based

Popu

Caucasian

: polymerase chain reaction-restriction fragment length polymorphism; RT-PCR: Real-time polymerase chain reaction; UK: United Kingdom.

0.141; East Asians, 0.531; Europeans, 0.492; South
Asians, 0.484; and Americans, 0.416 (Figure 1). In
the present study, the MAF in case was 0.537; and
in control was 0.483.

Overall and stratified analyses

The strength of the correlation between CDKN2B-
AS1 SNPs rs1333049 and rs4977574 is summarized
in Table 2. For the rs1333049 G/C variation, when
all studies pooled together, we observed that indi-
viduals carrying CC allele had a 1.29-fold higher
risk of CHD than those carrying GG allele (95%
CI = 1.11-1.49, P = 0.001, Figure 2(a)). In sub-
group analyses, we revealed that West Asians with
CC allele had a 1.73-fold increased susceptibility
than those with GG allele (95%CI = 1.14-2.64,
P = 0.011). For East Asians, the ratio was 1.32
(95%CI = 1.11-1.57, P = 0.001, Figure 2(a)).
Moreover, similar findings were indicated for the
subgroup with population-based control (C allele
vs. G allele, OR = 1.15, 95%CI = 1.04-1.27,
P = 0.006; CC vs. GG, OR = 1.32, 95%
ClI = 1.08-1.60, P = 0.006; dominant model,
OR = 1.17, 95%CI = 1.02-1.35, P = 0.028; and
recessive model, OR = 1.23, 95%CI = 1.08-1.39,
P =0.002, Figure 3(a)). In stratification by pheno-
type of CHD, we identified that individuals with
CC allele had a 1.26-fold higher risk of coronary
artery disease than those with GG allele (95%
CI = 1.05-1.51, P = 0.012). For myocardial infarc-
tion groups, the ratio was 125 (95%
CI = 1.01-1.53, P = 0.037, Figure 4(a)). For the
rs4977574 A/G variant, a positive association was
observed for all studies when combined.
Individuals carrying GG allele had a 1.39-fold
higher risk of CHD than those carrying AA allele
(95%CI = 1.16-1.67, P < 0.001, Figure 2(b)).
Stratification analysis revealed West Asians with
GG allele had a 1.28-fold increased susceptibility
than those with AA allele (95%CI = 1.12-1.46,
P < 0.001, Figure 2(b)). For East Asians the ratio
was 1.53 (95%CI = 1.13-2.08, P = 0.006, Figure 3
(b)). In subgroup analysis by phenotype, we
revealed that individuals carrying GG allele had
a 1.43-fold increased susceptibility of coronary
artery disease than those with AA allele (95%
CI = 1.13-1.82, P = 0.004). The ratio was 1.38 in
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Figure 1. Minor allele frequencies of CDKN2B-AST rs1333049 G/C and rs4977574 A/G polymorphisms in various races.

myocardial infarction groups (95%CI = 1.06-1.79,
P = 0.018, Figure 4(b)).

In silico analysis of CDKN2B

Protein-protein crosstalk of CDKN2B was inves-
tigated by the STRING tools. Interaction of least
20 proteins with CDKN2B was identified in
Figure 5. The most relevant interactions were
with the following proteins: Cyclin-Dependent
Kinase (CDK) 4, CDK 6, Cyclin-Dependent
Kinase Inhibitor (CDKN) 1A, CDKN 1B, CDKN
1 C, Mothers against decapentaplegic homolog
(SMAD) 4, G1/S-specific cyclin-D (CCND) 1,
CCND 2, SMAD 3, and SMAD 2 (Figure 5(b)).
The online database was also utilized to assess the
differentially expressed genes between the CHD
and control groups (Figure 6(a)). The most prob-
able correlations with CDKN2B in CHD included
the genes for latent transforming factor beta
binding protein 2 (LTBP2, Figure 6(b)), integrin
subunit alpha 11 (ITGAL11, Figure 6(c)), and col-
lagen type VIII alpha 2 chain (COL8A2, Figure
6(d)).

Publication bias and sensitivity analysis

We constructed the Begg’s funnel plots to detect
the publication bias among the included studies.
We identified no significant asymmetry of the
funnel plots in any of these models when evaluat-
ing the variants of rs1333049 (Figure 7(a),

P > 0.05) and rs4977574 (Figure 7(b), P > 0.05).
Furthermore, we conducted sensitivity analysis by
removing single studies. Single study did not have
an impact on the significance of ORs for both
rs1333049 G/C (Figure 7(c)) and rs4977574 A/G
(Figure 7(d)) polymorphisms.

Discussion

CHD is still the main cause of mortality globally
and imposes a huge social and economic burden
[59,60]. The relationship between the CDKN2B-
ASI variants rs1333049 and rs4977574 and the
risk of CHD has been previously reported; how-
ever, a comprehensive analysis of the relationship
was not available. Several meta-analyses have
pooled the data of various studies; however, the
number of studies included was insufficient. In
2018, Xu et al evaluated six articles on CDKN2B-
AS1 SNP rs4977574 indicating increased likeli-
hood of CHD due to the variation [19]. Hu et al
in 2019 evaluated the association between SNP
rs1333049 and CHD using 7 studies and reported
increased risk of CHD with rs1333049 in the East
Asian population [61]. The present analysis, which
involved a total of 50 case-control studies with
35,915 CHD patients and 48,873 control subjects,
is by far the most comprehensive analysis evaluat-
ing the relationship between CDKN2B-ASI var-
iants rs1333049 and rs4977574 and the risk of
CHD. Our analysis revealed a significant associa-
tion of rs1333049 G/C and rs4977574 A/G variants
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Figure 2. Forest plot of the association between CDKN2B-AST rs1333049 G/C (a), rs4977574 A/G (b) variants and risk of CHD
(homozygous contrast, random-effects) in stratified analysis by race.
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Figure 3. Subgroup analysis by source of control between variation of CDKN2B-AS1 rs1333049 G/C (a), rs4977574 A/G (b) and risk of

CHD (homozygous contrast, random-effects).

with the likelihood of CHD, when all studies were

pooled together.

For the SNP rs1333049, C allele was a risk factor
for both West Asians and East Asians in the

subgroup analysis by race. In the stratified analysis
by source of control population, there is a positive
correlation between rs1333049 variant and popu-
lation-based studies. In a subgroup analysis based
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Figure 4. Forest plot of the association between variation of CDKN2B-AST rs1333049 G/C (a), rs4977574 A/G (b) and CHD

susceptibility in stratified analysis by phenotype.

on disease type, we observed that individuals car-
rying CC allele had an increased susceptibility of
coronary artery disease and myocardial infarction
patients’ group. Our conclusion is not consistent
with the meta-analysis performed by Xie et al, who
observed no positive relationship between this var-
iant and susceptibility of myocardial infarction
groups (allele contrast, P value = 0.17,
OR = 0.87, 95% confidence intervals = 0.72-1.06;
dominant comparison, P value = 0.14, OR = 0.83,
95% confidence intervals = 0.64-1.07; recessive
genetic model, P value = 0.28, OR = 1.25, 95%
confidence intervals = 0.84-1.86) [18]. A possible
reason for the difference in study outcomes may
be the relatively small number of studies included
in their meta-analysis. For the SNP rs4977574, we
detected a significant correlation between the
G allele and the risk of CHD among West Asian
and East Asian populations in a stratification ana-
lysis by ethnicity and the findings are consistent
with the results in a previous study [62]. In strati-
fication analysis by control population source,
there was a positive correlation with population-
based studies. Based on previous randomized con-
trolled trial, CDKN2B-ASI rs1333049 G/C and
rs4977574 A/G variants were not correlated with

higher risk in African patients with CHD [63].
Evidence from genome-wide association study
showed that no major locus could individually
reveal the high risk of coronary heart disease in
African Americans [64]. Moreover, we checked the
MAFs in worldwide populations based on the
online database. The MAF for the CDKN2B-ASI
rs1333049 G/C variant in Africans is 0.21. It is
lower than that in other populations and global
average. Similar result was indicated for the
rs4977574 A/G variant. A possible reason is that
CDKN2B-ASI rs1333049 G/C and rs4977574 A/G
variants may be not associated with the CHD
susceptibility in African population. Additionally,
an online database was employed to explore dif-
ferentially expressed genes between the CHD and
control groups. We found that expression of
LTBP2, ITGA11, and COL8A2 correlated with the
expression of CDKN2B in CHD. The online data-
base contains scant data on the specific mechan-
ism of these genes. Future functional analyses and
in vitro experiments are needed to demonstrate the
correlations in detail.

The current analysis has several limitations.
First, we observed significant heterogeneity in
the overall analysis when evaluating the
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@ SMAD3 Mothers against decapentaplegic homolog 3; Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer an... L 0.951
® SMAD2 Mothers against decapentaplegic homolog 2; Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer an... o e 0.951

Figure 5. Protein-protein crosstalk of CDKN2B (a). The top 10 most relevant feature partners are as follows: Cyclin-dependent kinase
(CDK) 4, CDK 6, Cyclin-dependent kinase inhibitor (CDKN) 1A, CDKN 1B, CDKN 1 C, Mothers against decapentaplegic homolog
(SMAD) 4, G1/S-specific cyclin-D (CCND) 1, CCND 2, SMAD 3, SMAD 2 (b).

CDKN2B-ASI rs1333049 G/C and rs4977574 A/G ~ method was employed [65], potential bias may
variations. Although the DerSimonian and Laird  influence  the  conclusion.  Second, the
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Figure 6. Differentially expressed genes between CHD and control group (a). The probably correlated gene with CDKN2B includes
the latent transforming factor beta binding protein (LTBP) 2, (b), integrin subunit alpha 11 (ITGA11, c), collagen type VIII alpha 2

chain (COL8A2, d).

pathogenesis of CHD is very complex. Thus,
a single gene polymorphism is unlikely to make
a significant contribution to its development. All
OR values obtained in the current study are all <
2. Therefore, further studies elucidating the gene-
gene or gene-environment connections to
demonstrate correlation are recommended. In
addition, the analysis of the protein-protein
crosstalk of CDKN2B by the STRING tool, iden-
tified interactions with more than 20 proteins
(Figure 5), however, these interactions need be
confirmed by in vitro and in vivo analyses.
Third, the study does not include adjusted

analysis for sex, lifestyle, and smoking exposure,
which may have helped in better segregation and
evaluation of the different groups.

Conclusion

Taken together, our study demonstrates that
CDKN2B-ASI 1rs1333049 C allele and rs4977574
G allele is correlated with the risk of CHD. These
polymorphisms may serve as genetic biomarkers for
CHD, especially in people of East and West Asian
ancestry.
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Begg's funnel plot with pseudo 95% confidence limits
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Figure 7. Publication bias and sensitivity analysis for CDKN2B-AST rs1333049 G/C and rs4977574 A/G polymorphisms. We revealed
no evidence of publication bias according to rs1333049 G/C (a) and rs4977574 (b). No significant change of the result was detected
in the sensitivity analysis for rs1333049 G/C (c) and rs4977574 (d) variants.
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