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New findings in the roles of Cyclin-dependent Kinase inhibitors 2B Antisense 
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ABSTRACT
The relationship between Cyclin-Dependent Kinase Inhibitors 2B Antisense RNA 1 (CDKN2B-AS1) 
variants rs1333049 G/C and rs4977574 A/G and the risk of coronary heart disease is unclear. We 
conducted an update analysis incorporating odds ratios and 95% confidence intervals to assess the 
correlation. Furthermore, we used in silico analysis to investigate the genes and proteins that interact 
with CDKN2B. Fifty case-control studies with a sample size of 35,915 cases and 48,873 controls were 
involved. We revealed that the rs1333049 C allele could increase the risk of coronary heart disease in 
the overall analysis (allele comparison, OR = 1.13, 95%CI = 1.05–1.21, P = 0.001; homozygous contrast, 
OR = 1.29, 95%CI = 1.11–1.49, P = 0.001; dominant comparison, OR = 1.14, 95%CI = 1.03–1.27, 
P = 0.011; recessive comparison, OR = 1.21, 95%CI = 1.10–1.34, P < 0.001). In subgroup analysis, 
positive correlations were detected in studies involving West and East Asians and in population-based 
control studies. The rs4977574 G allele was also a risk factor for coronary heart disease (allelic 
comparison, P = 0.001; heterozygous comparison, P = 0.003; homozygous comparison, P < 0.001; 
dominant comparison, P = 0.001). These results indicate correlation of CDKN2B-AS1 rs1333049 G/C and 
rs4977574 A/G variants may be correlated with the risk of coronary heart disease.
Abbreviations CDK: Cyclin Dependent Kinase; CCND: G1/S-specific cyclin-D; CDKN: Cyclin Dependent 
Kinase Inhibitor; GWAS: Genome-wide association study; CDKN2B-AS1: Cyclin-Dependent Kinase 
Inhibitors 2B Antisense RNA 1; CHD: Coronary heart disease; MAF: minor allele frequencies; HWE: 
Hardy-Weinberg equilibrium of controls; CI: confidence interval; COL8A2: Collagen type VIII alpha 2 
chain; HB: Hospital-based; ORs: odds ratios; ITGA11: Integrin subunit alpha 11; LTBP: Latent transform-
ing factor beta binding protein; PB: Population-based; IBC: Itmat Broad Care; NA: Not applicable; PCR- 
RFLP: polymerase chain reaction-restriction fragment length polymorphism; MI: Myocardial Infarction; 
SNP: single nucleotide polymorphism; SMAD: Mothers against decapentaplegic homolog; RT-PCR: 
Real-time polymerase chain reaction; UK: United Kingdom
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Introduction

Coronary heart disease (CHD) is characterized by 
coronary artery stenosis and leading to occlusion. 

This disease is one of the leading causes of dis-
ability and death globally [1]. The exact pathogen-
esis of CHD is unclear; however, evidence indicate 
a crucial role of genetic factors in the development 
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of CHD [2]. Genome-wide association studies 
have provided evidence of a correlation between 
common variations on specific chromosome loca-
tion 9p21.3 and susceptibility to cardiovascular 
diseases including atherosclerosis-related ischemia 
and coronary heart disease [3,4].

Cyclin-Dependent Kinase Inhibitors 2B 
Antisense RNA 1 (CDKN2B-AS1) also known as 
Antisense Noncoding RNA in the INK4 locus 
(ANRIL) is a potential CHD candidate gene 
located within the CDKN2A-CDKN2B gene clus-
ter on human chromosome 9 (9p21.3). CDKN2B- 
AS1 can also encode a large antisense non-coding 
RNA, and prior studies have suggested the role of 
CDKN2B-AS1 gene in the progression of CHD by 
regulating the expression of CDKN2B and other 
genes in cardiac tissue [5]. Inhibition of CDKN2B- 
AS1 in vascular smooth muscle could affect the 
expression of extra-cellular matrix remodeling 
genes, indicating a pivotal role in vascular function 
[6]. Abnormal CDKN2B-AS1 expression in ather-
osclerotic lesions can promote atherosclerosis and 
thrombosis [7,8]. Therefore, it is plausible that 
variants in the CDKN2B-AS1 gene are associated 
with atherosclerosis-related diseases, includ-
ing CHD.

Polymorphisms of CDKN2B-AS1 have been 
investigated previously and have been correlated 
with susceptibility to various diseases that include 
ischemic stroke, glaucoma, gout, and cancer [9–12]. 
Prior studies have assessed the potential association 
between CDKN2B-AS1 variants and the likelihood 
of CHD. The variant rs4977574 (A/G) is considered 
as a non-protein-coding variation located on chro-
mosome 9p21.3 adjacent to Cyclin-Dependent 
Kinase Inhibitor 2B (CDKN2B). Up to now, the 
A to G variation can be correlated with early 
onset of CHD. This variation affects the expression 
level of CDKN2B in many tissues including coron-
ary artery smooth muscle cells [5,13]. For 
rs1333049, the carrying of C allele was found to 
be a risk factor for CHD patients in West Siberia. 
The SNP (single nucleotide polymorphism) allele C, 
when present in the heterozygous genotype (GC) 
elevated CHD risk by 15–20% and when present in 
the homozygous SNP genotype (CC) elevated CHD 
risk by 30–40% [14,15]. Most of these studies are 
pilot researches, and their findings are far from 
conclusive [16,17]. In 2018, two meta-analyses 

explored the association between CDKN2B-AS1 
polymorphisms and coronary artery disease. One 
analysis involved only 9 studies based on the 
rs1333049 variant [18] and the other included 6 
studies involving the rs4977574 polymorphism 
[19]. Up to now, there is still no prior study to 
determine whether CDKN2B-AS1 rs1333049 
C and rs4977574 G allele can be used as a marker 
for the diagnosis or prognosis of CHD. The aim of 
the present research was to identify all eligible case- 
control studies to comprehensively investigate the 
correlation of CDKN2B-AS1 polymorphisms and 
CHD [20–58]. Furthermore, we used in silico ana-
lysis to investigate the genes and proteins that inter-
act with CDKN2B.

Materials and methods

Search strategy

A literature search of Embase, PMC, Google Scholar, 
and Chinese Wanfang databases for relevant pub-
lished articles was performed using the search term 
(‘rs4977574’ OR ‘rs1333049’ OR “CDKN2B antisense 
RNA” OR “CDKN2B-AS” OR “9p21” OR “ANRIL”) 
AND (“variant” OR “variant” OR “SNP”) AND 
(“myocardial infarction” OR ”coronary artery dis-
ease’). The most recent search update was 
1 June 2020. Besides the use of databases, eligible 
studies were also retrieved by searching the refer-
ences cited in the published articles.

Inclusion criteria and exclusion criteria

A publication was included in the analysis only if it 
met the following criteria: (a) Case–control study 
addressing the relationship between CDKN2B-AS1 
rs1333049 and rs4977574 variants and CHD; (b) 
Study providing available genotypic frequencies of 
9p21 region polymorphisms; and (c) Full text in 
English or other languages. Major exclusion criteria 
were (a) Duplicated studies using the same data; (b) 
Absence of a control group; and (c) No relevant to 
CDKN2B-AS1 variants and CHD.

Data extraction

Information retrieved from the included studies 
was as follows: First author name, date of 
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publication, region, and ethnicity of populations 
used, primary outcome, source of the control sam-
ples, total sample size, gene distribution of 
CDKN2B-AS1 variants, evaluation of Hardy- 
Weinberg equilibrium (HWE), and the genotyping 
method. In addition, studies including Asian 
population were divided into East Asia and West 
Asia. Two investigators independently carried out 
data extraction and quality evaluation and differ-
ences between them were resolved by discussions 
until a consensus was reached.

Statistical analyses

Strength of the correlation between CDKN2B-AS1 
rs1333049 and rs4977574 variants and CHD sus-
ceptibility was investigated using odds ratios (ORs) 
together with 95% confidence intervals. Five 
genetic models were adopted to assess the likeli-
hood of CDKN2B-AS1 polymorphisms. For SNP 
rs1333049 G/C, the allele comparison represents 
C-allele versus (vs.) G-allele; heterozygous contrast 
refers to CG vs. GG; homozygous contrast repre-
sents CC vs. GG; dominant model represents CC + 
CG vs. GG; and recessive model refers to CC vs. 
CG + GG. For SNP rs4977574 A/G, the five 
genetic models were G-allele vs. A-allele, GA vs. 
AA, GG vs. AA, GG+GA vs. AA, and GG vs. GA + 
AA. Cochran’s Q statistic was performed to calcu-
late the heterogeneity between ORs. If the prob-
ability (P) value < 0.05 was considered as 
statistically significant, indicating heterogeneity 
among studies. In this case, a random-effects 
model was adopted. Otherwise, we carried out 
a fixed-effects model. The HWE P value was cal-
culated using the Fisher’s exact test, with a P value 
< 0.05 indicating significant bias. Stratification 
analyses were carried out to investigate the 
strength of ethnicity, control source, and type of 
primary outcome. Begg’s funnel plot was adopted 
to assess the potential publication bias. P < 0.05 
represents the significance exists. Sensitivity ana-
lyses were used to test the reliability of the 
included studies. All statistical methods were refer-
ring to the STATA 11.0 software of StataCorp 
(College Station, TX).

In silico analysis of CDKN2B

Differentially expressed genes between the CHD 
and control groups in the overall population were 
evaluated using an online database. Moreover, we 
checked the minor allele frequencies (MAFs) in 
worldwide populations based on the online data-
base (https://www.ncbi.nlm.nih.gov/snp). The pro-
tein–protein interactions of CDKN2B were 
investigated using the STRING tools (https:// 
string-db.org/cgi/input.pl).

Results

Characteristics of eligible studies

Fifty case-control studies comprising 35,915 CHD 
patients and 48,873 control subjects met the inclu-
sion criteria and were summarized in the present 
study (Table 1). For the rs1333049 G/C variant, 33 
studies with 20,365 cases and 29,413 controls were 
involved. In subgroup analysis by ethnicity, the 
sample population of 14 studies was of 
Europeans, 18 studies were of Asian descendants 
(divided into West Asians and East Asians), and 
one study was on the African population. 
Stratification analysis based on the source of con-
trols used revealed that 14 studies were hospital 
based and 17 studies were population based. In 
a subgroup analysis by disease type, 22 studies 
focused on unclassified coronary artery disease 
and 11 studies focused on myocardial infarction. 
For the rs4977574 A/G polymorphism, the sample 
population of 8 studies was of European descen-
dants and 9 studies was of Asian populations (4 
studies were of West Asians and 5 were of East 
Asians). Stratification analysis based on the source 
of controls revealed 7 studies as hospital based and 
10 studies as population based. We also deter-
mined the MAFs in the overall and sub- 
populations. The MAFs for the SNP rs1333049 
G/C variant were as follows: global population, 
0.418; Africans, 0.213; East Asians, 0.537; 
European descendants, 0.472; South Asians, 
0.491; and Americans, 0.455. In the current 
study, the MAF in case was 0.521; and in control 
was 0.489. The MAFs for the SNP rs4977574 were 
as follows: global population, 0.395; Africans, 
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0.141; East Asians, 0.531; Europeans, 0.492; South 
Asians, 0.484; and Americans, 0.416 (Figure 1). In 
the present study, the MAF in case was 0.537; and 
in control was 0.483.

Overall and stratified analyses

The strength of the correlation between CDKN2B- 
AS1 SNPs rs1333049 and rs4977574 is summarized 
in Table 2. For the rs1333049 G/C variation, when 
all studies pooled together, we observed that indi-
viduals carrying CC allele had a 1.29-fold higher 
risk of CHD than those carrying GG allele (95% 
CI = 1.11–1.49, P = 0.001, Figure 2(a)). In sub-
group analyses, we revealed that West Asians with 
CC allele had a 1.73-fold increased susceptibility 
than those with GG allele (95%CI = 1.14–2.64, 
P = 0.011). For East Asians, the ratio was 1.32 
(95%CI = 1.11–1.57, P = 0.001, Figure 2(a)). 
Moreover, similar findings were indicated for the 
subgroup with population-based control (C allele 
vs. G allele, OR = 1.15, 95%CI = 1.04–1.27, 
P = 0.006; CC vs. GG, OR = 1.32, 95% 
CI = 1.08–1.60, P = 0.006; dominant model, 
OR = 1.17, 95%CI = 1.02–1.35, P = 0.028; and 
recessive model, OR = 1.23, 95%CI = 1.08–1.39, 
P = 0.002, Figure 3(a)). In stratification by pheno-
type of CHD, we identified that individuals with 
CC allele had a 1.26-fold higher risk of coronary 
artery disease than those with GG allele (95% 
CI = 1.05–1.51, P = 0.012). For myocardial infarc-
tion groups, the ratio was 1.25 (95% 
CI = 1.01–1.53, P = 0.037, Figure 4(a)). For the 
rs4977574 A/G variant, a positive association was 
observed for all studies when combined. 
Individuals carrying GG allele had a 1.39-fold 
higher risk of CHD than those carrying AA allele 
(95%CI = 1.16–1.67, P < 0.001, Figure 2(b)). 
Stratification analysis revealed West Asians with 
GG allele had a 1.28-fold increased susceptibility 
than those with AA allele (95%CI = 1.12–1.46, 
P < 0.001, Figure 2(b)). For East Asians the ratio 
was 1.53 (95%CI = 1.13–2.08, P = 0.006, Figure 3 
(b)). In subgroup analysis by phenotype, we 
revealed that individuals carrying GG allele had 
a 1.43-fold increased susceptibility of coronary 
artery disease than those with AA allele (95% 
CI = 1.13–1.82, P = 0.004). The ratio was 1.38 in Ta
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myocardial infarction groups (95%CI = 1.06–1.79, 
P = 0.018, Figure 4(b)).

In silico analysis of CDKN2B

Protein-protein crosstalk of CDKN2B was inves-
tigated by the STRING tools. Interaction of least 
20 proteins with CDKN2B was identified in 
Figure 5. The most relevant interactions were 
with the following proteins: Cyclin-Dependent 
Kinase (CDK) 4, CDK 6, Cyclin-Dependent 
Kinase Inhibitor (CDKN) 1A, CDKN 1B, CDKN 
1 C, Mothers against decapentaplegic homolog 
(SMAD) 4, G1/S-specific cyclin-D (CCND) 1, 
CCND 2, SMAD 3, and SMAD 2 (Figure 5(b)). 
The online database was also utilized to assess the 
differentially expressed genes between the CHD 
and control groups (Figure 6(a)). The most prob-
able correlations with CDKN2B in CHD included 
the genes for latent transforming factor beta 
binding protein 2 (LTBP2, Figure 6(b)), integrin 
subunit alpha 11 (ITGA11, Figure 6(c)), and col-
lagen type VIII alpha 2 chain (COL8A2, Figure 
6(d)).

Publication bias and sensitivity analysis

We constructed the Begg’s funnel plots to detect 
the publication bias among the included studies. 
We identified no significant asymmetry of the 
funnel plots in any of these models when evaluat-
ing the variants of rs1333049 (Figure 7(a), 

P > 0.05) and rs4977574 (Figure 7(b), P > 0.05). 
Furthermore, we conducted sensitivity analysis by 
removing single studies. Single study did not have 
an impact on the significance of ORs for both 
rs1333049 G/C (Figure 7(c)) and rs4977574 A/G 
(Figure 7(d)) polymorphisms.

Discussion

CHD is still the main cause of mortality globally 
and imposes a huge social and economic burden 
[59,60]. The relationship between the CDKN2B- 
AS1 variants rs1333049 and rs4977574 and the 
risk of CHD has been previously reported; how-
ever, a comprehensive analysis of the relationship 
was not available. Several meta-analyses have 
pooled the data of various studies; however, the 
number of studies included was insufficient. In 
2018, Xu et al evaluated six articles on CDKN2B- 
AS1 SNP rs4977574 indicating increased likeli-
hood of CHD due to the variation [19]. Hu et al 
in 2019 evaluated the association between SNP 
rs1333049 and CHD using 7 studies and reported 
increased risk of CHD with rs1333049 in the East 
Asian population [61]. The present analysis, which 
involved a total of 50 case-control studies with 
35,915 CHD patients and 48,873 control subjects, 
is by far the most comprehensive analysis evaluat-
ing the relationship between CDKN2B-AS1 var-
iants rs1333049 and rs4977574 and the risk of 
CHD. Our analysis revealed a significant associa-
tion of rs1333049 G/C and rs4977574 A/G variants 

Figure 1. Minor allele frequencies of CDKN2B-AS1 rs1333049 G/C and rs4977574 A/G polymorphisms in various races.
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with the likelihood of CHD, when all studies were 
pooled together.

For the SNP rs1333049, C allele was a risk factor 
for both West Asians and East Asians in the 

subgroup analysis by race. In the stratified analysis 
by source of control population, there is a positive 
correlation between rs1333049 variant and popu-
lation-based studies. In a subgroup analysis based 

Figure 2. Forest plot of the association between CDKN2B-AS1 rs1333049 G/C (a), rs4977574 A/G (b) variants and risk of CHD 
(homozygous contrast, random-effects) in stratified analysis by race.

Figure 3. Subgroup analysis by source of control between variation of CDKN2B-AS1 rs1333049 G/C (a), rs4977574 A/G (b) and risk of 
CHD (homozygous contrast, random-effects).
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on disease type, we observed that individuals car-
rying CC allele had an increased susceptibility of 
coronary artery disease and myocardial infarction 
patients’ group. Our conclusion is not consistent 
with the meta-analysis performed by Xie et al, who 
observed no positive relationship between this var-
iant and susceptibility of myocardial infarction 
groups (allele contrast, P value = 0.17, 
OR = 0.87, 95% confidence intervals = 0.72–1.06; 
dominant comparison, P value = 0.14, OR = 0.83, 
95% confidence intervals = 0.64–1.07; recessive 
genetic model, P value = 0.28, OR = 1.25, 95% 
confidence intervals = 0.84–1.86) [18]. A possible 
reason for the difference in study outcomes may 
be the relatively small number of studies included 
in their meta-analysis. For the SNP rs4977574, we 
detected a significant correlation between the 
G allele and the risk of CHD among West Asian 
and East Asian populations in a stratification ana-
lysis by ethnicity and the findings are consistent 
with the results in a previous study [62]. In strati-
fication analysis by control population source, 
there was a positive correlation with population- 
based studies. Based on previous randomized con-
trolled trial, CDKN2B-AS1 rs1333049 G/C and 
rs4977574 A/G variants were not correlated with 

higher risk in African patients with CHD [63]. 
Evidence from genome-wide association study 
showed that no major locus could individually 
reveal the high risk of coronary heart disease in 
African Americans [64]. Moreover, we checked the 
MAFs in worldwide populations based on the 
online database. The MAF for the CDKN2B-AS1 
rs1333049 G/C variant in Africans is 0.21. It is 
lower than that in other populations and global 
average. Similar result was indicated for the 
rs4977574 A/G variant. A possible reason is that 
CDKN2B-AS1 rs1333049 G/C and rs4977574 A/G 
variants may be not associated with the CHD 
susceptibility in African population. Additionally, 
an online database was employed to explore dif-
ferentially expressed genes between the CHD and 
control groups. We found that expression of 
LTBP2, ITGA11, and COL8A2 correlated with the 
expression of CDKN2B in CHD. The online data-
base contains scant data on the specific mechan-
ism of these genes. Future functional analyses and 
in vitro experiments are needed to demonstrate the 
correlations in detail.

The current analysis has several limitations. 
First, we observed significant heterogeneity in 
the overall analysis when evaluating the 

Figure 4. Forest plot of the association between variation of CDKN2B-AS1 rs1333049 G/C (a), rs4977574 A/G (b) and CHD 
susceptibility in stratified analysis by phenotype.
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CDKN2B-AS1 rs1333049 G/C and rs4977574 A/G 
variations. Although the DerSimonian and Laird 

method was employed [65], potential bias may 
influence the conclusion. Second, the 

Figure 5. Protein-protein crosstalk of CDKN2B (a). The top 10 most relevant feature partners are as follows: Cyclin-dependent kinase 
(CDK) 4, CDK 6, Cyclin-dependent kinase inhibitor (CDKN) 1A, CDKN 1B, CDKN 1 C, Mothers against decapentaplegic homolog 
(SMAD) 4, G1/S-specific cyclin-D (CCND) 1, CCND 2, SMAD 3, SMAD 2 (b).
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pathogenesis of CHD is very complex. Thus, 
a single gene polymorphism is unlikely to make 
a significant contribution to its development. All 
OR values obtained in the current study are all < 
2. Therefore, further studies elucidating the gene- 
gene or gene-environment connections to 
demonstrate correlation are recommended. In 
addition, the analysis of the protein-protein 
crosstalk of CDKN2B by the STRING tool, iden-
tified interactions with more than 20 proteins 
(Figure 5), however, these interactions need be 
confirmed by in vitro and in vivo analyses. 
Third, the study does not include adjusted 

analysis for sex, lifestyle, and smoking exposure, 
which may have helped in better segregation and 
evaluation of the different groups.

Conclusion

Taken together, our study demonstrates that 
CDKN2B-AS1 rs1333049 C allele and rs4977574 
G allele is correlated with the risk of CHD. These 
polymorphisms may serve as genetic biomarkers for 
CHD, especially in people of East and West Asian 
ancestry.

Figure 6. Differentially expressed genes between CHD and control group (a). The probably correlated gene with CDKN2B includes 
the latent transforming factor beta binding protein (LTBP) 2, (b), integrin subunit alpha 11 (ITGA11, c), collagen type VIII alpha 2 
chain (COL8A2, d).
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