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Abstract

Predicting future species invasions presents significant challenges to researchers and government agencies. Simply
considering the vast number of potential species that could invade an area can be insurmountable. One method, recently
suggested, which can analyse large datasets of invasive species simultaneously is that of a self organising map (SOM), a form
of artificial neural network which can rank species by establishment likelihood. We used this method to analyse the
worldwide distribution of 486 fungal pathogens and then validated the method by creating a virtual world of invasive
species in which to test the SOM. This novel validation method allowed us to test SOM’s ability to rank those species that
can establish above those that can’t. Overall, we found the SOM highly effective, having on average, a 96–98% success rate
(depending on the virtual world parameters). We also found that regions with fewer species present (i.e. 1–10 species) were
more difficult for the SOM to generate an accurately ranked list, with success rates varying from 100% correct down to 0%
correct. However, we were able to combine the numbers of species present in a region with clustering patterns in the SOM,
to further refine confidence in lists generated from these sparsely populated regions. We then used the results from the
virtual world to determine confidences for lists generated from the fungal pathogen dataset. Specifically, for lists generated
for Australia and its states and territories, the reliability scores were between 84–98%. We conclude that a SOM analysis is a
reliable method for analysing a large dataset of potential invasive species and could be used by biosecurity agencies around
the world resulting in a better overall assessment of invasion risk.
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Introduction

While invasive species cause significant environmental and

economic damage worldwide [1,2,3], predicting which of the

hundreds or thousands of potentially invasive species are most

likely to invade a region presents a significant challenge. Those

tasked with the responsibility of preventing biological invasions are

often required to prioritise across often extensive lists of potential

invaders as part of resource allocating activities. To facilitate this

process, models have been developed and are used, but while some

methods have the ability to evaluate the likelihood of invasion or

establishment for multiple species simultaneously [4,5], the vast

majority can only assess a single species at a time (e.g. [6,7,8,9,10]).

As a consequence, many biosecurity agencies around the world

utilise consultative processes aimed at eliciting expert opinion from

researchers, government officers, and industry stakeholders. These

experts are often asked to assess and prioritise across a large

number of potential invasive species, and while their experience

and knowledge may be extensive, it is unlikely to extend to all

species under consideration. In addition, this elicitation process

can be susceptible to framing, context dependence and motiva-

tional bias which can lead to flawed prioritisations, poor decision

making and misallocation of usually limited mitigation resources

[11].

Recently, a self organising map (SOM) has been used to analyse

invasive pest assemblages (IPA) using the presence/absence data of

multiple invasive species [12,13]. A SOM is a type of artificial

neural network, which identifies patterns of association amongst

invasive species, whereby regions with similar suites of invasive

species are clustered and a region-specific likelihood of establish-

ment index (a value between 0 and 1) for each species is generated.

The invasive pest assemblage (IPA) present in a region captures a

significant proportion of biological, ecological, and abiotic factors

that cannot be measured. If two regions have a similar IPA they

are likely to have similar characteristics and any species present in

one of these regions is likely to be able to establish in the other.
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The SOM is able to make a similar assessment to the example

above except with multiple regions at the world scale. By clustering

regions based on assemblages the SOM is able to generate a value

(a neuron weight) for each species that indicates the strength of

association of that species with a region’s species assemblage. This

value can then be used as a likelihood of establishment index. It

should be made clear that the invasion process involves two steps,

arrival and establishment. By analysing species associations, the

SOM is only assessing establishment likelihood and is unable to

estimate arrival likelihood.

SOM has been used to analyse the worldwide distribution of

hundreds of species simultaneously [12] and this approach has

been found to be robust to significant errors in the data [14],

which are inevitable in such a large dataset. The benefit of a SOM

analysis is that it provides a complimentary alternative to the

elicitation process and can be used to cross check and challenge

expert opinion, which can improve the quality and accountability

of the opinions offered [11]. However, thorough model validation

is essential in assessing the utility of the SOM approach and the

accuracy of the species rankings it generates. For a worldwide data

set it may be possible to analyse the historical worldwide species

distributions, if they were available, and compare the predicted

rankings to the subsequent invasions. However, a mismatch

between predictions and invasion would not necessarily indicate a

poor model, but simply an inability of the agent to find a suitable

pathway that connects the species to the region under consider-

ation.

To address this issue we developed a novel alternative that does

not have this disadvantage. We created a ‘‘virtual world’’ filled

with invasive species, to simulate the real world. In such a virtual

world the regions in which an invasive species is able to establish

would be known, and it would then be possible to test the rankings

made by a SOM analysis.

There were two main aims of this study. The first was to

complete a SOM analysis of the IPA of a worldwide distribution of

plant fungal pathogens, thereby generating likelihood lists of

establishment for Australia and its states and territories. The

second was to validate these predictions using the virtual world

approach. We used a dataset of the worldwide distribution of

fungal pathogens, and then created a virtual world of the same size

(same number of regions and species) within which to validate the

predictions and determine the level of confidence for any list

generated from the dataset.

Results

SOM analysis of fungal pathogen dataset
Establishment likelihood lists of the top 100 absent species were

generated for all states and territories of Australia, as well as

Australia as a whole (Tables S1, S2, S3, S4, S5, S6, S7, and S8).

Comparison of virtual world with fungal pathogen
dataset

The negative binomial distribution generated from the 20%

scenario did not explain the fungal pathogen data set as well as the

distribution generated from the 50% scenario (D AIC = 1972.51),

suggesting that the 50% scenario was a better fit to the fungal

pathogen data than the data from the 20% scenario (Figure 1).

SOM predictive accuracy
For 100 virtual worlds, when invasive species were distributed to

50% of their potential distribution (scenario 1), mean success rate

was 0.98 (i.e. on average, the SOM correctly ranked 98% of the

species that could establish in a region above those that couldn’t),

though this varied depending on the number of species present

(Figure 2). The SOM success rate for species across regions was

equally high at 0.99. On average, a species was correctly ranked in

the ‘top half’ (if it could establish) or the ‘bottom half’ (if it couldn’t

establish) of a region’s list for 99% of regions, and this varied little

with how widely spread the species was (Figure 3).

For another 100 virtual worlds, invasive species were distributed

to 20% of their potential distribution. There was greater variation

than the 50% scenario (Figure 4), but the overall mean SOM

success rate for regions was still high at 0.89. The SOM success

rate for species across regions was 0.96 and varied little with how

widely spread the species was (Figure 5).

The results presented in Figures 2 and 4 were then used to

estimate the confidence in the fungal pathogen lists generated for

Australia and its states and territories (Table 1). The lowest SOM

success rate (0.84) was for regions with a similar size to Northern

Territory (41–50 species present), while the highest SOM success

rate (0.98) was for regions with a similar size to Australia (241–250

species present).

Regions with 1–10 species
When species were distributed to only 20% of their potential

ranges (scenario 2) there was a substantial amount of variation in

SOM success rate for regions which only had 1–10 species

(Figure 4). We assessed whether the SOM success rate was affected

by which neuron in the SOM a region was allocated to (Table S9).

While the SOM success rate tended to be reduced for regions that

had only a few species, this could be mitigated if that region was

found in the same neuron as other regions (Table 2). For example,

if a region had only 5 species, then we would have high confidence

in a SOM generated risk list only if it was allocated into a neuron

with 5 other regions (6 regions in total).

Discussion

The SOM performed well in the virtual world of invasive

species and was able to consistently rank a high percentage of

those species that could establish in a region above those that

couldn’t. Although there could be less confidence in lists generated

for those regions with less than ten species present, we can increase

this confidence by determining the number of other regions

allocated to the same neuron. These results enable significant

confidence in any lists generated from a SOM analysis of invasive

species and specifically, for the fungal pathogen lists presented

here for Australia and its states and territories.

Although the AIC test revealed that the 50% scenario was a

closer fit to the fungal pathogen data, the 20% scenario is a more

challenging test of the SOM’s predictive ability. The 50%

distribution has a smaller proportion of regions with 1–10 species,

and a larger proportion of regions with 21–30 species, than the

fungal pathogen data set (Figure 1a). Regions that hold few species

are more challenging for the SOM to correctly distinguish

between those species that can establish and those that cannot.

Examining the 20% scenario (Figure 1b) reveals a large proportion

of regions with only a few species (1–10, or 11–20 species). This

would make it more difficult for SOM to predict establishments

from this scenario than the fungal pathogen data set. The 20%

scenario therefore represents a more conservative test of the SOM

predictions and one that we shall consider in more detail.

Generally, we found the ability of the SOM to rank those

species that could establish in a region above those that could not,

to be very high. On average, 89% of species that could establish in

a region were correctly ranked above those that were unable to

establish. Only in regions with 1 to 10 species did the SOM

Predicting Invasive Fungal Pathogens
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analysis have some difficulty, with success rates ranging from 0 to

1. However, within this group, we have been able to identify a

characteristic that further refines interpretation of the results (i.e.

the number of other regions allocated to the same neuron). The

regions allocated to a neuron all have similar pest assemblages and

it is this information that is reflected in the likelihoods. If a region

has only a small number of species present, the amount of species

association information captured appears to be a limiting factor for

correct assignment. The presence of additional regions with

similar species assemblages provides more associational informa-

tion and enables more accurate SOM predictions.

We can now use the results of these virtual world tests

(specifically, Figures 2 and 4) to estimate our confidence in the

lists generated from the SOM analysis of the fungal pathogen

dataset, based on the number of species in the region (Table 1).

Overall, SOM success rate in the virtual world for regions of

similar size to Australia and its states and territories range between

0.84 and 0.98 and provide substantial levels of confidence in the

lists generated from the fungal pathogen data set. In addition, we

can determine our confidence in any other region’s list, including

those regions with only 1–10 species (Table S10).

It is interesting to note that across 20% and 50% scenarios the

ability of SOM to rank a species was not related to the number of

regions a species was found in (Figures 3 and 5), and the SOM

success rate was very high (mean: 96–98%). Essentially, the SOM

analysis only makes a small number of errors, but these tend to be

concentrated in those regions with only 1 to 10 species. The

number of regions a species is found in is therefore not related to

the SOM predictive power and those species which are poorly

distributed are just as well predicted as widespread species.

While the data analysed is that of historical invasions, the

opening up of new pathways in the future may lead to new

introductions [15], which could alter species associations and

SOM species rankings. However, it should be noted that the high

success rate of the SOM analysis in its predictive rankings are in

the absence of future pathways and subsequent species associa-

tions. While these future species associations may provide more

information and improve SOM predictive powers, the high

predictive power of SOM, even at the conservative 20% scenario,

may mean that further information may only slightly improve

predictive rankings. Despite this, future work may need to ‘isolate’

a region or regions in the virtual world before, restricting the

number of species that can be found there initially. Allowing

subsequent invasions into this region would further test SOM

predictive powers. However, we would argue that this would be

similar to the situation that has arisen in the virtual worlds

presented here, whereby some regions only contained a few

species. Despite the limited information in these regions, and

Figure 1. Species Distributions. Comparison of the distribution of species in regions between the original fungal pathogen data set and (a) 100
virtual worlds with 50% distribution, (b) 100 virtual worlds with 20% distribution.
doi:10.1371/journal.pone.0025695.g001
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without allowing further invasions to simulate the opening up of a

new pathway, SOM still performed with a high degree of

accuracy.

The results presented here along with those presented by [14],

which showed significant resilience to errors in presence/absence

data, indicate the effectiveness of this tool in ranking potential

invasive species. In addition, the number of species that can be

simultaneously analysed using this technique is at present only

limited by the availability of data and the amount of virtual

computer memory available on a desktop. At present, on a 32 bit

architecture desktop computer, we have been able to analyse data

sets with up to 10,000 species (unpublished data).

A SOM analysis could be utilised by government agencies

concerned with prioritising across large numbers of potentially

invasive species in two ways. Firstly, a SOM could be used as an

initial screening process to reduce the number of potential

invasives to a more manageable number. Secondly, the species

likelihood indices generated by a SOM analysis could be included

Figure 2. SOM Success Rate. The ability of SOM to successfully rank absent species that can establish in a region above those species that can’t
establish, as a function of the number of species found in a region. 100 virtual worlds with 50% distribution.
doi:10.1371/journal.pone.0025695.g002

Figure 3. SOM Success Rate. The ability of SOM to successfully rank absent species that can establish in a region above those species that can’t
establish, as a function of the number of regions a species was found. 100 virtual worlds with 50% distribution.
doi:10.1371/journal.pone.0025695.g003
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in the consultative process by providing a ‘second opinion’ for both

clarification and revision of expert opinion [14]; a critical, but

often ignored part of the elicitation process [11]. In addition, these

quantitative estimates of establishment could also be incorporated

into economic models used in import risk assessments [16,17] or

by border biosecurity officers wanting to judge the likelihood of

establishment for a recently intercepted invasive species.

While this work focuses on invasive species distributions, SOM

could also be used to rank native species vulnerability. The SOM

estimates a species’ strength of association with an assemblage in a

particular location, and this could therefore be used as a measure

of a native species’ strength of association, which would be a

measure of its vulnerability. In the same way that an invasive pest

assemblage captures the ecological, biological, and abiotic

characteristics of a region, the native species assemblage would

do the same. As such, by clustering regions, or more likely grid

cells, a SOM could estimate a species’ strength of association with

a particular grid cell. In contrast to a SOM analysis of invasive

Figure 4. SOM Success Rate. The ability of SOM to successfully rank absent species that can establish in a region above those that can’t, as a
function of the number of species found in a region. 100 virtual worlds with 20% distribution.
doi:10.1371/journal.pone.0025695.g004

Figure 5. SOM Success Rate. The ability of SOM to successfully rank absent species that can establish in a region above those that can’t, as a
function of the number of regions a species was found. 100 virtual worlds with 20% distribution.
doi:10.1371/journal.pone.0025695.g005
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species, which can highlight species absent from a location with

high likelihood values, a SOM analysis of native species will

highlight species present in a location with low likelihood values. It

is these native species which will have a low strength of association

with the species assemblage of a particular grid cell and, even

though they are present in that location may have significantly

reduced likelihood of persistence, relative to the other species

present. Values across a native species’ entire range could be

combined to generate an overall metric for vulnerability.

Generating such a metric for all native species in a dataset would

enable ranking of native species vulnerabilities, which could be

utilised by policy officers required to prioritise conservation efforts.

Overall, the results presented here provide further evidence of

the power and reliability of a SOM analysis in predicting and

ranking invasive species and we encourage its adoption by

researchers and stakeholders.

Materials and Methods

Fungal pathogen dataset and SOM analysis
Fungal pathogen distribution data detailing the presence/

absence data for 486 fungal pathogen species of plants over 420

regions of the world were extracted from the CABI Crop Protection

Compendium [18]. This compendium is a database compiling

information on all aspects of plant health and the distributional data

are sourced from available literature records (http://www.cabi.org/

cpc/default.aspx?site=161&page=1385). There are 459 regions

defined by this compendium, which are political countries with

many of the larger countries further subdivided into states or

provinces (e.g. USA, China, Canada, Australia). Of the 459 regions,

39 regions had no fungal pathogens present and were removed from

the analysis.

A 4206486 matrix was subsequently generated in which the

presence or absence of each species was recorded in each region.

The number of neurons in a SOM is partially determined by the

heuristic rule suggested by [19], which is 5!n, where n is the

number of samples. In addition, the two largest eigenvalues are

calculated from the data set and the ratio of the length and width

of the SOM is set to those eigenvalues. Given this ratio, the final

number of neurons is set as close to Vesanto’s heuristic rule as

possible. The dimensions of the SOM used in this analysis was

1368 (104 neurons) with the standard hexagonal lattice config-

uration and number of iterations: 52,000 [20].

The final neuron weight vector was comprised of 486 elements with

each element representing each of the 486 species and having a value

between 0 and 1. Each element can be interpreted as a likelihood

index, or an index of how strongly that species is associated with other

species in that neuron, and hence the species assemblage of any region

associated with that neuron. This value can then be used to rank all

species in a region from highest to lowest likelihood. It should be noted

then that the SOM generates a likelihood index for all species, whether

that species is present or absent in that region. A full explanation of a

SOM analysis can be obtained from [20,21].

The SOM analysis was performed on the fungal pathogen data

and a likelihood of establishment list (top 100) generated for

Australia and its states and territories.

Virtual World
To test the reliability of these lists of fungal pathogens for

Australia, we created a simulated ‘‘virtual world’’ within which the

potential distribution patterns of pathogens are known. An

essential property of this artificial world is that realistic species

associations are present, providing the basis for the SOM analysis.

Indices were assigned to each region to represent an invasibility

index (InI) and to the pathogens to represent their invasion

requirements (IRI) in terms of the regional susceptibility

categories. We used these categories as the factor(s) that facilitate

invasion likelihood are often poorly characterised [22,23].

An arbitrary ten categories of InI (A–J) were defined, which may

be interpreted as the set of characteristics present in a region,

which determine if a pathogen can establish. Adjacent categories

(e.g. A and B) were considered more similar than non-adjacent

categories (e.g. A and J). Each region could contain more than one

category, but only adjacent or sequential categories (Figure 6a).

Table 1. Expected SOM success rates for lists generated for
each state and territory of Australia, and Australia as a whole.

Region
No. of species
present

VW
distribution

SOM
success*

Northern Territory 42 20% 0.84

Tasmania 97 20% 0.93

Victoria 111 50% 0.92

Western Australia 112 50% 0.92

South Australia 119 50% 0.92

Queensland 171 50% 0.89

New South Wales 182 50% 0.89

Australia 249 50% 0.98

Success rates drawn from the testing of SOM in 100 virtual worlds with either a
20% or a 50% species distribution. Because a 20% species distribution resulted
in regions with less than 110 species, this data could not be used for estimating
regions in the fungal pathogen data set containing more species. For these
regions, we used the SOM success rates from the 50% species distribution.
*SOM success rates estimated from Figures 2 and 4.
doi:10.1371/journal.pone.0025695.t001

Table 2. The interaction between the number of species
found in a region and the number of regions allocated to a
neuron with regard to SOM’s ability to rank species that can
establish over those that cannot.

# regions # of species found in a region

in a neuron 1 2 3 4 5 6 7 8 9 10

1 0.07 0.34 0.39 0.48 0.55 0.60 0.73 0.82 0.87 0.90

2 0.06 0.42 0.46 0.55 0.64 0.67 0.79 0.83 0.86 0.85

3 0.25 0.50 0.52 0.58 0.63 0.73 0.78 0.83 0.86 0.85

4 0.33 0.33 0.39 0.64 0.77 0.80 0.85 0.88 0.89 0.89

5 0.71 0.65 0.73 0.78 0.82 0.84 0.87 0.88 0.91

6 0.50 0.77 0.85 0.84 0.86 0.88 0.90 0.90

7 0.55 0.84 0.65 0.87 0.83 0.88 0.88 0.90 0.90 0.92

8 0.76 0.82 0.87 0.86 0.89 0.89 0.92 0.91 0.93

9 0.97 0.94 0.94 0.93 0.94 0.93 0.93 0.92

10 0.69 0.90 0.88 0.93 0.91 0.93 0.92 0.94

11 0.77 0.86 0.89 0.94 0.92 0.95 0.95 0.96 0.94

12 0.75 0.89 0.92 0.93 0.94 0.94 0.93

13 0.96 0.95 0.93 0.94 0.94 0.93 0.94

14 1.00 0.97 0.96 0.96 0.95 0.95 0.94

Only those categories in which SOM success rate was above 0.80 (80%) are in
bold. It is only these categories in which confidence in the SOM generated
likelihood list can be obtained. Data extracted from 100 virtual worlds, with
species distributed to 20% of their potential range.
doi:10.1371/journal.pone.0025695.t002
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For example, a region with three categories could have A, B, C, or

B,C, D, or C,D, E, etc, but could not have A, D, J, or B, C, H. If a

region has only a single InI (e.g. C), there is only a limited suite of

species that could establish in this region. In contrast, if a region

had all ten InI’s (A–J), all species could establish.

Fungal pathogen species were randomly allocated only one of

the ten possible IRI’s (A–J) (Figure 6a). This index can be thought

of as the characteristics of an invasive species that enables it to

establish in a region. If a species’ IRI matched a region’s InI, then

that species was able to establish (Figure 6b).

By creating a virtual world in this way we were able to create

species associations, which are the patterns that the SOM looks for

in its predictions. For example, all species with the same IRI are

able to establish in exactly the same regions and would have a

strong species association. If two species had IRI’s that were

adjacent to each other (e.g. A and B), they would often be able to

establish in the same regions, but not as often as species that had

the same IRI (i.e. they could both establish only in regions whose

IRI spanned A and B). Finally, if two species had IRI’s that were

not ‘close’ to each other (e.g. A and J), they would not have a

strong association. Only regions containing all ten InI’s (A to J)

would be susceptible to invasion from these two species.

We aimed to create a virtual world in which InI ranges reflected

that of the real world. However, the potential distributions of invasive

species across the real world’s regions are unknown as species have

not invaded all possible regions. We therefore used a proxy to

determine the InI distribution by examining the worldwide plant

species diversity [24], assuming diversity of native species reflects the

final diversity of invasive species at large scales [25,26]. Using this

dataset, we determined the species richness distribution across the

real world’s regions, whereby the maximum species richness recorded

was 10,000 species. We scaled the InI distributions of our virtual

world to the distribution of plant species richness across regions of the

real world (Table 3). For instance, 52.7% of the regions of the real

world contained 1 to 1000 plant species, thus each region in the

virtual region had a probability of 0.527 of receiving only one InI.

Once it was determined that a region would receive only one InI, the

InI was randomly selected from the ten possibilities (A to J), with each

having an equal likelihood of being selected. Further, each region had

a probability of 0.210 of receiving two InIs. There were nine possible

pairings of InIs (AB, BC, CD, DE, EF, FG, GH, HI, IJ) as only

adjacent InIs can be paired. If a region was selected to receive two

InIs, one of the nine pairings was selected randomly, with each

pairing having an equal likelihood of selection.

Figure 6. Virtual World Setup. Pictorial representation of how the virtual world was established and used to test SOM’s ability to predict invasive
species. (a) Characteristics assigned to regions and species (InI = invasibility index; IRI = invasion requirement index), (b) These characteristics used to
determine which species can establish in which regions, (c) Species subsequently distributed to a predetermined proportion of the regions they
could establish in (e.g. 50%), (d) This information analysed by SOM, and (e) SOM’s predictions compared to the ‘truth’ (b).
doi:10.1371/journal.pone.0025695.g006

Table 3. Weighting for the random selection of invasibility
indices (InI) for regions in the virtual world.

# species range1 # ecoregions proportion2

1–1,000 1 456 0.527

1,001–2,000 2 182 0.210

2,001–3,000 3 111 0.128

3,001–4,000 4 52 0.060

4,001–5,000 5 24 0.028

5,001–6,000 6 14 0.016

6,001–7,000 7 14 0.016

7,001–8,000 8 6 0.007

8,001–9,000 9 5 0.006

9,001–10,000 10 1 0.001

The number of ecoregions falling into each species range category was derived
from native plant distributions [24].
1The number of InI’s given to a region in the virtual world.
2The proportion of all ecoregions falling into the species category.
doi:10.1371/journal.pone.0025695.t003
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Once the invasive species’ IRI and the regions’ InI are

allocated, the potential distribution of species across regions is

known (the ‘fully invaded’ distribution) (Figure 6b). The current

real world distribution of invasive pathogens represents some

unknown point before this fully invaded distribution. To validate

SOM predictions, we allocated each species to a pre-determined

percentage of all possible regions it could invade (Figure 6c). For

example, if a species was able to invade 200 of the 420 regions in

the virtual world, we could randomly allocate that species to 50%

of those 200 regions. These restricted species distributions could

then be analysed using SOM (Figure 6d) and its predictions

compared to the known fully invaded distribution (Figure 6e).

Scenarios
We generated 200 virtual worlds in which each region’s InI and

species’ IRI were randomly selected. Each virtual world was therefore

unique. For 100 virtual worlds we allocated species to 50% of their

potential range (scenario 1) and for the remaining 100 virtual worlds

we allocated species to 20% of their potential range (scenario 2).

Distributing species to either 20% or 50% of their potential range

gave the SOM different levels of information on potential species

distributions, and represents a conservative and more realistic

scenario, respectively. As with the fungal pathogen dataset, each

dataset was a matrix (4206486) in which a row represented a region

and a column represented a species. The matrix therefore contained

1’s and 0’s representing the presence or absence of all species in all

regions. Each dataset was then analysed using SOM and ranked

species lists generated for each region in each virtual world.

We determined which scenario (20% or 50%) was most similar to

the fungal pathogen dataset. We combined all 100 virtual worlds

from each scenario, which created a negative binomial-distributed

data set for each scenario containing the relative frequency of each

number of species in a region. We then calculated maximum

likelihood estimates for the mean and dispersion parameters for

each negative binomial distribution [27]. We subsequently

calculated the log-likelihood of collecting the original fungal

pathogen data set, given that the true fungal pathogen distribution

is equal to the negative binomial distribution generated by each

scenario (20% or 50%). We calculated an AIC value from this log-

likelihood value (with two parameters for the negative binomial

distribution) for each scenario, to compare the abilities of the two

scenarios to explain the data, and the lowest AIC value indicated

which scenario was most similar to the fungal pathogen dataset.

The SOM analysis was performed using Matlab [28] and the SOM

Toolbox (version 2.0) developed by the Laboratory of Information and

Computer Science Helsinki University of Technology (http://www.cis.

hut.fi/projects/somtoolbox/), while the AIC test used R [29].

Assessing SOM
Regional success rate. The ranked list for each region

generated by SOM was used to evaluate the SOM performance

(species were ranked from highest likelihood of establishing to

lowest). For every region, we determined how many absent species

could establish and calculated the proportion of absent species that

were ranked in that top part of the list. For example, if there were

152 absent species that could establish in a region and 147 of those

species were ranked in the top 152 of the list, then the regional

success rate for that region would be 0.97 (97%). For convenience,

the top 152 species in this list is referred to as the ‘top half’ and the

remainder is referred to as the ‘bottom half’. It should be noted

that the size of the ‘top half’ and ‘bottom half’ is determined by the

number of species that can establish in that region and will vary

between regions.

For each virtual world there were 420 regions. Within each

scenario, all the regional success rates in all the virtual worlds were

combined (42,000 regions) to give an overall mean success rate

across all virtual worlds in each scenario.
Species success rate. We also calculated the success rate for

each species across all regions. If a species could establish in a

region, we counted a success if that species was correctly ranked in

the ‘top half’ of that region’s list. If a species could not establish in

a region then we counted a success if that species was correctly

ranked in the ‘bottom half’ of that region’s list.

For each virtual world there were 486 species. Within each

scenario, all the species success rates in all the virtual worlds, were

combined (48,600 species) to give an overall mean success rate

across all virtual worlds in each scenario.
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