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Abstract

In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex
interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In
this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine
terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their
hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic
perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and
quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-
spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression
QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits,
149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the
genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2)
master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional
genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic
improvement of spruce.
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Introduction

Plants are sessile organisms that have evolved many resistance

mechanisms to defend against insect pests. These resistance

mechanisms are genetically complex and involve interactions

between both host and pests [1,2]. Recently, a ‘‘cost-benefit’’

paradigm for resistance has emerged to enhance our understand-

ing of these interactions [3–7]. This paradigm suggests that

tradeoffs in the cost-benefit paradigm may be due to correlated

selection (favored trait combinations) and spatio-temporal hetero-

geneity of the environment [8]. Theoretical approaches have also

described the importance of resource allocation within biosyn-

thetic pathways for the evolution of resistance [9].

Meta-analyses of plant-herbivore defenses suggest that trade-offs

exist between constitutive and induced defenses. More competitive

species tend to exhibit lower constitutive and higher induced

resistance than less competitive species ([10], [11]). It has also been

hypothesized that both constitutive and induced resistance are

influenced by selection on traits that alter plant growth rates [12].

In spruce (Picea spp.), constitutive and induced defenses are

thought to follow sequentially [13]. Strength and rapidity of

traumatic resinosis have often been related to resistance.

Nevertheless, Alfaro [13] suggested that in response to wounding,

some resistant trees failed to produce the traumatic response and

some susceptible trees responded with an unexpectedly intensified

response.

Phenotypic and genetic relationships between growth and

resistance to white pine terminal weevil (Pissodes strobi Peck.) have

been intensively studied in interior spruce (Picea glauca [Moench]

Voss, P. engelmannii Parry and their hybrids); however, results have

been inconsistent and seemingly contradictory. Kiss and Yanchuk

[14] found a negative genetic correlation between mean family

height and weevil damage in interior spruce, while King et al. [15]

reported a positive phenotypic but a strong negative genetic

correlation between attack level and leader height. Alfaro et al.

[16] reported better developed bark resin canals in fast-growing

trees, while Lieutier et al. [17] concluded that there is no

relationship between tree growth and resistance in Norway spruce

(Picea abies. ((L.) Karst.). Vandersar and Borden [18] suggested that

weevils prefer faster growing trees, and more recently He and

Alfaro [19] found a higher survival time for shorter trees. In Sitka

spruce (Picea sitchensis (Bong.) Carr.), genetic resistance was most

pronounced in families with average height growth [20]. This

finding is interesting, since improved growth rate in spruce trees

has lead to a higher predisposition to weevil attacks [21].

Trade-offs between correlated traits may be due to genetic and/

or phenotypic variation. At the least, genetically correlated traits

share quantitative trait loci (QTLs). However, pleiotropic genes,

which control the hubs in such trade-offs, are difficult to
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distinguish from the confounding physically linked loci within a

shared QTL. Moreover, biometric correlations and QTLs do not

always concur because of the presence of obscuring antagonistic

QTLs [22]. This failure to detect significant correlations may

indicate the extent of independent variation between two traits

and not necessarily the absence of a tradeoff. Other interacting

factors can remain undetected [8]. In other species, pleiotropy and

genetic correlations may be present. Examples include dehydra-

tion avoidance and flowering time in Arabidopsis thaliana [23],

resistance and tolerance to herbivory in the common morning

glory [24], and growth rate and flowering in A. thaliana [25]. While

A. thaliana has facilitated research on tradeoffs for life-history traits

in annual plants with short life cycles, research on long-lived forest

trees promises new perspectives on molecular mechanisms of life-

history control in non-model species [26].

In this paper, we present results on the use of genetical genomics

to investigate a question of fundamental importance in plant

genomics: How do genes underlying a pathway to pest resistance

concertedly function? We investigated growth and insect resistance

as a trait pair that defines the life history of interior spruce, a

commercially valuable and ecologically important coniferous tree

species. We show how genetical genomics can provide a fine-scale

analysis of the genetic architecture in the study of pest resistance

cost-benefit tradeoffs. Genetical genomics assays thousands of

traits (gene expression levels) [27] and these ‘‘expression pheno-

types’’ are subjected to standard QTL analysis. We use genetical

genomics to infer the nature of resistance of interior spruce to the

white pine weevil. We infer expression QTLs (eQTL) in

segregating crosses of interior spruce, with variable resistance to

white pine weevil. In this analysis, the positions of eQTLs indicate

regions that harbor regulatory elements that control expression of

genes in the same pathway. In the case of cis-regulation, the

genomic location of the eQTL coincides with the physical location

of the regulated gene, while trans-acting eQTLs identify regulatory

elements for the gene elsewhere in the genome. The distribution of

eQTLs may spread evenly on the genome or may appear in

clusters or ‘‘hotspots’’, depending on the genetic architecture of

these gene interactions [28]. At the QTL level, the action of a gene

might suggest pleiotropy because multiple traits are affected. We

search for pleiotropy based on common candidate genes between

resistance and growth. Furthermore, a positive correlation

between growth rate, and attack and oviposition rate (our

resistance measure) might indicate a tradeoff between growth

and defenses. This tradeoff could be due to the increased carbon

cost required for higher defense chemical levels. We also search for

master regulons that underlie trans-eQTL hotspots (‘‘hubs’’) which

tend to be at the center of gene expression networks (network

eQTLs).

Results

Correlations between Phenotypic Estimates
The phenotypic response data consisted of tree height

measurements and weevil attack and oviposition counts. Tree

height measures were taken at the time of planting in 1995 and at

three and five growing seasons thereafter. Leader length was

measured in year five preceding the artificial augmentation of a

local weevil population in October of the same year (hgt_1995,

hgt_1997, hgt_1999, and ldr_99, respectively). Weevil attack rates

counted in 2000 and 2001 were classified as successful top kills,

failure to kill the leader, and no attack (atk_2000, atk_2001). In the

same years, oviposition was assessed (egg_2000, egg_2001) and egg

counts along the leaders were summarized into five discrete

classes. The sum of weevil attacks and the sum of oviposition for

2000 and 2001 were also used as response traits (sum_atk, and

sum_egg).

Forty-five pairwise phenotypic correlations were estimated for

individual and sum traits (Table 1). In general, correlations

between egg counts and attack classification were strong, between

initial height (hgt 1995) and later growth correlation was weak,

and between hgt_1999, ldr_99 and hgt_1997 correlations were

strong. Correlations between growth (ldr 99 and hgt 1999) and

attack (resistance) traits (atk_2000, egg_2000, sum_atk and sum

egg) were generally positive (Table 1). Collectively, these results

suggest a negative relationship between growth and the actual pest

resistance (fewer attacks).

QTL Mapping
The spruce mapping population was genotyped for 384 SNP

loci. These SNPs had been detected within expressed sequence tag

(EST) contigs that represented assemblies of short expressed

sequences with predicted open reading frames. These ESTs

originated from the spruce Treenomix EST database (K. Ritland,

personal communication). The genotypic information was used to

estimate pairwise recombination rates between SNP loci and

construct a framework genetic linkage map to localize quantitative

trait loci (QTLs). Details about the genetic linkage map and the

annotation of the mapped contigs can be found in the supplement

material of [29]. The phenotypic variations that were obtained

from four tree height, three weevil attack, three oviposition (see

above), and extensive quantitative gene expression (21,840

transcripts) measures were mapped to the established genetic

linkage map of the factorial progeny. The QTLs were mapped by

using a likelihood function to assess the phenotype effect

conditioned on the genotypic variation. A (e)QTL was significant

with a LOD $3.84. In total, we identified 132,100 significant

eQTLs (see File S1 and legends in Table S1).

For each SNP locus along the genetic linkage map, we

superimposed the mapped phenotypic trait QTLs (pQTLs) with

the counts of significant eQTLs (Figure 1), and identified hubs of

trait variation at several SNP loci that comprised of multiple

pQTLs and an extensive accumulation of eQTLs. A goodness-of-

fit test that assumed a uniform distribution was performed to test

whether the observed frequencies of eQTLs along the linkage map

differed significantly from the expected value. Then we used all

detected eQTLs and all marker loci (see above) in a randomization

procedure to assess the maximum number of eQTLs within eQTL

clusters. According to this randomly generated data set, ‘‘eQTL

hotspots’’ would be declared if the number of eQTLs at a given

locus exceeded 630. However, we arbitrarily used a cutoff value of

786. This number was simply the value where the expected

average value was exceeded by 50%. In this way, we focused on

fewer hubs of trans-eQTLs that are associated with important

regulators of quantitative trait variation. Fourteen loci coincided

with eQTL hubs and with at least three pQTLs (Figure 1).

Hotspots of Phenotypic Trait Variation
From these 14 loci, seven loci were associated exclusively with

resistance pQTLs, three loci with growth pQTLs, while four loci

with pQTLs from individual traits of both growth and resistance,

respectively (Figure 1). The composition of two trans-eQTL

hotspots with extensive resistance pQTL overlap was analyzed in

more detail (see below and Figure 2, and Figure 3; Table S2,

and Table S3).

At eight map positions, at least four pQTLs overlapped with

eQTL hotspots on five different linkage groups (LG): SNP44 on

LG3 (termed Contig_2685_179 and annotated as unknown gene

[29]; accumulation of eQTLs from 2040 transcripts, and

Genetic Architecture for Growth and Resistance
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resistance pQTLs), SNP71 on LG4 (Contig_486_336, no hit

[29];1341 transcripts, resistance pQTLs), SNP74 on LG4 (Con-

tig_1623_510, unknown gene [29]; 1333 transcripts, resistance

and growth pQTLs), SNP124 on LG6 (Contig_4096_434,

caffeoyl-CoA 3-O-methyltransferase CCoAOMT [29];1307 tran-

scripts, resistance pQTLs), SNP125 on LG6 (CCoAOMT_1_320,

CCoAOMT [29]; 992 transcripts, resistance pQTLs), SNP210 on

LG11 (Contig_1761_256, ubiquitin conjugating enzyme 2 [29];

820 transcripts, resistance and growth pQTLs), SNP224 on LG11

(Contig_4216_318, predicted protein [29]; 1605 transcripts,

growth pQTLs), and SNP252 on LG13 (Contig_1305_426, very

weak similarity to cycloidea-like gene [29]; 1253 transcripts,

resistance and growth pQTLs).

The two resistance trait associated eQTL hotspots on LG6 were

localized at two annotated bona fide CCoAOMT genes that are

separated by only 1.5 centiMorgan map distance, Figure 1. In a

previous study that focused on spruce gene families from the

phenylpropanoid pathway, we identified the same region enriched

for trans-eQTLs [29]. Both CCoAOMT genes also have cis-eQTLs

that might represent promoter polymorphisms regulating the

differential gene expression in those two loci. At the two different

CCoAOMT loci a common set of pQTLs as well as eQTLs

clustered (53% and 36% of their accumulated trans-eQTLs were

generated by the same transcripts, respectively). We compared

gene annotations to the 8366 unique Arabidopsis annotations from

the entire microarray. For both loci the categories ‘structural

molecule activity’, ‘secondary metabolic process’, ‘ribosome’,

‘response to biotic stimulus’, and ‘cytosol’ were overrepresented.

A Fisher’s exact test was employed to assess significance. Details

about the overrepresented ‘GOSlim Plant’ categories within the

two eQTL hotspots can be found in Figure 2 & Figure 3. Five

jasmonate-ZIM-domain protein (JAZ) genes (WS0105_K14,

WS00918_B02, WS0063_E19, WS00918_P17, and

WS00919_H21) contributed with eQTLs to this hotspot region,

and expression variation for three JAZ genes mapped to both

CCoAOMT loci (WS00918_B02, WS00918_P17, and

Table 1. Pearson’s correlation coefficients for phenotypic (above diagonal) and for QTL correlations (below diagonal).

ldr_99 hgt_1995 hgt_1997 hgt_1999 atk_2000 atk_2001 sum_atk egg_2000 egg_2001 sum_egg

ldr_99 0.028 0.447 0.823 0.300 0.068 0.274 0.392 0.037 0.331

hgt_1995 0.035 0.357 0.142 20.064 0.057 20.009 20.042 0.070 0.014

hgt_1997 0.034 0.095 0.723 0.089 0.163 0.181 0.093 0.235 0.231

hgt_1999 0.207 0.074 0.327 0.283 0.109 0.290 0.319 0.121 0.331

atk_2000 0.158 0.071 0.113 0.146 20.050 0.719 0.782 20.103 0.541

atk_2001 20.042 20.127 0.105 0.075 0.170 0.658 20.001 0.799 0.540

sum_atk 0.218 0.141 0.169 0.056 0.560 0.178 0.589 0.478 0.784

egg_2000 20.044 20.106 0.184 0.255 0.465 0.282 0.348 20.065 0.738

egg_2001 0.051 20.121 0.133 0.111 0.198 0.634 0.032 0.250 0.625

sum_egg 0.177 0.131 0.352 0.183 0.357 0.283 0.309 0.279 0.166

doi:10.1371/journal.pone.0044397.t001

Figure 1. EQTL density map with overlapping positions of pQTLs at individual marker positions. Linkage groups (LG1-13) are displayed
horizontally, black bars indicate SNP marker positions in linkage groups; arrows mark positions with at least three pQTLs (LOD $3.84, i.e. values above
horizontal line) and eQTL numbers .786.
doi:10.1371/journal.pone.0044397.g001
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WS00919_H21). Three JAZ genes (WS00919_H21,

WS0063_E19, WS00918_P17) were candidate genes directly

associated with phenotypic variation for ht_1999, atk_2000 and

atk_2001 traits, respectively (Table S2, Table S3, and Table
S4). Transcripts from three putative carbonic anhydrase genes

(WS00110_A15, WS00928_K21, and WS00936_A24) mapped

trans-eQTLs to both hotspot locations.

Two carbonic anhydrase loci on LG4, SNP78 and SNP83

(contig_2079_440 and contig_103_602, [29]) are associated with

extensive gene expression variation (Figure S1 & Figure S2). At

SNP78, three resistance traits mapped significant pQTLs. Seven

overrepresented GO categories were in common between eQTL

hotspots of carbonic anhydrase SNP83 and the CCoAOMT locus

SNP125 (‘biosynthetic process’, ‘cell wall’, ‘secondary metabolic

Figure 2. GO tree representation showing significantly (p # 0.05) overrepresented GO categories at gene locus PiglCCoAOMT-1.
Representing the trans eQTL-hotspot on LG6 (WS0031_301, SNP marker Contig_4096_434).
doi:10.1371/journal.pone.0044397.g002
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Figure 3. GO tree representation showing significantly (p # 0.05) overrepresented GO categories at gene locus PiglCCoAOMT-2.
Representing the trans eQTL-hotspot on LG6 (WS0064_O09, SNP marker CCoAOMT_1_320).
doi:10.1371/journal.pone.0044397.g003
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process’ and ‘translation’, e.g.), Figure 3 and Figure S2. At locus

SNP125, eQTLs from ethylene-responsive element binding factors

(ERFs) linked to defensive gene expression were identified;

specifically ERFs from group IX (ERF3, ERF4, ERF7).

The cluster of three phenotype associated eQTL hotspots on

LG13 deserves further attention (Figure 1), yet we were unable to

relate this group of markers to any of the 12 major linkage groups.

This might be due to a limited number of segregating markers. At

two SNP markers on LG13, SNP250 and SNP251

(WS0021_L13_301 and Contig_2062_390, [29]), related to

sequences of glutamate decarboxylase (GAD) genes, significant

growth variation and extensive expression variation co-localized.

On four spruce linkage groups (LG4, LG6, LG11 and LG13)

hotspots of expression variation associated with QTLs from both

growth and resistance traits (Figure 1). The pQTLs from

resistance traits explained a higher % variation of the trait

variation than pQTLs from growth traits. The largest pQTL at

any of these eQTL hotspots was identified for sum_egg at SNP44

(on LG 3) and explained 10.3% of the trait variation. Also, for

traits atk_2000, sum_atk, egg_2000 as well as for egg_2001

pQTLs explaining a higher portion of phenotypic variance (4.6–

7.5%) mapped to this locus. Along the entire linkage map, most

eQTLs mapped to this locus (2040 transcripts). At two loci, SNP74

(LG4) and SNP252 (LG13), the pQTLs from the same five traits

(hgt_1997, hgt_1999, ldr_99, atk_2000 and egg_2000) were

associated with the individual eQTL hotspots. On LG6, pQTLs

from ldr_99, atk_2000 and sum_egg, while on LG11, pQTLs from

hgt_1999, ldr_99, atk_2000, sum_atk and egg_2000 associated

with the eQTL hotspot. At SNP210 related to ubiquitin

conjugating enzyme 2 (LG11), the identified eQTL hotspot was

associated with three resistance and two growth traits. In all four

cases of eQTL hotspots where several pQTLs for growth and

resistance traits collocated, the allelic effects of the pQTls for

growth and resistance traits had the same sign. This indicates a

positive correlation between the growth trait variation (as assessed

by height data) and the resistance trait variation (from attack rates

and oviposition data).

Positional Candidate Genes for Resistance and Growth
Trait Variation

The combination of phenotype and gene expression datasets

facilitates studying the genetic control of phenotypic traits of

interest [30]. ‘‘Positional’’ candidate genes can be identified as

genes for which transcript abundance correlates extensively with

the quantitative phenotype.

Here, the positional candidate genes were identified by

collocation of at least 40% of their eQTLs with pQTLs based

on the criteria for identifying significant QTLs and running 10,000

randomizations (p # 0.05), see Material and Methods. Thus,

extensive co-segregation of transcript variation with the pheno-

typic trait of interest identifies positional candidate genes that are

directly underlying the trait. We arbitrarily defined map intervals

of 10 cM to measure collocation (on average 2 SNPs were binned

into 10 cM). Thus, within a resolution window of 10 cM at a given

SNP locus we determined the significance of co-localizations

between the expression variation that was detected at a certain

EST that was spotted on the microarray (gene spot) and the

phenotypic trait variation (p # 0.05). We screened 21,840

transcripts that represented distinct ESTs spotted on the micro-

array for co-localization with growth traits and for co-localization

with resistance traits, respectively, and identified 1621 and 2002

distinct ESTs, respectively. These numbers comprised of the

following trait associations: ldr_99 (217 gene spots), hgt_1995

(254), hgt_1997 (385), hgt_1999 (878); atk_2000 (346), atk_2001

(311), sum_atk (546), egg_2000 (361), egg_2001 (335), sum_egg

(584), respectively (Table S4). Not unusual for conifers, many of

those spruce genes had no Arabidopsis homologues. In total, 1191

gene spots from co-localizations with resistance traits gave hits

with unique Arabidopsis entries (59%); 1000 gene spots from co-

localizations with growth traits had unique annotations (62%).

We compared annotations independently for resistance and

growth with the unique Arabidopsis annotations from the array.

Twelve, and eight GOSlim Plants categories, respectively, were

overrepresented among genes with expression variation signifi-

cantly associated with individual phenotypic traits. The categories

for resistance trait associations involved: ‘response to stress’ (64

compared to a total of 329 genes on the array), ‘response to abiotic

stimulus’ (54/272), ‘cellular component organization and biogen-

esis’ (94/479) and ‘cytosol’ (32/145) as well as ‘binding’ (298/

1908); Figure 4 and Table S5. Growth trait categories were

related to ‘extracellular region’ (8/32), ‘signal transducer activity’

(15/78), ‘cell communication’ (38/204), ‘response to stress’ (51/

329) categories and the ‘cell wall’ category (19/63); Figure 5 and

Table S5.

In the gene lists a large number of kinases, phosphatases as well

as transcription factors were identified; Table S4. Phosphoryla-

tion and dephosphorylation are important steps in various

biosynthetic processes, and in signal transduction cascades within

the organism. For resistance traits we counted 104, for growth

traits 91 transcription (-related) factors/proteins. We identified 49

kinases associated with the growth traits, whereas 63 with the

resistance traits. Phosphatases totaled to 22 candidate genes both

for growth and for resistance traits, respectively.

Several multi-gene families were highly represented in both

growth and resistance traits associations: among others GDSL-

motif lipase/hydrolase, glycosyl hydrolase (GH), leucine-rich

repeat (LRR) proteins, oxidoreductases, pentatricopeptide (PPR)

repeat-containing proteins, disease resistance family proteins,

DNAJ heat shock family proteins.

A number of auxin-related genes (including ABC transporters)

co-localized with phenotypic trait variation: for resistance we

found 19, for growth 15 co-localizing. A number of genes involved

in embryo arrest/deficiency also co-localized with the phenotypes:

19 for resistance and 22 for growth traits. Jasmonic acid (JA)-

forming and ethylene-forming/2responsive genes were also

identified candidate genes based on collocations with the

respective phenotypic traits.

The isoprenoid biosynthesis pathway generates many com-

pounds relevant to plant defenses (terpenoids, tocopherol, e.g.) but

also the precursors of ‘plant hormones’ like gibberellins (GA) and

abscisic acid (ABA). Eight biosynthetic genes co-localized with

resistance traits and six exclusively with the hgt_1999 trait. In

addition, both for growth and resistance traits, four GA-regulated/

GA signaling-regulating, and two ABA-related proteins were

identified as potential candidates.

The phenylpropanoid metabolic pathway provides various

specialized metabolites important in plant development, polymeric

lignin for structural support, anthocyanins for pigmentation,

flavonoids with various protective functions, and antimicrobial

phytoalexins [31]. Thirty-seven putative gene family members

associated with individual resistance traits, while 25 with growth

traits. For the traits related to egg counts (26 transcripts) and to

height in 1999 (15 transcripts) the highest number of candidates

from this pathway was identified.

Genes that are significant for both resistance and growth traits

(p # 0.05; 10,000 randomizations, see Materials and Methods) are

summarized in Table S6 (see Table S4 for comprehensive

results). In sum, 244 genes were identified. The majority of these

Genetic Architecture for Growth and Resistance

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e44397



genes co-localized with Ht 1999, and also co-localized with

atk_2000, egg_2000, respectively, resistance traits assessed in the

next growth season. Since many identified genes have no

angiosperm counterparts, they likely represent novel conifer-

specific genes at the pivotal points of growth variation and defense.

For one DNAJ heat shock family protein its eQTLs significantly

Figure 4. GO tree representation indicating significantly (p # 0.05) overrepresented categories from colocalizations with resistance
traits.
doi:10.1371/journal.pone.0044397.g004
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co-localized with QTLs from as much as seven individual traits

(Table S6). The functions of these chaperones are related to

environmental challenges (involving stress tolerance) but are

manifold due to the complexity of the whole gene family. Among

the candidates in common between resistance and growth traits

were genes involved in normal/optimal plant growth, stress

signaling, defense, stress tolerance, glycine betaine synthesis, DNA

repair, transcription regulation, post-transcriptional regulations,

protein degradation as well as expansins with a proposed function

related to cell wall architecture during rapid tissue expansion

(Table S6).

Significant associations with all four individual growth and six

individual resistance traits, respectively, allowed us to robustly

identify 149, and 99 candidate genes for the composite ‘resistance’

and ‘growth’ phenotype, respectively (Table S7 and Table S8).

Gene identities with annotations are provided in Table 2 and

Table 3. For about half of the gene spots identified as candidates

no putative functions were unraveled by BLAST searches.

Candidate genes for ‘resistance’ and ‘growth’ differ markedly in

their functions. While collocations of expression with growth

variation were predominantly found for gene products involved in

(post-) transcription and post translational regulation (in total 18),

collocations with resistance variation identified a larger number of

biosynthetic proteins (17), signaling (20) and transporter/transport

related molecules (13). We found that 19 genes are positional

candidates for the composite ‘resistance’ phenotype, but are

additionally associated with other growth trait(s); these genes are

typically involved in signaling, transport and biosynthesis related

processes. The 29 genes that are positional candidates for the

composite ‘growth’ phenotype and at the same time associated

with individual resistance traits have proposed functions in

Figure 5. GO tree representation indicating significantly (p # 0.05) overrepresented categories from colocalizations with growth
traits.
doi:10.1371/journal.pone.0044397.g005

Genetic Architecture for Growth and Resistance
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Table 2. Display of 80 positional candidate genes (AGI annotated) for the composite resistance phenotype, p # 0.1.

Gene id P-value E-value AGI # Annotation Putative function

WS0262_L21 0.051 2.9E–45 AT2G38240 oxidoreductase, 2OG-Fe(II) oxygenase family protein biosynthesis

WS00922_A20 0.061 1.4E–54 AT3G06810 acyl-CoA dehydrogenase-related biosynthesis

WS01033_F16 0.065 5.30E–023 AT3G03780 AtMS2 (Arabidopsis thaliana methionine synthase 2) biosynthesis

WS00818_F07 0.074 1.20E–073 AT2G43710 FAB2, SSI2 SSI2 (fatty acid biosynthesis 2); acyl-[acyl-carrier-protein]
desaturase

biosynthesis

WS00812_J14 0.082 7.80E–052 AT3G04520 THA2 (THREONINE ALDOLASE 2) biosynthesis

WS00113_D16 0.082 2.80E–111 AT5G08370 ATAGAL2 (ARABIDOPSIS THALIANA ALPHA-GALACTOSIDASE 2) biosynthesis

WS0043_N05 0.084 2.3E–111 AT3G17390 SAMS3, MAT4, MTO3 MTO3 (S-adenosylmethionine synthase 3);
methionine adenosyltransferase

biosynthesis

WS0073_B10 0.086 1.40E–027 AT1G14550 anionic peroxidase, putative biosynthesis

WS00932_K15 0.086 7.5E–43 AT4G37970 mannitol dehydrogenase, putative biosynthesis

WS01016_H01 0.089 5.50E–109 AT5G60540 EMB2407, ATPDX2, PDX2 ATPDX2/EMB2407/PDX2 (PYRIDOXINE
BIOSYNTHESIS 2)

biosynthesis

WS00816_E04 0.092 5.4E–30 AT1G08250 prephenate dehydratase family protein biosynthesis

WS00725_B17 0.093 2.80E–054 AT5G42800 TT3, M318, DFR DFR (DIHYDROFLAVONOL 4-REDUCTASE);
dihydrokaempferol 4-reductase

biosynthesis

WS0045_J16 0.094 1.90E–031 AT5G04330 cytochrome P450, putative/ferulate-5-hydroxylase, putative biosynthesis

WS0094_G24 0.096 1.50E–126 AT5G17990 PAT1, TRP1 TRP1 (TRYPTOPHAN BIOSYNTHESIS 1); anthranilate
phosphoribosyltransferase

biosynthesis

WS0023_B12 0.097 5.50E–074 AT1G23800 ALDH2B, ALDH2B7 ALDH2B7 (Aldehyde dehydrogenase 2B7) biosynthesis

WS0107_F01 0.097 3.1E–22 AT4G37970 mannitol dehydrogenase, putative biosynthesis

WS0076_F23 0.098 4.9E–36 AT5G19730 pectinesterase family protein cell wall

WS0105_N22 0.100 2.60E–138 AT1G77380 AAP3 (amino acid permease 3); amino acid permease transport

WS00721_A21 0.100 1.6E–76 AT1G77120 ADH, ATADH, ADH1 ADH1 (ALCOHOL DEHYDROGENASE 1) biosynthesis

WS0044_N09 0.083 7.2E–10 AT1G60390 BURP domain-containing protein/polygalacturonase, putative cell wall, stress(?)

WS0086_K19 0.097 6.70E–046 AT1G27120 galactosyltransferase family protein cell wall

WS0092_M11 0.064 6.3E–39 AT2G30410 KIS (KIESEL); unfolded protein binding growth

WS0061_B17 0.073 1.40E–055 AT2G21530 forkhead-associated domain-containing protein growth, development

WS01031_N10 0.079 4.10E–049 AT2G04030 EMB1956, CR88 CR88 (EMBRYO DEFECTIVE 1956); ATP binding growth

WS0261_O16 0.088 6.40E–164 AT5G67270 ATEB1C (MICROTUBULE END BINDING PROTEIN 1); microtubule binding growth

WS01021_K16 0.088 5.90E–196 AT2G33150 PED1, KAT2 PED1 (PEROXISOME DEFECTIVE 1); acetyl-CoA C-acyltransferase growth

WS0261_G19 0.088 4.7E–34 AT5G53940 yippee family protein growth, stress

WS00813_E05 0.060 5.80E–102 AT4G09670 oxidoreductase family protein miscellaneous

WS0017_K15 0.066 5.80E–006 AT5G40470 similar to F-box family protein (FBL4) [Arabidopsis thaliana] miscellaneous

WS00728_E10 0.076 1.0E–20 AT5G02450 60S ribosomal protein L36 (RPL36C) miscellaneous

WS00921_L16 0.077 2.5E–19 AT1G27620 transferase family protein miscellaneous

WS00912_K11 0.080 2.1E–47 AT2G19680 mitochondrial ATP synthase g subunit family protein miscellaneous

WS00927_K21 0.082 2.10E–026 AT3G53850 similar to integral membrane protein, putative [Arabidopsis thaliana] miscellaneous

WS00712_A12 0.091 8.40E–084 AT1G60420 DC1 domain-containing protein miscellaneous

WS0032_G24 0.095 3.90E–057 AT2G37270 ATRPS5B ATRPS5B (RIBOSOMAL PROTEIN 5B); structural constituent of
ribosome

miscellaneous

WS0057_N15 0.096 1.60E–102 AT1G10780 F-box family protein miscellaneous

WS01032_N12 0.098 1.10E–053 AT1G44910 protein binding miscellaneous

WS0039_A22 0.099 1.60E–116 AT5G53490 thylakoid lumenal 17.4 kDa protein, chloroplast miscellaneous

WS00932_M11 0.061 5.10E–006 AT5G01020 protein kinase family protein signaling

WS01011_I05 0.062 2.4E–23 AT1G73500 ATMKK9 ATMKK9 (Arabidopsis thaliana MAP kinase kinase 9) signaling

WS00924_L15 0.071 1.20E–070 AT1G79110 protein binding/zinc ion binding signaling

IS0011_J12 0.072 6.3E–28 AT5G53590 auxin-responsive family protein signaling

WS0048_K17 0.074 1.70E–086 AT1G60490 ATVPS34 ATVPS34 (Arabidopsis thaliana vacuolar protein sorting 34);
phosphatidylinositol 3–kinase

signaling

WS00824_D10 0.081 5.10E–041 AT5G14930 GENE101, SAG101 SAG101 (SENESCENCE–ASSOCIATED GENE 101);
triacylglycerol lipase

signaling, stress
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transcriptional or (post-) translational control, growth and cell wall

remodeling.

Correlations between Co-localization Estimates
We determined genetic (QTL) correlations based on co-

localization estimates between gene expression and trait varia-

tion, Table 1. The correlation between the general ‘growth’ and

’resistance’ trait based on associated expression variation of

transcripts was significant (R = 0.251). However, the positional

candidates for the general ‘growth’ and ‘resistance’ phenotypes

were distinct. Co-localization estimates for hgt_1997, ldr_99 and

hgt_1999, respectively, correlated with co-localization estimates

for atk_2000, egg_2000, sum_atk as well as sum_egg traits. This

means that a significant fraction of their eQTLs co-localize with

both growth and resistance QTLs. Overall, 12% of the genes that

were positional candidates for individual height growth traits

were also positional candidates for individual resistance traits,

and 15% of the genes that were positional candidates for

Table 2. Cont.

Gene id P-value E-value AGI # Annotation Putative function

WS0016_M07 0.084 5.90E–030 AT5G14930 GENE101, SAG101 SAG101 (SENESCENCE–ASSOCIATED GENE 101);
triacylglycerol lipase

signaling, stress

WS00946_N19 0.088 1.00E–079 AT2G38010 ceramidase family protein signaling, stress

WS00922_M10 0.090 1.30E–043 AT2G32800 AP4.3A AP4.3A; ATP binding/protein kinase signaling

WS00928_C13 0.091 1.4E–36 AT2G33040 ATP synthase gamma chain, mitochondrial (ATPC) signaling

WS0063_H05 0.091 7.90E–075 AT4G15415 serine/threonine protein phosphatase 2A (PP2A) regulatory subunit B’
(B’gamma)

signaling

WS0063_N04 0.093 3.20E–039 AT1G16670 protein kinase family protein signaling

WS00924_P23 0.093 2.6E–45 AT5G26751 ATSK11 (Arabidopsis thaliana SHAGGY-related kinase 11); protein kinase signaling

WS0261_J01 0.094 2.0E–85 AT1G73500 ATMKK9 (Arabidopsis thaliana MAP kinase kinase 9) signaling

WS0097_P15 0.096 6.10E–024 AT3G12690 protein kinase, putative signaling

WS0268_O17 0.096 6.80E–037 AT3G22190 IQD5 IQD5 (IQ-domain 5); calmodulin binding signaling

WS00930_C14 0.096 5.80E–161 AT3G50960 similar to Thioredoxin domain 2 [Medicago truncatula] signaling

WS0089_G23 0.097 2.6E–38 AT1G66410 ACAM-4, CAM4 CAM4 (CALMODULIN 4); calcium ion binding signaling

WS00111_O11 0.099 1.80E–087 AT2G30020 protein phosphatase 2C, putative/PP2C, putative signaling

WS01041_M05 0.099 5.40E–083 AT2G30020 protein phosphatase 2C, putative/PP2C, putative signaling

WS00922_P23 0.069 2.80E–110 AT5G01230 FtsJ-like methyltransferase family protein stress

WS01021_F15 0.092 3.00E–133 AT3G62550 universal stress protein (USP) family protein stress

WS0263_B07 0.044 9.0E–21 AT4G23330 eukaryotic translation initiation factor-related transcriptional,
translational

WS0061_C09 0.061 6.90E–013 AT4G20970 basic helix-loop-helix (bHLH) family protein transcriptional

WS00924_K23 0.074 8.00E–050 AT3G49430 SRP34A SRP34A (SER/ARG-RICH PROTEIN 34A); RNA binding transcriptional

WS0078_K12 0.077 2.3E–11 AT1G10200 transcription factor LIM, putative transcriptional

WS0087_O15 0.078 7.00E–051 AT5G47390 myb family transcription factor transcriptional

WS00916_N06 0.083 1.2E–17 AT5G06550 similar to transcription factor jumonji (jmjC) domain-containing protein
[Arabidopsis thaliana]

transcriptional

WS00826_M02 0.083 6.60E–065 AT1G13690 ATE1 (ATPase E1); nucleic acid binding transcriptional

WS00825_H14 0.087 1.6E–32 AT1G29250 nucleic acid binding transcriptional

WS0107_C03 0.062 5.00E–025 AT3G07490 AGD11 (ARF-GAP DOMAIN 11); calcium ion binding transport

WS01013_E24 0.076 4.20E–103 AT2G35800 mitochondrial substrate carrier family protein transport

WS00927_L04 0.076 1.60E–129 AT5G19760 dicarboxylate/tricarboxylate carrier (DTC) transport

WS00939_B16 0.076 1.60E–158 AT2G20930 similar to intracellular transporter [Arabidopsis thaliana] transport

WS0071_O18 0.081 1.90E–127 AT1G73030 SNF7 family protein transport

WS0017_I09 0.085 4.80E–091 AT4G04860 DER2.2 Der1-like family protein/degradation in the ER-like family protein transport, stress

WS00919_L11 0.085 1.00E–159 AT1G72280 AERO1 AERO1 (ARABIDOPSIS ENDOPLASMIC RETICULUM OXIDOREDUCTINS 1) transport

WS0081_G16 0.088 2.40E–096 AT5G46630 clathrin adaptor complexes medium subunit family protein transport

WS0105_B03 0.090 1.80E–069 AT5G12130 PDE149 PDE149 (PIGMENT DEFECTIVE 149) transport

WS01012_D02 0.092 1.70E–088 AT4G02050 sugar transporter, putative transport

WS00712_P20 0.095 8.10E–105 AT3G48420 haloacid dehalogenase-like hydrolase family protein transport

WS0106_H16 0.100 3.80E–023 AT1G30690 SEC14 cytosolic factor family protein/phosphoglyceride transfer family
protein

transport

doi:10.1371/journal.pone.0044397.t002
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Table 3. Display of 49 positional candidate genes (AGI annotated) for the composite growth phenotype, p # 0.1.

Gene id P-value E-value AGI # Annotation Putative function

WS00924_B02 0.084 6.30E–101 AT2G24210 TPS10 (TERPENE SYNTHASE 10); myrcene/(E)-beta-ocimene
synthase

biosynthesis

WS00923_K11 0.089 3.6E–83 AT5G03860 malate synthase, putative biosynthesis

WS00924_G02 0.092 4.3E–85 AT4G35630 PSAT (phosphoserine aminotransferase); phosphoserine
transaminase

biosynthesis

WS0079_D01 0.092 8.10E–160 AT3G54050 fructose-1,6-bisphosphatase, putative/D-fructose-1,
6-bisphosphate 1-phosphohydrolase, putative

biosynthesis

WS00945_C13 0.108 1.30E–165 AT1G79500 AtkdsA1 (Arabidopsis thaliana KDO-8-phosphate synthase
A1); 3-deoxy-8-phosphooctulonate synthase

biosynthesis

WS00821_F22 0.058 1.60E–108 AT1G32860 glycosyl hydrolase family 17 protein cell wall, remodeling(?)

WS00818_M19 0.095 2.50E–085 AT1G26770 ATEXPA10 (ARABIDOPSIS THALIANA EXPANSIN A10) cell wall

WS0014_E13 0.108 7.40E–089 AT2G37870 protease inhibitor/seed storage/lipid transfer protein (LTP)
family protein

cell wall, remodeling(?)

WS0087_G23 0.071 2.90E–058 AT3G06930 protein arginine N-methyltransferase family protein plant development

WS00819_F17 0.095 1.10E–031 AT4G27745 Identical to Protein yippee-like At4g27740 [Arabidopsis
Thaliana]

growth

WS00712_K23 0.100 6.6E–25 AT1G28480 glutaredoxin family protein growth, development

WS00922_F02 0.104 1.70E–151 AT5G62390 ATBAG7 (ARABIDOPSIS THALIANA BCL-2-ASSOCIATED
ATHANOGENE 7); calmodulin binding

growth arrest

WS0084_L12 0.104 2.30E–087 AT3G61780 EMB1703 (EMBRYO DEFECTIVE 1703) growth arrest

WS00716_E11 0.106 3.00E–146 AT4G26850 VTC2 (VITAMIN C DEFECTIVE 2) growth related

WS0264_I07 0.108 3.90E–080 AT1G60170 EMB1220 (EMBRYO DEFECTIVE 1220) growth arrest

WS0083_N10 0.055 8.40E–095 AT2G18360 hydrolase, alpha/beta fold family protein miscellaneous

WS00821_F12 0.081 2.4E–42 AT3G07480 electron carrier/iron ion binding miscellaneous

WS01037_M20 0.085 1.1E–30 ATMG00810 similar to protein kinase family protein [Arabidopsis thaliana] miscellaneous

WS00728_D14 0.092 3.7E–41 AT4G34670 40S ribosomal protein S3A (RPS3aB) miscellaneous

WS01034_K20 0.095 6.70E–009 AT4G19380 alcohol oxidase-related miscellaneous

WS00815_F18 0.100 3.00E–072 AT2G19750 40S ribosomal protein S30 (RPS30A) miscellaneous

WS0041_I12 0.101 3.8E–08 AT1G12810 proline-rich family protein miscellaneous

WS00926_B01 0.103 9.4E–57 AT4G18100 60S ribosomal protein L32 (RPL32A) miscellaneous

WS0056_L17 0.104 1.20E–114 AT1G66530 arginyl-tRNA synthetase, putative/arginine–tRNA ligase,
putative

miscellaneous

WS0097_I03 0.108 8.9E–08 AT5G54600 50S ribosomal protein L24, chloroplast (CL24) miscellaneous

WS00819_E15 0.109 8.60E–053 AT4G38250 amino acid transporter family protein miscellaneous

WS00112_E05 0.037 2.50E–062 AT2G22360 DNAJ heat shock family protein posttranslational

WS01025_F14 0.067 1.60E–181 AT3G07780 protein binding/zinc ion binding posttranslational

WS0011_I04 0.074 4.10E–010 AT3G54850 armadillo/beta-catenin repeat family protein/U-box domain-
containing
family protein

posttranslational

WS0047_F24 0.089 6.4E–24 AT3G06130 heavy-metal-associated domain-containing protein posttranslational

WS00733_J11 0.090 9.6E–44 AT1G75690 chaperone protein dnaJ-related posttranslational

WS0024_O12 0.093 5.30E–122 AT5G45390 NCLPP3, NCLPP4, CLPP4 | CLPP4 (Clp protease proteolytic
subunit 4)

posttranslational

WS01024_O16 0.103 4.9E–64 AT1G77460 C2 domain-containing protein/armadillo/beta-catenin repeat
family protein

posttranslational

WS00815_B15 0.109 2.7E–19 AT1G01490 heavy-metal-associated domain-containing protein posttranslational

WS0089_E10 0.102 6.50E–043 AT2G46225 ABI1L1 (ABI-1-LIKE 1) signaling

WS00919_K24 0.104 9.20E–119 AT3G59520 rhomboid family protein signaling

WS0104_D02 0.107 7.4E–16 AT1G61370 S-locus lectin protein kinase family protein signaling

WS00928_J07 0.078 3.90E–152 AT1G17440 transcription initiation factor IID (TFIID) subunit A family
protein

transcriptional/posttranscriptional

WS00912_K01 0.089 1.70E–019 AT2G41900 zinc finger (CCCH-type) family protein transcriptional/posttranscriptional

WS00917_G03 0.091 3.90E–120 AT1G01350 zinc finger (CCCH-type/C3HC4-type RING finger) family protein transcriptional/posttranscriptional
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resistance traits were also positional candidates for height growth

traits.

Discussion

Our work on spruce weevil resistance follows similar work on

eucalyptus [32] and poplar ([33], [34]). Ours is the first study of

expression QTLs for resistance in a conifer. Despite the enormous

genome size of conifers (ca. 20 billion base pairs) studies on the

transcriptome of conifers are just as manageable as those with

angiosperms with much smaller genome sizes. Here we utilized a

third generation microarray spotted with 21,840 spruce ESTs in

combination with a multiplexed genotyping approach to examine

expression QTLs involved with weevil resistance and height

growth. This work represents an extended study of [29] that

previously focused in detail on the phenylpropanoid pathway and

related genes with respect to pest resistance in spruce.

In our experiment, we harvested plant material in spring at the

optimal time point at which early seasonal growth and natural

onset of weevil attacks coincided. Our microarray consisted of

70% cDNA from untreated tissue of many tissue types; no

overrepresentation of specific metabolic pathways was attempted.

The issue of cross-hybridizations in microarray experiments due to

high nucleotide similarity [35], is reduced in genetical genomics

because of the randomized genetic background, high sample size

and the statistical procedures. Cross-species comparisons of QTL

are also possible based on the white spruce/loblolly pine

comparative mapping project (K. Ritland, pers. comm.). Linkage

groups one to twelve (LG1-12) were assigned following [36] to

facilitate comparisons within the family of Pinaceae.

The main focus of the present work was scanning the genome

for transcripts whose abundance correlated with the quantitative

phenotype in order to identify transcripts associated with the

phenotype ([37]). We assigned groups of genes that significantly

associated with individual resistance and growth traits, respective-

ly, into functional, cellular component, and biological process GO

categories. These genes were co-regulated and likely have

combined functions in the studied phenotypes. Thus, the present

work elucidates functional associations among genes and provides

a comprehensive study to the evolution of transcription regulation

in spruce. Overall we found that a significant fraction of eQTLs

were in common between the general ‘growth’ and ‘resistance’

phenotypes. This result was based on expression variation from all

studied transcripts. This provides evidence for genetic pleiotropy

of resistance and growth traits in interior spruce. In terms of

directionality of gene expression with phenotypic trait variation,

we found that the mean of correlations between transcript

expression and quantitative traits was zero, however overall we

found a wide distribution of correlations where some genes showed

a clear positive, whereas others showed a clear negative correlation

with traits (K. Ritland, personal communication).

Contribution from Single Gene QTL
From the myriad of candidate genes that were identified for the

individual resistance traits (Table S4; Figure 4), our study also

identified an array of single genes that were associated with both

resistance and growth phenotype (Table S6 and Table S4). The

identification of shared candidates suggests that several of the

general functionalities (notably, the signaling systems, [38])

important to normal plant development are also adopted for

defense mechanisms. Among those ‘pleiotropic’ genes many had

functionalities that prevalently involve signaling, transcription

factor activity, functions in transcription/translation (including

RNA editing), stress/stimulus response, as well as transport and

cell wall functions. Transcription regulators have been suggested

to be key targets for plant evolution ([39], [40]). Their high

representation in our gene lists reinforces their broad importance

to the sessile organism’s potential to optimize growth under the

given environmental conditions.

Multigene Family QTL Contributions
Large multi-gene families were represented in the associations

with both growth and resistance traits. These involved GDSL-

motif lipase/hydrolase, GHs, LRR proteins, oxidoreductases, PPR

proteins, disease resistance proteins, and DNAJ heat shock family

proteins. While GDSL, LRR, PPR and DNAJ proteins were

equally represented among growth and resistance candidate genes,

respectively, GH, oxidoreductases, and disease resistance proteins

contributed twice as many resistance candidates than growth

candidates. From this diverse group of disease resistance genes,

two spruce sequences with similarity to f-family dirigent proteins

that are implicated in constitutive resistance [41] were identified as

candidates for weevil resistance. Several individual members were

directly associated with both phenotypes and hence pleiotropic

(one member in each case for GDSL-motif lipase/hydrolase,

Table 3. Cont.

Gene id P-value E-value AGI # Annotation Putative function

WS0097_H22 0.092 1.7E–30 AT4G25500 ATRSP35 (Arabidopsis thaliana arginine/serine-rich splicing
factor 35)

transcriptional/posttranscriptional

WS00910_O08 0.096 7.00E–048 AT5G08390 similar to transducin family protein/WD-40 repeat family
protein [Arabidopsis thaliana]

transcriptional/posttranscriptional

WS00815_A12 0.099 7.20E–120 AT1G20110 zinc finger (FYVE type) family protein transcriptional/posttranscriptional

WS01031_K02 0.102 1.80E–139 AT3G26935 zinc finger (DHHC type) family protein transcriptional/posttranscriptional

WS0261_F02 0.103 5.50E–089 AT3G10760 myb family transcription factor transcriptional/posttranscriptional

WS00922_N21 0.106 1.0E–23 AT3G28917 MIF2 (MINI ZINC FINGER 2); DNA binding transcriptional/posttranscriptional

WS0099_L07 0.106 2.70E–104 AT2G27110 FRS3 (FAR1-RELATED SEQUENCE 3); zinc ion binding transcriptional/posttranscriptional

IS0014_L17 0.086 6.40E–100 AT2G21600 ATRER1B (Arabidopsis thaliana endoplasmatic reticulum
retrieval protein 1B)

transport, vesicle trafficking

WS00917_J14 0.097 1.10E–020 AT1G33475 Identical to Probable VAMP-like protein At1g33485
[Arabidopsis Thaliana]

transport, vesicle trafficking

doi:10.1371/journal.pone.0044397.t003
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disease resistance proteins, and DNAJ heat shock family proteins;

two each for GHs, and oxidoreductases; four each for LRR

proteins, and PPR proteins). The spruce DNAJ heat shock protein

co-localized with expression variation of seven individual traits

(both resistance and growth), Table S6. Most of these candidates

have previously been reported to be involved in defense reactions,

some with proposed antifungal properties [42–47].

Dominant Themes among Gene Functions Associated
with the Resistance Phenotype

The statistically overrepresented ontology categories among

genes that were associated with resistance phenotypic traits

revealed dominant themes in gene expression that involved

response to all sorts of stimuli (biotic, abiotic, external, and

endogenous), epigenetic gene expression, and translation (ribo-

some) for the de novo generation of gene products. Additionally,

remodeling processes that involve the (re-) organization of cellular

components, and anatomical structures by proteins that provide

binding functions and other structural molecule activities are

important components of defense (Figure 4). Interestingly,

signaling is the most common molecular function and cellular

process among growth phenotype associated genes (Figure 5). For

genes associated with the composite weevil resistance phenotype,

functions in signaling were also predominant (Table 2). There is

evidence that signaling pathways in defense reactions are co-opted

from normal developmental processes, see also above. Genes that

have signaling functions and are negative regulators of ABA

responsiveness [48] were identified (phosphatase 2C protein for

resistance, while ABI-1-LIKE 1 for growth, Table 2 and

Table 3). It is assumed that these gene functions allow for the

fine-tuning of stress responses. We could also identify an ATP

synthase (Table 2). Recently, it was shown that the initiation of

multiple defense elicitors in the host is triggered by herbivore

proteolysis of a plant ATP synthase [49].

Biosynthesis is also an important function for genes associated

with the composite resistance phenotype (Table 2). Two genes

annotated as mannitol dehydrogenase were identified. Mannitol

dehydrogenase counteracts the fungal suppression of the reactive

oxygen species that are generated during host defenses [50].

Furthermore, several genes linked to the general phenylpropanoid

pathway, ([32], [31], [51]) and to flavonoid and isoflavonoid

biosynthesis [52] were positional candidates for the general

resistance trait.

Significance of Phenylpropanoid vs. Terpenoid QTL for
Constitutive Resistance

The observed eQTLs were the result of constitutive differences

in gene expression. The importance of polyphenolics for

constitutive defenses is reflected in a higher number of gene

family members of the phenylpropanoid pathway (by homology to

A. thaliana genes) whose eQTL co-localized with resistance QTLs.

In this work, seven genes related to phenolics or flavonoid

biosynthesis were positional candidates for the general resistance

trait (Table 2). In contrast, no candidate gene for the resistance

trait per se could be identified from the terpenoid pathway. Hence,

we feel that this might reflect the higher importance of the

phenolics over the terpenoid pathway in established resistance

against this herbivore. We have previously suggested that

monolignol formation may play an important role in defense

reactions against the stem borer Pissodes strobi [29]. Based on in-

depth analysis of genes involved in the shikimate pathway,

monolignol biosynthesis and downstream condensation reactions

as well as lignan formation with respect to weevil resistance, we

further conclude that gene family members that were duplicated in

spruce may have acquired temporally and spatially diverse

functions in defense [29].

Trans-eQTL Hotspots and their Significance
Certain phenotypes may be affected by gene expression

regulators located within eQTL hotspots [30]. Although several

previously conducted eQTL studies suggest that cis-eQTLs might

have a greater effect on the phenotype than trans-eQTLs [53],

trans-eQTLs are important for our understanding of the complex-

ity of phenotypes [54]. For example, by comparing the levels of

trans-eQTLs for each gene the global regulatory hierarchy can be

assessed [53]. While cis-eQTLs are physically linked to the

causative locus of the phenotype, trans-eQTLs can identify many

downstream genes and reveal unknown pathways. In our study,

we were mainly limited to the detection of trans-eQTLs, since the

majority of SNP loci on our genetic linkage map could not be

annotated [29]. This limitation is due to the fact that we were

working with a non-model species and in particular with a conifer

of immense genome size for which the genome sequencing has yet

to be completed (http://www.congenie.org/).

Several trait-associated SNPs that were enriched for trans-

eQTLs were identified in our study. At seven map positions,

hotspots of expression variation coincided with QTLs from

multiple resistance traits (LG3, LG4, LG6 and LG8). At eight

SNP positions at least four pQTLs overlapped with eQTL

hotspots. On four spruce linkage groups (LG4, LG6, LG11 and

LG13) hotspots of expression variation associated with QTLs from

both growth and resistance traits (Figure 1). This indicates gene

expression regulators [30].

For example, on LG13 the two SNP loci underlying extensive

expression and growth variation (i.e. large number of mapped

QTLs) are derived from GAD enzymes whose activity regulation is

vital for normal plant development. This allows response to

external stimuli [55]. In addition, the enzyme may also function in

a host deterrence reaction towards herbivore attack [56]. The

eQTL hotspot on LG11 was associated with three resistance traits

and two growth traits. The SNP that is located within the eQTL

hotspot region is a gene that plays an important role within the

ubiquitin/proteasome system, regulating developmental processes

in plants, but also involved in biotic defense responses [57]. SNP

markers derived from two different contigs Contig_4096_434 and

CCoAOMT_1_320, respectively, clustered on LG6 and represent

two of the three lignin-forming CCoAOMT genes in spruce [29].

We identified cis-eQTLs for these genes as well as trans-eQTLs

generated from a multitude of genes that mapped to the two loci.

Both loci are also hotspots of weevil resistance QTLs. A GO

analysis of the transcripts associated with the two trans-eQTL

hotspots revealed significant over-representation of several molec-

ular function, cellular component, and biological process GO

categories. The fact that 36% and 53%, respectively, of the

mapped trans-eQTLs were in common between CCoAOMT-1

and CCoAOMT-2 suggests extensive interactions between both

CCoAOMT loci via eQTLs from a multitude of genes. This was

also reflected by common GO categories that were overrepre-

sented such as ‘secondary metabolic process’ and ‘response to

biotic stimulus’ in both gene expression networks centered at these

two SNPs (Figure 2 & Figure 3). Thus, this demonstrates how

epistasis between gene loci works at the transcriptional level by

linking cis-eQTLs via trans-regulatory interactions. In the case of

CCoAOMT-1 and CCoAOMT-2, three resistance pQTLs also

contributed to this epistatic interaction. CCoAOMT-1 and

CCoAOMT-2 represent both metabolic pathway–specific trans-

eQTL hotspots [29] and based on the present study, they
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represent important global trans-eQTL hotspots that are of interest

for pest resistance in spruce.

Jasmonate Signaling and its Central Role in Defense
We also identified JAZ genes that may play a role in the gene-

gene interaction network between both CCoAOMT loci. JAZ

genes were identified as central regulators of JA-mediated anti-

insect defense [58]. Three JAZ genes were candidate genes directly

associated with phenotypic trait variation. JA signaling is activated

by repressor (i. e. JAZ) removal from the ubiquitin ligase complex

[59]. Carbonic anhydrase genes are other important genes that

have roles in jasmonate signaling and also in ethylene signaling

[60], and in our study these genes mapped trans-eQTLs to both

CCoAOMT hotspot locations. A previous study found that

carbonic anhydrase genes were induced in spruce under stress

treatments (budworm, weevil feeding, and mechanical wounding)

[35]. At the second CCoAOMT locus on LG6, eQTLs from ERFs

and specifically those from group IX [61] that represent known

transcription repressors (ERF3, ERF4, ERF7) [62] were found.

In our study, transcriptional activators related to ethylene

response (ERF-1, ERF-2, EIN5, [63]) as well as regulators for

ethylene biosynthesis per se (RUB1, RUB1-conjugating enzyme,

[64]) were found to co-localize exclusively with resistance traits.

The hormonal cross-talks with JA (involving salicylic acid,

ethylene, abscisic acid, and auxin) during growth and development

as well as during adaptation to stress are highly complex [59,65].

In Arabidopsis, the major players in JA-mediated plant defense are

tightly linked [66]. The differential regulation of certain compo-

nents/steps in the pathway is expected to generate distinct

responses to different stimuli (reproductive development, growth

or defenses, [59,66]). Thus, establishing and maintaining defenses

involves signaling systems that are co-opted from developmental

processes [38].

Conclusions
Although genomics studies on forest trees have traditionally

focused on wood attributes [67–70], the genomics of environmen-

tal challenges has recently gained importance [34,71]. Biotic

stressors, herbivores and their accompanying pathogens pose an

increased threat to tree populations, and knowledge of the

genomic architecture can inform the management and breeding

practices of conifers, as well as increase our general understanding

of the evolution and adaptation of conifer species. Our result will

add to this second vary important layer of genomics in forestry.

We have utilized expression QTL mapping to identify

candidate genes. This will facilitate targeted association studies

to further understand the genetic basis of host resistance to pests,

the genomic basis of pest resistance. These results will enable both

further functional studies to the nature of insect resistance in

spruce, and provide valuable information about candidate genes

for genetic improvement of spruce.

We identified several master regulators that underlie the genetic

pleiotropy of pest resistance and developmental processes. Several

candidate genes from the JA signaling pathway were identified for

which we could show that central regulators of this pathway are

contributing to extensive gene-gene interaction networks. Plant JA

signaling provides a rapid response to various external stimuli [72]

and is central to all biotic stress responses that directly influence

the performance of the pest or contribute indirect defense

responses to attract predators or herbivore parasitoids [73].

Importantly, this signaling pathway is not defense specific, but

co-opted from normal developmental processes such as reproduc-

tive development [72]. In this way, the induction of defenses

against herbivores or pathogens remains highly cost effective [38].

This work identified several pleiotropic genes as candidate genes

whose proposed functions are important in stress response or

disease resistance. In addition, our study revealed the presence of

master genes which influence the global transcriptome. These

genes are in ‘‘hotspots’’, sometimes linked to annotated loci which

were in turn further annotated to developmental and defense

associated processes. Since resistance and growth QTLs over-

lapped with eQTL hotspots along the genome, this suggests that:

1) genetic pleiotropy of resistance and growth traits in interior

spruce was substantial, and 2) master regulatory genes were

important for weevil resistance in spruce. Knowledge about the

exact function of these master regulons in the conifer genome

needs further investigation; however knock-out mutants for largely

pleiotropic genes were shown to be largely lethal or exhibit highly

deleterious phenotypes [53].

Materials and Methods

Interior Spruce Pedigree
Experimental interior spruce populations originated from a

controlled-cross progeny trial established in 1995 at Kalamalka

Research Station in Vernon, BC, Canada [74]. The parental trees

were selected from individuals previously ranked for weevil-

resistance in open-pollinated progeny tests [14]. Out of twenty

crosses segregating for weevil-resistance [74], four families with

wide segregation for weevil resistance arranged as 2x2 factorial

were harvested in May 2006 for gene expression profiling: cross 26

(RPG87* PG165), cross 27 (RPG87* PG117), cross 29

(RPG21* PG165) and cross 32 (RPG21* PG117). From 417

offspring of a 3x2 factorial (including the additional crosses 22 and

25), genomic DNA was isolated from flushing bud/needle tissue

according to the cetyltrimethylammonium bromide (CTAB)

method [75]. The studied trees represented individual genotypes

that were planted in randomized plots within three replicate blocks

in the field [74]. A detailed layout of the study site that shows the

randomized location of plots for the QTL mapping families

PG87*PG165 (cross 26), PG87*PG117 (cross 27), PG21*PG165

(cross29) and PG21*PG117 (cross32) within the replicate blocks

can be found in [29].

A set of 384 SNPs were identified in silico from a collection of

ESTs from the Treenomix EST database (K. Ritland pers.comm.)

that were all derived from a single tree (PG 29). The genomic

DNA was then genotyped for these SNPs using the multiplexed

Illumina platform at the CMMT Genotyping and Gene Expres-

sion Core Facility, Centre for Molecular Medicine and Thera-

peutics, Vancouver, BC. Recombination rates were determined by

joint likelihood [76] for each pair of loci and a consensus genetic

map of 252 SNPs was constructed using JoinMap 3.0 [77], see

[29] for details. Of all putative SNP loci, 73.4–76.0% were

confirmed and included in the analysis; 394 individuals were true

full-sibs. Those that could not be confirmed as full-sibs in the

respective crosses (cross 26: 7%, cross 27: 10%, cross 29: 4%, and

cross 32: 1% of the trees alive in 2006) were removed before

phenotyping. The majority of spruce gene markers (i.e. the SNPs)

that were used to build the framework map could not be

annotated. This involved 67% of the ESTs when we used the

TAIR7 database, while 54% of the ESTs when we used

Viridiplantae databases [29].

Measures for Tree Height, Weevil Attack and Oviposition
The trial was screened for resistance to terminal leader weevil

following the method described by [20]. In short, a population of

weevils was raised in summer 1999 at the Canadian Forest Service

(Pacific Forestry Centre), Victoria and released onto all test trees in
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fall 1999. Attack rates, egg counts and top kills were recorded in

2000–2004. Growth measurements included the initial tree height

in 1995 (year one), and heights in years three, and five as well as

leader length in year five preceding the artificial augmentation of

the local weevil population in October of the same year (hgt_1995,

hgt_1997, hgt_1999, and ldr_99, respectively). Attack rates in

2000 and 2001 (atk_2000, atk_2001) were classified as successful

‘top kills’, ‘failure’ to kill the leader and ‘no attack’ [74]. In

addition, for the same years oviposition on the leaders was

recorded (egg_2000 and egg_2001) by counting egg punctures into

five discrete classes: 1 = 1–25, 2 = 26–50, 3 = 51–75, 4 = 76–100,

5 = 101 and more. Egg punctures contain egg covering fecal plugs

and are easily distinguished from feeding punctures, which are not

covered. The sums of weevil attacks and oviposition for 2000 and

2001 were also used as ‘resistance’ traits (sum_atk and sum_egg).

Tissue Collection, RNA Preparation, Microarray, Gene
Expression Profiling

Tree material within a replicate block was sampled in a

randomized fashion among the plots (i.e. crosses). Terminal leaders

from trees in a block were collected in the mornings of May 16, 17

and 18, 2006, respectively. The weather was consistent among these

days. Bark/phloem tissue was immediately harvested on site from

cut leaders as described previously ([35]; [78]), flash frozen in liquid

nitrogen, and stored at 280uC until processed. Total RNA from

unattacked individuals was isolated following the protocol of [79]

and quantified using NanoDropH ND-1000 Spectrophotometer;

RNA integrity was evaluated using the Agilent 2100 Bioanalyzer.

The 21,840 spruce ESTs on the array involved elements from 12

different cDNA libraries, built from different tissues (bark, phloem,

xylem), which were under different developmental stages, as well as

wound/methyljasmonate treated (ca. 6,500 elements) and untreated

(ca. 15,400). Complete details of cDNA microarray fabrication and

quality control are described elsewhere (S. Ralph and co-workers,

Gene Expression Omnibus database GEO: GPL5423 and http://

www.treenomix.ca/). Labeling reactions, hybridizations, slide

washes as well as scanning of slides were carried out as described

in [35]. Fluorescent intensity data were extracted by using the

ImaGene 6.0 software (Biodiscovery, El Segundo, USA). Signal

intensity measurements were deposited in the Gene Expression

Omnibus database under the accession number GSE22116.

Microarray Experimental Design and Pre-processing of
Expression Data

Our experimental design is based on a priori known genotypes.

Testing six genotyped crosses and using the previously collected

phenotypic data (see above), we determined that genotype

differences between most and least resistant progeny were highest

in crosses 26, 27, 29 and 32. Since we used two-color microarrays,

direct comparisons between Cy3-Cy5 labeled samples were

required. A distant pair design for microarray analysis that

maximized direct comparisons between different alleles at each

locus was originally introduced by [80] and was modified in our

study for outbred individuals. We estimated the genetic distance

for possible probe-pairs genome-wide by using all segregating SNP

loci (122 on average) and such we maximized the number of

distant pairs in a given cross. A 25% improvement over random

pairing was achieved. We also balanced the two dyes across the

three replicate blocks (i.e. sampling on three different days), the

different batches of microarray fabrication and different experi-

menters (see below). Our design resulted in 94 hybridizations

profiling 48 individuals in cross 26, 36 in cross 27, and 50 in cross

29 as well as 54 individuals in cross 32 [29].

After quantification of the signal intensities in each array the

local background was subtracted for each subgrid. Data were

normalized to compensate for non-linearity of intensity distribu-

tions using the variance stabilizing normalization method [81]. We

performed a single normalization of 188 columns of data. In this

way each channel had a similar and array-independent overall

expression level and variance. Signal intensities are deposited

under the GEO accession number GSE22116. The linear model

hi~mzdyezblockzbatchzpersonzei

with m as the overall mean was then fit to the normalized

intensities of each gene i (hi) in the Cy3 and Cy5 channels to

account for technical effects within the experiment (gene-specific

‘dye’ effect, replicate ‘block’, microarray fabrication ‘batch’,

experimenter ‘person’ are all fixed effects). The residuals were

used in the subsequent QTL analysis. All of the above statistics was

carried out using the R statistical package (www.r-project.org).

QTL Detection
A program was written in FORTRAN by K. Ritland for QTL

mapping in the 362 factorial (for resistance and growth traits) and

2x2 factorial design (for gene expression traits). This program

inferred QTL maps for each of the parents of the factorial. QTLs

were mapped in the progeny by employing a likelihood function of

the trait level (gene expression, other traits) conditioned on genotype

of progeny, and compared to the likelihood of unconditioned

genotype of progeny (no association of traits with progeny genotype)

to give a log-odds (LOD) ratio. Due to the large number of gene

expression traits, a single-marker model instead of an interval

mapping approach was used, and QTLs were binned into 10 cM

marker intervals, thus avoiding having two QTLs assigned to

adjacent markers due to linkage of two markers to one QTL. We

used R (www.r-project.org) to display QTL density maps. A QTL

was significant at LOD $3.84 and had to be detected for a

minimum of one parent in the factorial ([29], and Table S1). A

goodness-of-fit test assuming a uniform distribution was performed

to test whether the observed frequencies of eQTLs along the linkage

map differed significantly from the expected value. Following the

rejection of this null hypothesis ( x2 = 96678, df = 251, p-value

,2.2e-16), we declared ‘‘eQTL hotspots’’ if the number of eQTLs

at a given locus exceeded the expected average by 50%. These

numbers are significantly above the maximum number within

eQTL clusters (i.e. 630) from a randomly generated data set using

all 132,100 detected eQTLs, 252 markers, and running 1,000

replicates. The positional candidate genes were identified by

collocation of at least 40% of their eQTLs with phenotypic trait

QTLs based on the criteria for identifying significant QTLs (see

above) and running 10,000 randomizations (p # 0.05).

Other Statistical Analyses
Phenotypic trait correlations were determined using SAS/

STAT software, version 9.1.3 of the SAS system for WindowsH
(SAS Institute Inc., Cary, NC, USA). The cytoscape 2.5.1 plug-in

BINGO [82] was used and a hypergeometric test was performed

to determine statistically overrepresented Gene Ontology (GO)

terms within the GOSlim Plants ontology for spruce genes with

Arabidopsis homologs. In our case, this involved comparing the

nearest Arabidopsis homologs for all genes that showed significant

association of their expression variation with the previously

assessed phenotypic trait variation (tree height, weevil attack,

and oviposition) to all Arabidopsis homologs on the microarray.
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Supporting Information

Figure S1 GO tree representation showing significantly
(p # 0.05) overrepresented GO categories within the
trans eQTL-hotspot at the carbonic anhydrase gene
locus contig_2079_440 (803 eQTLs) on LG4, for color
code see Figures 2, 3, 4 and 5 in main text.
(TIFF)

Figure S2 GO tree representation showing significantly
(p # 0.05) overrepresented GO categories within the
trans eQTL-hotspot at the carbonic anhydrase gene
locus contig_103_602 (1122 eQTLs) on LG4, for color
code see Figures 2, 3, 4 and 5 in main text.
(TIFF)

File S1 Comprehensive list of all 132,100 significant
eQTLs (legends can be found in Table S1).
(PDF)

Table S1 Significant QTLs for gene expression (LOD
$3.84); allele effect, and % phenotypic variation ex-
plained by QTL are given in File S1.
(XLS)

Table S2 Comprehensive list of eQTLs with annota-
tions at locus Contig_4096_434 (see also Figure 2).
(XLS)

Table S3 Comprehensive list of eQTLs with annota-
tions at locus CCoAOMT_1_320 (see also Figure 3).
(XLS)

Table S4 Comprehensive results for collocation esti-
mations, with p-values.
(XLS)

Table S5 Statistically overrepresented Gene Ontology
terms in the GOSlim Plant ontology for genes with
expression variation co-localizing with resistance and
growth traits, respectively, as presented in Figure 4 and
Figure 5.

(XLS)

Table S6 Display of genes that are candidates for
different resistance and growth traits (p#0.05), for at
least three phenotypic traits (ldr_99, hgt_1995, hgt_1997,
hgt_1999, atk_2000, atk_2001, sum_atk, egg_2000,
egg_2001, and sum_egg, respectively).

(XLS)

Table S7 Complete list of the identified 149 positional
candidate genes for the general resistance trait, (p #

0.1).

(XLS)

Table S8 Complete list of identified 99 positional
candidate genes for the general growth trait, (p # 0.1).

(XLS)
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