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A B S T R A C T   

Transjugular intrahepatic portosystemic shunt (TIPS) is an essential procedure for the treatment of portal hy
pertension but can result in hepatic encephalopathy (HE), a serious complication that worsens patient outcomes. 
Investigating predictors of HE after TIPS is essential to improve prognosis. This review analyzes risk factors and 
compares predictive models, weighing traditional scores such as Child-Pugh, Model for End-Stage Liver Disease 
(MELD), and albumin-bilirubin (ALBI) against emerging artificial intelligence (AI) techniques. While traditional 
scores provide initial insights into HE risk, they have limitations in dealing with clinical complexity. Advances in 
machine learning (ML), particularly when integrated with imaging and clinical data, offer refined assessments. 
These innovations suggest the potential for AI to significantly improve the prediction of post-TIPS HE. The study 
provides clinicians with a comprehensive overview of current prediction methods, while advocating for the 
integration of AI to increase the accuracy of post-TIPS HE assessments. By harnessing the power of AI, clinicians 
can better manage the risks associated with TIPS and tailor interventions to individual patient needs. Future 
research should therefore prioritize the development of advanced AI frameworks that can assimilate diverse data 
streams to support clinical decision-making. The goal is not only to more accurately predict HE, but also to 
improve overall patient care and quality of life.   

1. Introduction 

The transjugular intrahepatic portosystemic shunt (TIPS) is a 
cornerstone treatment for portal hypertension secondary to cirrhosis [1, 
2] and significantly alleviates the symptoms associated with this 

condition. However, the procedure is not without adverse outcomes, 
with HE being a notable complication [3]. 

HE is a neuropsychiatric condition resulting from hepatic insuffi
ciency or portal-systemic shunting that manifests as cognitive dysfunc
tion and may progress to coma [4]. Studies have shown that the 
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incidence of HE after TIPS is as high as 20–50 % [3,5,6], with most cases 
occurring within one to three months after the procedure [7]. Currently, 
there is no consensus on the diagnosis of HE [8], and the complex nature 
of HE significantly prolongs hospital stay, increases healthcare costs, 
severely diminishes patients’ quality of life, and may even increase the 
risk of mortality [9–12]. Therefore, the predictive identification of 
high-risk patients for HE after TIPS has become a key focus within the 
medical community. 

In the current clinical landscape, a number of bioindicators and 
scoring systems are routinely used to assess the potential development of 
HE following TIPS procedures. Known for their simplicity and user- 
friendly design, these methods have achieved commendable levels of 
predictive accuracy within specific clinical scenarios. Their reliance on a 
spectrum of hepatic biochemical markers, such as albumin, creatinine 
and total bilirubin, forms the basis of their predictive capacity [13]. In 
addition, the applicability of these tools is somewhat limited, as they 
primarily address specific patient populations. For example, the 
albumin-bilirubin (ALBI) grade, while advantageous in assessing 
early-stage liver failure, may not be as applicable to the assessment 
needs of advanced cirrhosis [14]. In addition, these approaches are often 
inadequate to cover the full continuum of a patient’s clinical progression 
[15]. The infusion of subjective judgments within certain scoring sys
tems introduces an element of variability that, despite its relevance to 
the diversity of patient presentations, may compromise the accuracy of 
the scoring results [5,16]. 

Therefore, there is an imperative within the medical community to 
establish a scientifically rigorous, objective, and comprehensive 
assessment framework. Such a framework would improve the diagnostic 
accuracy of HE and facilitate individualized patient management, thus 
addressing a significant challenge in the field of hepatic medicine [17]. 

In this era of rapid scientific and technological progress, artificial 
intelligence (AI) is gradually expanding its scope of application in the 
field of medicine [18–22]. In recent years, AI has shown great promise in 
the evaluation and prognosis of HE. Through the integration of sophis
ticated machine learning (ML) and deep learning algorithms, AI is 
capable of mining patient data from various dimensions, thereby 
improving the accuracy and objectivity of assessment tools used in the 
management of HE [23]. 

The purpose of this review is to summarize the use of established 
tools in the clinical assessment of HE, highlight their inherent limita
tions, and outline the prevailing and future applications of AI in this 
context. The intent is to refine healthcare professionals’ understanding 
of post-TIPS HE, improve the accuracy of patient assessments, and 
expedite the delivery of effective treatments that improve patient health 
outcomes and reduce mortality. 

2. Background of the study 

2.1. Overview of TIPS and postoperative complications 

TIPS is a minimally invasive interventional therapy primarily used to 
relieve portal hypertension and its associated complications, such as 
variceal bleeding and refractory ascites [24]. The TIPS procedure creates 
an artificial conduit between the intrahepatic portal vein and the hepatic 
vein, significantly reducing portal system pressure and improving 
symptomatic manifestations [2,25,26]. This technique has gained wide 
acceptance in the medical community due to its innovative nature and 
clinical efficacy [2,27–30]. However, postoperative complications, 
particularly the development or worsening of HE, remain a significant 
concern with this procedure [17]. 

Among the many causative factors of HE, the distinctly induced post- 
TIPS has attracted significant interest in the medical community due to 
its unique characteristics. First, the shunt channel created by the TIPS 
procedure allows portal blood to bypass hepatic filtration and enter 
directly into the systemic circulation, resulting in physiological changes 
that reduce the detoxification function of the liver and its ability to filter 

toxins, particularly ammonia, from the bloodstream [31]. This phe
nomenon has been associated with a significant increase in both the 
incidence and severity of HE after TIPS, with rates 20 % to 50 % higher 
than those observed in HE from other causes [6]. Second, TIPS is typi
cally performed in patients with pre-existing liver disease, such as 
cirrhosis [29,32]. Individuals with pre-existing conditions are at higher 
risk of developing HE, which requires more stringent treatment and 
management protocols. In addition, individuals with post-TIPS HE may 
have variable responses to conventional therapies such as lactulose or 
anti-ammonia regimens. This adds another layer of complexity to 
treatment management and makes their prognosis highly unpredictable 
- potentially leading to prolonged, recurrent episodes that negatively 
impact patient quality of life and survival [3,20,33]. Therefore, it is 
critical to conduct thorough research on post-TIPS HE. Understanding its 
unique characteristics may help to establish more accurate diagnostic 
criteria and effective treatment strategies, thereby improving patient 
quality of life and reducing healthcare costs. 

2.2. Definition and mechanisms of TIPS-related HE 

TIPS-associated HE is a condition characterized by central nervous 
system dysfunction due to metabolic changes that occur following the 
establishment of a shunt connecting the portal vein to the systemic 
circulation during the TIPS, after exclusion of other known brain dis
orders [34]. Clinically, this condition is evaluated according to the West 
Haven criteria [35]. 

The pathological basis of HE is complicated and involves a spectrum 
of contributing factors such as liver dysfunction, diversion of visceral 
blood into the systemic circulation, hyperammonemia, inflammatory 
response, as well as alterations in gut microbiology, etc., as shown in  
Fig. 1. The interaction of these factors contributes to the complexity of 
HE [36–41]. Therefore, the development of effective strategies for the 
prevention and treatment of HE has been a critical area of medical 
research. 

Accurate prediction and assessment of patient outcomes after TIPS, 
particularly in terms of early mortality and liver function, as well as 
identification of individuals at increased risk of HE, can lead to timely 
and targeted interventions. These can significantly improve patient 
outcomes and mitigate the broader social and economic impact [13,42]. 
This review aims to summarize the use and limitations of HE assessment 
tools currently used in clinical practice, with a particular focus on the 
nuances of HE after TIPS and the special considerations required for its 
assessment. 

The diagram illustrates the major pathogenic factors contributing to 
HE after TIPS. It highlights the diversion of visceral blood into the sys
temic circulation, hyperammonemia, impaired liver function, inflam
matory responses, and the role of gut microbiota. 

2.3. Factors affecting HE after TIPS 

After a rigorous review of the relevant literature and an in-depth 
examination of post-TIPS HE, we have identified several key factors 
that are strongly associated with the incidence of HE. These factors 
include patient baseline characteristics, physiologic and biochemical 
parameters, medical history, and medication use, which together form a 
comprehensive framework for assessing the risk of HE after TIPS. Each 
factor has specific importance and clinical relevance, and the combined 
effects and cumulative interactions among them are critical in predict
ing a patient’s propensity to develop HE [22,31,43–48]. 

To illustrate the complexity of these risk factors and their in
terrelationships after TIPS, we have synthesized our findings into an 
extensive graph, as shown in Fig. 2. The chat not only provides a visual 
representation that enhances our understanding of the relationship be
tween risk factors and the development of HE, but also provides valuable 
guidance for future scientific inquiry and clinical methodology. 

The development of HE after TIPS has been conclusively linked to a 
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variety of factors, with baseline characteristics such as age and liver 
function serving as prominent predictors [30,32,45,46,50]. Research 
suggests that patients aged 60 years or older are at significantly higher 
risk for HE, emphasizing the need for detailed risk assessment within 
this demographic cohort. Perturbations in serum albumin and bilirubin 
levels, markers traditionally associated with liver function, may also be 
indicative of broader health complications, including malnutrition and 
systemic inflammation [49]. Another key parameter in the assessment of 
HE risk after TIPS is the portosystemic gradient (PSG), which assesses 
portal hypertension and hepatic blood flow resistance. Studies have 
shown that a reduced PSG correlates with an increased risk of HE 
[50–52], highlighting the need to balance the reduction in PSG with the 
maintenance of therapeutic efficacy. In addition, the structural aspects 
of the TIPS procedure, such as stent diameter, type, and anatomical site 
of puncture, have been shown in recent studies to be critical de
terminants influencing the development of HE [45]. 

To improve therapeutic strategies and management after TIPS pro
cedures, it is important to perform continuous health monitoring of 
patients. This monitoring should extend beyond the monitoring of 
traditional biochemical markers, such as the international normalized 
ratio (INR) [45], to include assessment of cognitive function, muscle 
loss, nutritional status [22], and the effects of certain medications [22, 
45]. These components can strongly influence the likelihood of devel
oping HE. In particular, factors such as a history of overt hepatic en
cephalopathy (OHE), diabetes mellitus [46], elevated creatinine levels, 
decreased serum albumin levels, socioeconomic influences [48,53], and 
specific etiologies related to cirrhosis [46–48] are all associated with an 
increased incidence of HE after TIPS. Therefore, it is essential to perform 
a holistic analysis that takes these factors into account. This will not only 
anticipate and reduce the risk of HE, but also improve patient outcomes 
and quality of life. 

After assessing the overall health and management needs of TIPS 

Fig. 1. Mechanisms of HE following TIPS procedure.  
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patients, attention shifts to the critical role of biochemical indicators. 
These indicators are central to predicting the potential onset of HE and 
informing the approach to its management. 

3. Predictive models based on biochemical indicators and their 
clinical relevance 

HE is a common and serious complication that can occur after TIPS 
procedures. It can lead to an adverse patient prognosis, making effective 
evaluation and management strategies for HE critical to improving pa
tient outcomes. Clinically, HE is evaluated using a multidimensional 
approach that includes a thorough history, physical examination, neu
ropsychological testing, and analysis of various biochemical indicators. 
These biochemical indicators provide the clinician with direct infor
mation about the patient’s metabolic state and liver function, which are 
essential components of the diagnostic framework for HE. Biochemical 
marker-based scoring systems have been developed to improve the ac
curacy and reliability of HE assessments. The following sections of this 
review will discuss 3 major biochemical indicators and 5 major scoring 
systems in the assessment of HE, with the aim of improving under
standing of the range of tools available for the assessment of HE and thus 
advancing clinical practice. 

3.1. Biochemical indicators 

Biochemical indicators are critical in the diagnosis and assessment of 
HE. Critical metrics such as blood ammonia, cholinesterase (CHE), and 
interleukin-6 (IL-6) levels provide insight into liver function and sys
temic inflammation relevant to the clinical manifestations of HE. 

3.1.1. Ammonia levels 
Blood ammonia concentration is a key biomarker in the evaluation of 

HE and is widely used for the diagnosis and monitoring of this condition 
[54–58]. Numerous studies show that high blood ammonia levels are 
closely associated with the occurrence of HE, indicating reduced hepatic 
detoxification capacity and systemic ammonia accumulation [13,39, 
59–63]. Research by Yokoyama et al. showed that treatment with 
rifaximin significantly reduced blood ammonia levels, consistently 
improved liver function, and improved patients’ quality of life [64]. 
Ochirkhuree et al. highlighted that ammonia levels increase consistently 
across all stages of HE and established a robust correlation between 

elevated ammonia concentrations and the Model for End-Stage Liver 
Disease (MELD) score, confirming the clinical utility of blood ammonia 
measurements in the assessment of HE [65]. However, several studies 
have shown that relying solely on blood ammonia levels in the assess
ment of HE lacks specificity. Overlapping ammonia concentrations have 
been observed in patients at different disease stages [4]. Patients may 
develop HE despite normative blood ammonia levels, and various 
extraneous factors may influence these levels, potentially leading to 
misdiagnosis [66]. In addition, the rapid variability of ammonia places 
special demands on sample collection and processing, and these tech
nical challenges may affect its accuracy as a diagnostic tool [67]. As a 
result, relying solely on blood ammonia metrics to assess HE may be 
inadequate. 

3.1.2. Serum cholinesterase levels 
Cholinesterase (CHE) levels have been identified as a critical pre

dictor of the development of HE. Research by Stockhoff et al. found a 
significant association between reduced CHE levels and increased 
mortality within one year of HE diagnosis, highlighting its relevance in 
both acute and chronic liver failure scenarios. This finding underscores 
the importance of monitoring CHE levels in clinical settings, particularly 
for post-operative care and prognostication [68,69]. Despite its 
demonstrated utility, the broader applicability and validation of CHE as 
a biomarker in different patient demographics requires further investi
gation. A notable limitation in the current clinical landscape is the lack 
of CHE measurements in the routine laboratory panels of many medical 
centers, which may limit its use in clinical practice and lead to under
estimation of its prognostic value [66]. Furthermore, relying solely on 
CHE as a single predictive factor may have limitations. Such an 
approach may overlook other important factors that contribute to pa
tient outcomes, including overall health status and existing comorbid
ities. The complexities associated with accurately measuring CHE levels 
and interpreting their variations across a range of pathological condi
tions represent an ongoing challenge in the field [70–72]. 

3.1.3. Monitoring of the inflammatory marker IL-6 
Recent medical studies have increasingly recognized the strong as

sociation between IL-6 and the risk of developing HE, particularly in 
patients with underlying cirrhosis [73–75]. Studies by Montoliu, 
Remmler and others indicate that cirrhotic patients with IL-6 levels 
above 9 pg/ML have a significantly higher risk of HE [73]. These 

Fig. 2. Risk factors influencing HE after TIPS procedure.  
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findings highlight the importance of monitoring IL-6 as a valuable 
biomarker for predicting the risk of HE and suggest that its diagnostic 
utility may exceed that of other indices such as Child-Pugh score and 
c-reactive protein. However, the predictive ability of IL-6 for HE has 
certain limitations that need to be considered. IL-6 is a multifunctional 
cytokine involved in immune regulation, metabolic control, inflamma
tory responses and neurological modulation. This means that elevated 
levels of IL-6 do not definitively indicate that a patient will develop HE 
due to its lack of disease specificity. Furthermore, there is evidence of an 
association between high IL-6 levels and minimal hepatic encephalop
athy in patients with cirrhosis, but the specific pathological mechanisms 
underlying this association remain unclear. This uncertainty highlights a 
significant knowledge gap that limits the effectiveness of using IL-6 
levels as a definitive screening marker for HE. 

Future investigations will focus on improving the accuracy of using 
IL-6 for clinical prediction and risk stratification. This will include 
monitoring IL-6 levels over time, investigating the combined effects with 
additional biomarkers, and assessing the risk of infection in groups with 
high IL-6 levels [73–75]. 

3.2. Biochemical parameter-based scoring systems 

The Child-Pugh grading system was established in 1964 and has 
since been a fundamental tool for assessing the risk of liver failure and 
the potential development of HE. As medical research and technology 
have advanced, more sophisticated scoring systems have been devel
oped to refine the accuracy of predicting the risk of HE. This review will 
examine the utility of various scoring systems in the assessment of HE 
and attempt to elucidate their strengths and limitations in clinical con
texts. We expect that this will help to optimize management protocols 
for patients with HE. 

3.2.1. Child-Pugh grading 
The Child-Pugh grading system was originally proposed by Child and 

Turcotte in 1964 and later modified by Pugh et al. in 1972 [76]. It is 
widely used to measure the severity of cirrhosis [13,77–80]. The 
Child-Pugh score incorporates variables such as grade of HE, presence of 
ascites, serum bilirubin level, serum albumin concentration, and pro
thrombin time, and provides a structured framework for clinical 
assessment of liver function and overall liver status [76]. Empirical 
research, including studies by Yang et al., has underscored the effec
tiveness of the Child-Pugh score in predicting the development of HE, 
reinforcing its utility in clinical practice [17]. Further innovations in the 
assessment of HE risk, particularly after TIPS, have been developed by 
integrating the Child score with radiologic indicators, demonstrating the 
importance of the Child-Pugh classification [81]. While this classifica
tion combines biochemical markers with clinical judgment, it has sub
jective elements, particularly in the assessment of ascites and HE, which 
could lead to variability in scoring results[82]. In addition, this system 
does not include all relevant factors related to liver pathology, with 
renal function being notably absent. Therefore, the Child-Pugh classifi
cation should be used with caution in clinical practice. It should be used 
in conjunction with other assessment tools when appropriate [76]. 

3.2.2. Model for End-Stage Liver Disease score 
The Model for End-Stage Liver Disease (MELD) score is based on 

biochemical markers, including bilirubin, the INR and creatinine levels 
[5,26,81,160]. It also takes into account the etiology of cirrhosis. The 
MELD score was originally developed to assess the survival prognosis of 
patients with cirrhosis and to establish prioritization criteria for liver 
transplant waiting lists [83]. It is based on quantifiable laboratory 
findings, making it an objective measure and reducing the potential for 
subjective clinical interpretation. The MELD score has become a 
benchmark for assessing the urgency of liver transplantation [84]. 
Clinically, the utility of the MELD score has expanded beyond transplant 
evaluation to include prognostication of survival outcomes in patients 

undergoing TIPS procedures and assessment of patients with advanced 
liver disease prior to transplantation [13,26]. Its significance is also 
evident in the prediction of HE incidence following TIPS intervention. 

Research by Fonio et al. confirmed that MELD grade is an indepen
dent risk factor for the development of post-TIPS HE [26,85]. Kim et al. 
introduced an extension of the MELD model, MELD 3.0, which improves 
its prognostic accuracy [16]. Despite its utility, the application of the 
MELD score in clinical practice is not without challenges. In particular, 
when evaluating patients after TIPS, especially those with impaired 
renal function or hepatorenal syndrome, the MELD score’s heavy reli
ance on serum creatinine levels may lead to an overestimation of mor
tality risk. This is particularly relevant in cases where renal function is 
expected to improve after surgery [86–88]. Given these considerations, 
it is important to interpret MELD scores with caution and to integrate 
them into a comprehensive clinical assessment. 

3.2.3. Albumin-bilirubin score 
The albumin-bilirubin (ALBI) score, developed to assess hepatic 

synthetic capacity, uses serum albumin and total bilirubin levels as its 
core parameters [89]. This method was developed to overcome the 
subjective limitations of clinical assessments such as ascites and HE, 
which are key components of the Child-Pugh score [14,90–92]. Global 
implementation has shown that the ALBI score is as valid as, if not su
perior to, the Child-Pugh score, particularly in patients classified as 
Child-Pugh class A. Notably, the ALBI score is more accurate in strati
fying different prognostic groups. One of the major advantages of the 
ALBI grade is its simplicity and objectivity, relying solely on quantifiable 
laboratory values of albumin and bilirubin. This straightforward 
approach enhances its applicability and facilitates its integration into 
international clinical research and practice [93]. Despite its advantages, 
the ALBI score’s exclusion of coagulation markers and its failure to 
directly account for manifestations such as HE and ascites may limit its 
ability to fully capture a patient’s comprehensive clinical situation [14]. 

3.2.4. Freiburg index of post-TIPS survival 
The Freiburg index of post-TIPS survival (FIPS) is a predictive model 

designed to estimate postoperative survival rates using a combination of 
biochemical parameters in addition to the patient’s age. Key compo
nents such as creatinine, bilirubin, albumin and patient age form the 
basis of this index. Initially, FIPS found its primary application in pre
dicting survival outcomes for patients undergoing TIPS procedures [94, 
95]. Recent studies have expanded the utility of FIPS by proposing it as a 
novel and objective marker to assess the risk of HE after TIPS with 
commendable efficacy [20,22]. Groundbreaking research by Cai’s team 
showed that patients with elevated FIPS scores had a significantly higher 
incidence of HE compared to their counterparts with lower scores 
(P < 0.05). This suggests that the FIPS score may outperform established 
models such as the Child-Pugh and MELD scores in predicting HE risk in 
TIPS patients. However, despite these promising findings, the study’s 
conclusions are tempered by limitations related to sample size. The call 
for further research through external validation efforts is critical to 
reliably demonstrate the predictive efficacy of FIPS [94]. 

3.2.5. Controlled Nutritional Status score 
The Controlled Nutritional Status (CONUT) score is an assessment 

tool that takes into account serum albumin levels, total cholesterol 
levels, and lymphocyte counts to rapidly determine a patient’s nutri
tional status and guide clinicians in determining appropriate nutritional 
interventions [83]. In 2022, Li et al. identified a direct relationship 
between CONUT scores and the risk of OHE. The researchers found that 
the CONUT score was a better predictor of OHE than other indicators 
such as neutrophil-lymphocyte ratio, MELD score, and Child-Pugh score. 
This makes the CONUT score a reliable way to measure the risk of OHE 
in cirrhotic patients after TIPS [48]. However, the study conducted by Li 
et al. had limitations due to its retrospective design and the size of its 
cohort. Therefore, further investigative efforts are needed to confirm the 
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broader clinical utility of the CONUT score [49]. 
To assess the risk of HE after TIPS, it is important to consider 

biochemical markers such as ammonia, CHE, and IL-6, as well as the 
Child-Pugh, MELD, ALBI, FIPS, and CONUT scoring systems. However, it 
is important to note that biochemical markers can be influenced by 
various factors, and scoring systems typically require comprehensive 
consideration of multiple indicators and clinical presentations to ach
ieve more accurate and comprehensive predictions. 

4. Application and Development of AI in HE Prediction 

4.1. Accuracy of AI in HE prediction and its optimization methods 

The use of AI in predicting HE has shown significant potential. 
Current AI models, particularly those based on deep learning and ML 
algorithms, can extract complex patterns from large clinical data sets to 
achieve highly accurate HE predictions. The accuracy of these models is 
facilitated by their ability to process multidimensional data, including 
biomarkers, imaging data, and patient history [96]. Machado et al. 
performed untargeted metabolomics in 22 cirrhotic patients undergoing 
elective TIPS placement. They found that pre-existing intrahepatic 
shunting predicted the severity of HE after TIPS, with specific bile acids 
inversely correlating with HE grade and metabolomic changes influ
encing HE progression [97]. However, further improvements in pre
dictive accuracy of HE occurrence will require optimization of data 
preprocessing and feature engineering to ensure high quality model 
inputs. 

In addition, integrated learning approaches, such as combining re
sults from multiple models, can reduce the bias of individual models and 
further improve predictive performance. Zhang et al. demonstrated 
better discrimination in predicting 28-day mortality in patients with HE 
using ML models such as artificial neural networks (ANNs), which have 
the potential to improve clinical outcomes for these high-risk patients 
[18]. In addition, continuous updating and calibration of models to 
adapt to new data and medical knowledge is an effective strategy to 
improve the accuracy of HE prediction. Tan et al. demonstrated high 
diagnostic value in predicting cirrhosis-associated HE using multiple 
algorithms, including logistic regression (LR), random forests, decision 
trees, and XGBoost, highlighting the importance of continuous model 
refinement to keep pace with new information and improve accuracy 
over time [98]. 

4.2. The role of AI in clinical decision support: current applications and 
decision points 

AI shows significant potential in the risk assessment of HE after TIPS. 
AI assists physicians in making accurate decisions regarding diagnosis, 
treatment selection, and disease monitoring by analyzing clinical and 
imaging data [99]. In the study by Mehta et al., AI models automatically 
identified key biomarkers from CT images, predicted the risk of HE, and 
recommended personalized treatment options. 

In addition, AI continuously tracked health indicators and provided 
timely data support to adjust treatment strategies [100]. The integration 
of AI not only improved the accuracy of diagnosis and treatment, but 
also optimized patient management and improved prognosis. Future 
research is needed to further develop these technologies for broader 
application in clinical practice, thereby improving medical efficiency 
and patient care experience [101]. 

4.3. Aims and prospects of AI-based risk assessment and classification in 
HE 

AI-driven risk assessment and classification of HE aims to achieve 
precision medicine, ultimately providing highly accurate risk assess
ment and patient classification tools through personalized analysis 
[102]. Chen et al. developed a diagnostic model for HE using serum Ta
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homocysteine and bile acid levels, which demonstrated significant 
diagnostic value for HE. Future advances may include real-time dynamic 
models [103]. These tools will help physicians better understand the 
specific risk factors of each patient with HE, leading to individualized 
treatment plans. Future directions include the development of more 
complex and dynamic models that can learn and update in real time to 
reflect the latest clinical data and research. In addition, the development 
of interpretable AI models that provide a transparent basis for decision 
making will further increase clinicians’ trust and confidence in AI tools 
[104]. 

4.4. Development process and timeline expectations for AI tools in clinical 
applications 

A systematic timeline is essential for the promotion and dissemina
tion of AI tools into clinical practice. The first phase is model develop
ment and validation, which includes verifying the reliability and validity 
of AI models through large-scale, multicenter clinical trials [105]. The 
next phase is regulatory approval, which ensures that AI tools meet 
medical device and software compliance requirements. This is followed 
by clinical pilot applications to gather feedback and facilitate further 
optimization through pilot use in selected hospitals or healthcare facil
ities [106]. Ultimately, widespread adoption and application is expected 
to occur gradually over the next five to ten years, with AI tools playing a 
key role in more healthcare scenarios as the technology matures and 
becomes more widespread [107]. 

4.5. Potential risks and benefits of AI predictive models and their 
optimization strategies 

AI predictive modeling offers both significant benefits and potential 
risks in clinical applications. Benefits include improved diagnostic ac
curacy, personalized treatment plans, and optimal allocation of 
healthcare resources [108]. However, potential risks include misdiag
nosis due to model bias, data breaches, and impaired clinical judgment 
due to overreliance on AI. To mitigate these risks, rigorous data pro
tection measures must be implemented to ensure patient privacy and 
data security. Arasteh et al. conducted a study on diagnostic chest X-rays 
and patient characteristics, demonstrating that differential privacy en
hances model training by preserving privacy without significantly 
affecting accuracy or fairness [109]. In addition, establishing a multi
level model validation and correction mechanism can reduce model 
bias, thereby improving model reliability and fairness. Regular training 
and education of healthcare professionals to ensure appropriate judg
ment and decision-making skills when using AI tools has also been 
shown to be an effective risk management strategy [110]. 

5. Advances in the application of AI to the evaluation of HE 

Conventional scoring systems and clinical biochemical markers are 
essential for predicting HE. However, their effectiveness is often 
hampered by the complex nature of the data and challenges in accurate 
interpretation [95,111]. In this context, the advent of big data and ad
vances in computational power have paved the way for the application 
of AI in the medical field. AI techniques, including ML and deep learning 
algorithms, have revolutionized the approach to HE risk assessment. By 
processing vast amounts of patient-related data, AI methods can extract 
critical insights and facilitate the development of scoring models that are 
more accurate, dynamic, and tailored to individual patient profiles. The 
integration of imaging and clinical data through AI technologies marks a 
significant departure from traditional diagnostic and assessment 
methods. 

5.1. Modeling of image-based assessment 

Methods using AI based on computed tomography (CT) imaging have 

been investigated for predicting the risk of HE after TIPS procedure [21, 
22,112,113]. AI, particularly ML algorithms, have proven useful in 
analyzing and interpreting large imaging datasets, as shown in Table 2. 
These state-of-the-art approaches not only autonomously detect and 
quantify salient imaging features, but also provide enhanced risk 
assessment by synergizing such features with corroborating clinical 
evidence. James et al. analyzed abdominal CT scans to determine the 
amount of subcutaneous and visceral adipose tissue and muscle mass in 
patients undergoing TIPS. Using both univariate and multivariate lo
gistic regression analyses, they found that relative muscle loss associated 
with overweight or obesity was a significant risk for mortality after TIPS. 
Their research also showed that there was no significant correlation 
between this relative muscle loss and the frequency of HE episodes, 
highlighting the ability of AI to simplify complex imaging datasets 
[114]. Cai’s team used CT images to assess the efficacy of psoas density 
(PD) and suggested that PD could predict the onset of HE after TIPS. The 
predictive accuracy of the inverse stepwise LR model was superior to 
established scores such as MELD, ALBI, and Child-Pugh score. The 
integration of AI with CT imaging techniques may help to assess the risk 
of HE morbidity [115]. 

The integration of AI with CT imaging underscores a shift toward 
more nuanced and precise assessments of HE risk after TIPS. By 
enhancing the ability to analyze complex imaging data and combine it 
with clinical insights, AI-infused models not only increase the accuracy 
of predictions, but also contribute to a deeper understanding of the 
pathomechanisms underlying HE. This synergy between CT imaging and 
AI technologies holds great promise for advancing patient care, offering 
new ways to assess HE risk and inform targeted therapeutic in
terventions, thereby optimizing patient management and outcomes. 

5.2. Construction of an integrated assessment model 

Integrated predictive models that integrate biochemical markers 
with imaging information have made notable progress in refining the 
accuracy of risk assessment for HE after TIPS in AI-assisted evaluation. 
Zhong et al. used univariate and multivariate LR analyses to identify 
independent risk factors associated with the occurrence of OHE within 3 
months after TIPS, as well as one-year mortality rates and early-onset 
liver dysfunction. An ANN model and a prognostic line graph were 
developed that accurately predicted the early onset of OHE, mortality, 
and liver dysfunction in patients with acute variceal bleeding cirrhosis 
who underwent early TIPS. AI effectively evaluates the prognosis after 
TIPS and also provides technical support for identifying patients at high 
risk for OHE [19]. Wang et al. quantified CT images to measure three 
body composition metrics and evaluated the association between HE 
and body composition after TIPS using a multivariate LR model. The 
results suggest that body composition can be used not only for 
non-invasive nutritional assessment, but also for predicting the risk of 
HE in cirrhotic patients after TIPS. The study showed that body 
composition metrics can be used non-invasively, which goes beyond 
nutritional assessment and can also serve as predictive indicators for the 
risk of HE in individuals with cirrhosis after TIPS [42]. Ince et al. used 
patient clinical profiles coupled with laboratory and imaging data to 
develop three ML models based on support vector machines (SVM), LR 
and CatBoost algorithms. The models were effective in identifying in
dividuals at risk of developing HE after TIPS procedure, providing 
additional resources for patient selection and clinical management 
[116]. Yang et al. used 12 clinical parameters such as age, etiology of 
cirrhosis, history of diabetes mellitus, Child-Pugh score/classification, 
MELD score, and enhanced CT data to create three LR models. These 
models demonstrated the ability to accurately classify patients based on 
their risk of developing OHE within 3 months after undergoing TIPS, 
further confirming that combining AI with clinical and imaging data 
offers a new way to improve the predictive assessment of HE [17]. 

The effective use of these predictive models underscores the central 
role of AI technology in improving risk assessment for HE after TIPS. It 
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also catalyzes progress toward more individualized approaches to pa
tient care and therapeutic strategy. See Table 3 for additional 
information. 

6. Limitations of AI predictive modeling and necessary 
precautions 

AI predictive models have demonstrated significant potential and 
application value in various fields, including healthcare. However, 
certain non-negligible limitations of these models emerge in practical 
applications. To ensure the safety and reliability of these models in 
medical settings, it is critical to understand these limitations and take 
the necessary precautions. 

6.1. Lack of model interpretation and transparency 

Many AI predictive models, especially deep learning models, are 
often considered "black boxes" due to their complex structures and high- 
dimensional data processing capabilities. These models typically do not 
provide intuitive explanations or insights into their predictive processes. 
This lack of transparency is particularly challenging in healthcare ap
plications, where clear and interpretable bases for medical decisions are 
essential, especially in cases where patients’ lives and health are at stake 
[117]. For example, in the diagnosis of Alzheimer’s disease, Das et al. 
used random forest and SVM models for prediction. Although these 
models demonstrated 84 % sensitivity and 67 % specificity in diagnosis, 

their complex decision-making processes made it difficult for physicians 
to understand the rationale behind their conclusions [118]. 

The decision-making process of AI models is often difficult to 
explain, which can lead to questioning of predicted outcomes. In the 
medical field, healthcare professionals and patients need to understand 
how a model arrives at a particular conclusion in order to make 
informed medical decisions [119]. For example, in the diagnosis of HE, 
models need to provide a clear basis for prediction, rather than just a 
probability or risk score. To address this challenge, researchers are using 
tools such as Local Interpretable Model Agnostic Explanation (LIME) 
and SHapley Additive exPlanations (SHAP) to elucidate the model’s 
decision-making process. In a study, Chen et al. achieved 88.8 % diag
nostic sensitivity by analyzing clinical data using Entity-Aware Con
volutional Neural Networks [120]. 

However, even in this scenario, medical professionals still need to 
use LIME to interpret the predictive basis of the model to ensure the 
accuracy of the diagnosis. Although tools such as LIME and SHAP play a 
critical role in elucidating the decision-making process of AI models, 
these tools have their own limitations. They may not fully capture the 
complex internal logic of the model or, in some cases, provide in
terpretations that are too simplistic to meet clinical needs [121]. 

6.2. Data quality and representativeness issues 

Data in the healthcare domain are typically highly sensitive and 
private, posing significant challenges in obtaining high-quality and 

Table 2 
Utilization of imaging data as a benchmark in study construction.  

Reference Study design Number 
of 
Patients 

Model Study Content Main Findings Limitations 

Cai et al. 
2022 
[115] 

Single- 
institution 
retrospective 
study 

251 
patients 

Measurement of PD using 
SliceOmatic V5.0 software 

Prediction of HE post-TIPS 
using psoas major muscle 
density. 

PD < 51.24 HU increases the risk 
of HE better than MELD, ALBI 
and Child-Pugh scores. 

Includes only patients with 
bleeding esophagogastric 
fundal varices. 

Ronald 
et al. 
2020 
[114] 

Single- 
institution 
retrospective 
study 

145 
patients 

OsiriX software combined 
with R software to analyze 
bone, muscle and adipose 
tissue 

The impact of relative 
oligomyopenia and 
overobesity on post-TIPS 
mortality. 

Relative oligomyopenia and 
overobesity were identified as 
significant predictors of reduced 
survival after TIPS procedures. 

Absence of multiple measures to 
establish causality. 

Wang et al. 
2023 
[42] 

Single- 
institution 
retrospective 
study 

191 
patients 

Quantification of body 
composition by CT in 
cirrhotic patients using 
multivariate LR and 
nomogram analysis 

Evaluation of the 
predictive value of CT- 
measured body 
composition for post-TIPS 
HE in cirrhotic patients. 

Visceral fat area index (VFAI) in 
male patients and subcutaneous 
fat area index (SFAI) in female 
patients were significant 
predictors of HE after TIPS 
procedures. 

Lack of validation for SFAI and 
VFAI thresholds in an 
independent cohort; certain 
potential confounders were not 
considered in the analysis.  

Table 3 
A comprehensive summary of research pertaining to AI-enhanced assessment models.  

Reference Study Design Number of 
Patients 

Model Study Content Main Findings Limitations 

Yang et al. 
2022[17] 

Multicenter 
retrospective 
study 

276 patients Incremental 
complexity model 
(clinical +
biochemical +
imaging) 

Risk assessment of 
OHE after TIPS 

Sarcopenia increases risk of 
HE after TIPS 

Exclusion of patients with dominant 
HE, third lumbar vertebra skeletal 
muscle index measurement 
inconsistency may affect reliability. 

Yang et al. 
2021[78] 

Retrospective 
study with 
randomized 
groups 

185 patients 
(130 training, 
55 validation) 

LR analysis based on 
Combined clinical 
and imaging model 
(ModelCI) 

Predictive modeling of 
clinical and imaging 
features 

ModelCI is optimal, area 
under the curve (AUC) 
better than single model 

Small cohort size; subjective nature of 
the Child-Pugh score assessment. 

İnce et al. 
2023 
[116] 

Retrospective 
single-center study 

327 patients Support vector 
machine (SVM), LR, 
CatBoost 

Prediction of HE risk 
post-TIPS 

SVM, LR, and CatBoost 
exhibited prediction 
accuracies of 74 %, 75 %, 
and 73 % respectively; AUC 
about 0.83 

Retrospective study design posing a 
risk for potential bias; data imbalance 
addressed with synthetic minority 
over-sampling technique. 

Zhong et al. 
2021[19] 

Retrospective 
single-center study 

207 patients ANN model and 
prognostic 
nomograms 

Prediction of OHE, 
one-year mortality, 
and liver function 
abnormalities 

ANN model and nomogram 
had high predictive 
accuracy 

Selection bias inherent to retrospective 
studies; no external validation 
conducted; missing data regarding 
hepatic venous pressure gradient 
correlations with post-TIPS prognosis.  
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sufficiently representative datasets for training AI models. Issues such as 
incompleteness, heterogeneity, and potential bias in the data can affect 
the accuracy and reliability of these models [122]. As the data may come 
from specific patient populations or healthcare organizations, inherent 
biases may hinder the model’s performance across different patient 
populations or healthcare settings. For example, if a model is trained 
only on HE patient data from a specific region, it may not accurately 
predict the conditions of patients from other regions. Gianfrancesco MA, 
while building a predictive model using electronic health record (EHR) 
data, found that African American and Latino patients had less data in 
the EHR, leading to a bias in the disease risk model [123]. In addition, 
health care data are constantly updated as disease characteristics and 
treatments evolve, requiring regular model updates to maintain validity 
[124]. However, the process of regularly collecting, processing, and 
tagging new data is complex and resource-intensive. 

6.3. Model validation and reliability issues 

Many AI models lack adequate validation, particularly external 
validation, during the development phase. These models need to be 
tested in different environments and patient populations to ensure the 
broad applicability and reliability of their predictions [125]. For 
example, Ly et al. collected data from 207,487 patients in 13 clinical 
datasets and found that traditional training and evaluation methods 
overestimated model accuracy on external datasets by an average of 
about 20 % due to hidden dataset and data acquisition bias induced 
shortcut learning. In contrast, a new approach that estimates data 
acquisition biases and model shortcuts reduced the model’s perfor
mance prediction error to within 4 %, highlighting the importance of 
extensive validation in different settings [126]. 

In the medical field, model validation requires a rigorous clinical 
trial and approval process to ensure safety and efficacy. These processes 
are typically time-consuming and costly, potentially limiting the prac
tical application of such models [127]. In addition, AI models must have 
strong generalization capabilities to maintain high predictive accuracy 
across diverse patient populations and varying conditions [128]. Models 
that are overly dependent on specific patterns or features in the training 
data may underperform in real-world settings. In 2022, Khan et al. 
developed the adaptive boosting self-normalized multi-view convolu
tional neural network for lung cancer nodule detection. This model 
achieved accuracies of 92 % and 99 % on the Lung Image Database 
Consortium and Image Database Resource Initiative and Early Lung 
Cancer Action Program datasets, respectively, demonstrating robust 
generalization ability [129]. 

6.4. Special discussion: limitations of complex language generation 
models 

Complex language generation models, such as GPT, show great po
tential for processing large amounts of textual data. However, their 
complexity and opacity pose significant challenges in medical applica
tions [130]. Due to difficulties in interpreting their predictions, the 
output of these models may not be fully trusted in medical decision 
making, particularly when predicting the risk of complex conditions 
such as HE. For example, although GPT-3 demonstrated high accuracy in 
diagnosing common conditions such as upper respiratory tract in
fections, it failed to correctly identify the condition in one-third of cases 
involving complex scenarios [131]. In addition, Kanjee et al. found that 
GPT-3 and GPT-4 performed poorly in terms of diagnostic concordance 
in complex cases, with GPT-4 achieving the highest diagnostic concor
dance with the final diagnosis in only 39 % of cases [132]. 

These models suffer from significant biases and errors when dealing 
with complex medical scenarios, which limits their trustworthiness in 
practical clinical applications. The decision basis of complex linguistic 
generative models is often complex and difficult to understand, and the 
troubleshooting process is quite difficult, which increases the 

uncertainty of the model in practical applications [133]. In addition, 
these models are highly dependent on large amounts of high-quality 
data; if the data contain noise or bias, the models’ predictions may be 
inaccurate [134]. Regular maintenance is also required to maintain their 
predictive power, as healthcare data and knowledge are constantly 
updated. 

6.5. Necessary precautions 

To address the limitations of AI predictive models, several pre
cautions are necessary to improve their reliability in healthcare appli
cations. First, improving the interpretability of the model is critical. 
Studies have shown that this can be achieved by introducing interpre
tation tools, such as LIME or SHAP, and incorporating the expertise of 
healthcare professionals. These measures can translate the model’s 
prediction process into an easily understandable form, helping health
care professionals to understand the model’s decision-making rationale 
and performance in complex cases [135]. 

Second, it is important to ensure the diversity and representativeness 
of the data, which can enhance the predictive power of the model in 
different scenarios [136]. Multilevel validation strategies, including 
internal and external validation, can ensure model stability and gener
alizability [137]. Li developed a framework for quantifying uncertainty 
in complex systems, which improved model credibility by combining 
multiple levels of model calibration and validation methods [21]. 
Continuous involvement and feedback from experts help to adjust and 
optimize the model, thereby improving its clinical applicability [138]. 

Finally, a mechanism for regular model updates has been established 
to ensure that the model consistently reflects the latest medical data and 
knowledge, thereby maintaining the validity and reliability of pre
dictions [139]. These measures increase the value of AI modeling in 
medicine, particularly in the prediction and management of specific 
diseases such as HE. Ongoing updates and integration of current 
research strengthen the effectiveness of the model in clinical applica
tions, providing significant benefits to patient care and outcomes. 

7. Future directions and perspectives 

Scoring systems and methodologies are critical tools for assessing the 
risk of HE following TIPS procedures. These scoring frameworks incor
porate the analysis of biochemical parameters, imaging studies, and the 
integration of advanced computational strategies. Currently, AI algo
rithms play a pivotal role in various fields, including biomics and 
healthcare data analysis [140–148]. The fusion of AI techniques with 
biochemical and radiological data is increasingly recognized for its po
tential to improve the accuracy of diagnostic and risk stratification 
processes in the context of HE. 

7.1. Refinement of the scoring systems and the research trajectories 

Scoring systems such as MELD, Child-Pugh, ALBI, FIPS, and CONUT 
are critical in assessing patient status and predicting surgical risk. 
However, they have limitations; for example, they may not fully reflect 
the true complexity of a patient’s condition. Future research should 
focus on optimizing these systems to improve their predictive accuracy 
and clinical applicability. In particular, these scoring metrics need to be 
validated through multicenter studies to ensure their robustness and 
efficacy. In addition, the incorporation of clinical decision support 
frameworks can significantly improve model comprehensibility and 
utility. These advances are likely to improve the effectiveness of scoring 
systems in clinical practice and provide healthcare providers and pa
tients with a clearer understanding of these methodologies. As a result, 
more precise individualized treatment protocols can be facilitated. 
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7.2. The emerging role and future of AI in predicting HE post-TIPS 

The medical field has seen remarkable advances in AI, particularly in 
disease prediction and assessment [149–152]. Cutting-edge technolo
gies have not only made significant breakthroughs in algorithm devel
opment and computational power, but have also demonstrated 
extraordinary capabilities in managing complex medical data sets. AI 
applications in medical research include early-stage analyses of 
non-imaging data, as demonstrated by Hou et al. who used neural 
network models to predict survival in patients with liver disease [153]. 
This extends to more comprehensive analyses of imaging data, as 
demonstrated by the use of deep convolutional neural networks to 
analyze CT scan data by Wang et al. Their work autonomously de
termines muscle mass from CT images to predict clinical outcomes for 
individuals with liver disease [154]. The guide to deep learning in 
healthcare highlights the growing importance of AI technology in areas 
such as computer vision, natural language processing, and reinforce
ment learning [149]. At the same time, large-scale language models such 
as ChatGPT have shown promising capabilities for interpreting clinical 
data and assessing health conditions such as cirrhosis and hepatocellular 
carcinoma (HCC). Gilson et al. analyzed ChatGPT’s ability to answer 
applied knowledge test questions related to primary care, particularly 
those involving histological image analysis [155]. These investigations 
unfold the diverse utility of AI technology in healthcare paradigms 
[155–157]. Given the rapid and generative advancement of AI tech
nology, image interpretation capabilities have now been introduced into 
large-scale language models such as ChatGPT-4.0 and Google Bard, 
which can provide new insights into healthcare practices [158]. Mallio 
et al. investigated the use of these models in radiology [159]. These 
studies refine current diagnostic and therapeutic methods and offer new 
perspectives for medical research. 

Future research should prioritize the implementation of sophisti
cated ML and deep learning algorithms in the clinical management of 
HE. This includes, but is not limited to, developing AI paradigms that 
can process and interpret large, multidimensional medical data sets, 
exploring the use of AI in detecting early signs of HE progression, and 
assisting clinicians in developing personalized treatment plans. In 
addition, the application of advanced technologies such as reinforce
ment learning and natural language processing may provide new in
sights into the pathological mechanisms of HE and improve patient 
management. 

7.3. Relevant data repositories 

To improve the accuracy of predicting HE risk after TIPS procedures, 
and to maximize the use of deep learning and extensive language 
models, high-quality data and strong analytical frameworks are needed. 
In this context, open access datasets and models are valuable assets. Not 
only do they allow researchers to authenticate novel algorithms and 
methods, but they also foster collaboration and resource sharing within 
the international scientific community. Publicly available datasets 
relevant to cirrhosis are listed in Table 4, and open-source predictive 
models for liver pathologies are listed in Table 5. The use of openly 
available tools is critical to maintaining scientific integrity and accel
erating technological advances. 

8. Conclusions 

This review provides an in-depth examination of the myriad risk 
factors, assessment tools, and predictive approaches associated with HE 
after TIPS intervention. It examines the critical role of established 
scoring systems, including MELD, Child-Pugh, ALBI, FIPS, and CONUT, 
while acknowledging their limitations. The review highlights the urgent 
need for future research to refine these indices to improve their accuracy 
and applicability in the clinical setting. In addition, the document ex
plores the emerging role of AI in predicting HE post-TIPS, highlighting 

the importance of deep learning and ML in medical imaging analysis and 
clinical data management. These cutting-edge technologies promise new 
insights and methodologies for the prediction and management of HE, 
potentially revolutionizing clinical diagnostics and therapeutic 
approaches. 

In conclusion, this review addresses the multifaceted nature of HE 
after TIPS and serves as a roadmap for future investigations. It highlights 
the need to improve existing scoring systems and integrate AI technol
ogies. Future efforts should aim to improve our understanding in these 
areas, with the goal of increasing the accuracy of HE prediction after 
TIPS, refining patient management strategies, and ultimately improving 
patient quality of life and survival. 
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status, types of medications 
administered, demographic 
variables (age, gender), and 
clinical signs (ascites, 
hepatomegaly, spider nevi), 
edema presence, along with 
various hematological 
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https://archive.ics. 
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Liver Disorders Dataset 
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Encompasses predominantly 
hematological markers such 
as mean corpuscular 
volume, alkaline 
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transaminase, and gamma- 
glutamyl transferase. 

https://archive.ics.uc 
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Deep Learning Liver 
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(PADLLS) 
(LiTS-Liver Tumor 
Segmentation 
Challenge) 

An advanced deep learning 
architecture for automated 
hepatic CT scan 
segmentation, integrating 
2D and 3D convolutional 
networks to enhance 
delineation precision - 
notably efficacious in ascites 
cases. 

https://github. 
com/klin059/lits 

Duke Liver Dataset 
(DLDS) 

Contains data for abdominal 
MRI-based liver 
segmentation primarily 
targeting populations 
presenting with cirrhotic 
liver morphology. 

https://zenodo.org/r 
ecord/7774566  
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Table 5 
Models for liver disease prediction available in open source.  

Model Name Role Address 

Liver Disease Prediction 
Using Various Classifiers 

Implementation of diverse 
ML classifiers on a dataset 
comprising liver disease 
patient records to 
prognosticate liver disease 
manifestation. 

https://github.com/a 
lekha1234/Liver_Dis 
ease_Prediction 

Imaging Histology Toolkit 
for Liver Disease 
Analysis 

An open-source Python 
toolkit that facilitates the 
extraction of imaging 
histology features from 
medical scans, applicable 
to the analysis of liver 
cirrhosis in images. 

https://github. 
com/AIM-Harvard/py 
radiomics 

ML for Liver Disease 
Prediction 

A ML classifier developed 
specifically to liver 
diseases. 

https://github.com/ch 
ollette/Liver- 
Disease-Classification- 
Azure-ML-Capstone-Pr 
oject 

Liver Disease Prediction Predicts liver disease. https://github.com 
/DPsalmist/Liver-Dies 
ease-Prediction 

Predictive Modeling for 
Pharmacologic Liver 
Injury 

Utilizes a binary 
classification framework to 
forecast clinically 
significant drug-induced 
liver injury based solely on 
molecular structure 
characteristics of 
pharmaceutical agents. 

https://github. 
com/cptbern/QSAR_ 
DILI_2019 

Multilayer Perceptron and 
XGBoost for Liver 
Disease Prediction on 
the Indian Liver Patient 
Dataset (ILPD) Dataset 

Application of advanced 
ML techniques, namely 
multilayer perceptron and 
XGBoost algorithms, on the 
ILPD to predict liver 
disease outcomes. 

https://github. 
com/saiivarma/Liver 
-Disease-Prediction  

X. Xu et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref1
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref1
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref1
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref2
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref2
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref2
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref3
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref3
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref3
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref4
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref4
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref5
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref5
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref5
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref6
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref6
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref6
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref7
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref8
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref8
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref9
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref9
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref9
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref10
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref10
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref10
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref11
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref11
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref11
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref12
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref12
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref12
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref13
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref13
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref13
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref14
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref14
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref14
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref15
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref15
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref16
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref16
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref17
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref17
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref17
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref18
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref18
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref18
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref19
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref19
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref19
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref19
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref20
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref20
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref20
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref21
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref21
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref21
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref22
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref22
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref22
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref23
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref23
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref23
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref24
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref24
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref24
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref25
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref25
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref25
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref25
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref25
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref26
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref26
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref26
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref26
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref27
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref27
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref27
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref28
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref28
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref28
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref29
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref29
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref30
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref30
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref30
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref31
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref31
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref31
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref32
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref32
http://refhub.elsevier.com/S2001-0370(24)00242-3/sbref32
https://github.com/alekha1234/Liver_Disease_Prediction
https://github.com/alekha1234/Liver_Disease_Prediction
https://github.com/alekha1234/Liver_Disease_Prediction
https://github.com/AIM-Harvard/pyradiomics
https://github.com/AIM-Harvard/pyradiomics
https://github.com/AIM-Harvard/pyradiomics
https://github.com/chollette/Liver-Disease-Classification-Azure-ML-Capstone-Project
https://github.com/chollette/Liver-Disease-Classification-Azure-ML-Capstone-Project
https://github.com/chollette/Liver-Disease-Classification-Azure-ML-Capstone-Project
https://github.com/chollette/Liver-Disease-Classification-Azure-ML-Capstone-Project
https://github.com/chollette/Liver-Disease-Classification-Azure-ML-Capstone-Project
https://github.com/DPsalmist/Liver-Diesease-Prediction
https://github.com/DPsalmist/Liver-Diesease-Prediction
https://github.com/DPsalmist/Liver-Diesease-Prediction
https://github.com/cptbern/QSAR_DILI_2019
https://github.com/cptbern/QSAR_DILI_2019
https://github.com/cptbern/QSAR_DILI_2019
https://github.com/saiivarma/Liver-Disease-Prediction
https://github.com/saiivarma/Liver-Disease-Prediction
https://github.com/saiivarma/Liver-Disease-Prediction


Computational and Structural Biotechnology Journal 24 (2024) 493–506

504

[33] Tapper EB, Zhao L, Nikirk S, et al. Incidence and Bedside Predictors of the First 
Episode of Overt Hepatic Encephalopathy in Patients With Cirrhosis. J Am Coll 
Gastroenterol 2020;115(12):2017–25. 

[34] Riggio O, Nardelli S, Moscucci F, et al. Hepatic Encephalopathy After 
Transjugular Intrahepatic Portosystemic Shunt. Clin Liver Dis 2012;16(1): 
133–46. 

[35] Vilstrup H, Amodio P, Bajaj J, et al. Hepatic encephalopathy in chronic liver 
disease: 2014 Practice Guideline by the American Association for the Study Of 
Liver Diseases and the European Association for the Study of the Liver. 
Hepatology 2014;60(2):715–35. 

[36] Gairing SJ, Schleicher EM, Galle PR, et al. Prediction and prevention of the first 
episode of overt hepatic encephalopathy in patients with cirrhosis. Hepatol 
Commun 2023;7(4):e0096. 

[37] Rowley MW, Choi M, Chen S, et al. Refractory Hepatic Encephalopathy After 
Elective Transjugular Intrahepatic Portosystemic Shunt: Risk Factors and 
Outcomes with Revision. Cardiovasc Interv Radiol 2018;41:1765–72. 

[38] Gairing SJ, Müller L, Kloeckner R, et al. Review article: post-TIPSS hepatic 
encephalopathy—current knowledge and future perspectives. Aliment Pharmacol 
Ther 2022;55(10):1265–76. 

[39] Zhu R, Liu L, Zhang G, et al. The pathogenesis of gut microbiota in hepatic 
encephalopathy by the gut-liver-brain axis. Biosci Rep 2023;43(6):BSR20222524. 

[40] Elsaid MI, Rustgi VK. Epidemiology of Hepatic Encephalopathy. Clin Liver Dis 
2020;24(2):157–74. 

[41] Wang X, Luo X, Yang L. Risk Factors for Hepatic Encephalopathy After 
Transjugular Intrahepatic Portosystemic Shunt: Beyond Stent Diameter. Dig Dis 
Sci 2021;66:4568–9. 

[42] Wang C, Teng Y, Gao J, et al. Low adipose tissue index as an indicator of hepatic 
encephalopathy in cirrhotic patients following transjugular intrahepatic 
portosystemic shunt. Abdom Radiol 2023;48(4):1454–67. 
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