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High-density lipoproteins (HDLs) are unique in that they play an important role in the
reverse cholesterol transport process. However, reconstituted HDL (rHDL) infusions
have demonstrated limited beneficial effect in clinical practice. This is perhaps a
consequence of the limited cholesterol efflux abilities of atheroma macrophages due
to decreased expression of cholesterol transporters in advanced atheromas and
following rHDL infusion treatment. Thus, we propose that a combination therapy of
rHDL and a liver X receptor (LXR) agonist could maximize the therapeutic benefit of
rHDL by upregulating ATP-binding cassette transporters A-1 (ABCA1) and ATP-
binding cassette transporter G-1 (ABCG1), and enhancing cholesterol efflux to
rHDL. In macrophages, rHDL downregulated the expression of ABCA1/G1 in a
dose- and rHDL composition-dependent manner. Although LXR agonist,
T0901317 (T1317), upregulated the expression of ABCA1 and ABCG1, the drug
itself did not have any effect on cholesterol efflux (6.6 ± 0.5%) while the combination of
rHDL and T1317 exhibited enhanced cholesterol efflux from [3H]-cholesterol loaded
J774A.1 macrophages (23.3 ± 1.3%). Treatment with rHDL + T1317 significantly
reduced the area of aortic plaque in ApoE−/− mice compared to PBS treated control
animals (24.16 ± 1.42% vs. 31.59 ± 1.93%, p < 0.001), while neither rHDL nor T1317
treatment alone had a significant effect. Together, we show that rHDL paired with an
LXR agonist can induce a synergetic effect in reducing atheroma burden. This synergy
could lead to lower overall effective dose for both drugs, potentially overcoming the
existing barriers in clinical development and renewing pharmaceutical interest in these
two drug classes.
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INTRODUCTION

Atherosclerotic plaques are characterized by the accumulation of
abnormal amounts of cholesterol in the artery wall. Reverse
cholesterol transport (RCT) is a protective mechanism by
which the body removes excess cholesterol from peripheral
tissues, including the atherosclerotic plaques. HDL plays a
primary role in all stages of RCT: 1) as cholesterol acceptors
for cholesterol efflux from macrophages; 2) remodeling and
delivery of cholesterol to the liver; and 3) releases cholesterol
to the liver for the final excretion into bile and feces. Recent
population studies established the inverse relationship between
cholesterol efflux capacity and risk of coronary artery disease
(CAD) (Khera et al., 2011; Rohatgi et al., 2014), suggesting that
enhancing this process may represent a promising strategy to
reduce atherosclerotic plaque burden and subsequent
cardiovascular events.

Reconstituted HDL (rHDL), such as CSL-112, ETC-216 and
CER-001, is an intriguing and controversial class of drugs in
clinical development for treatment of CAD (Tardif et al., 2009),
stemming from decades of evidence that rHDL and HDL-
mimicking nanoparticles are capable of reducing
atherosclerosis burden in animal models (Badimon et al.,
1990; Shaw et al., 2008; Amar et al., 2010; Bielicki et al.,
2010; Di Bartolo et al., 2011; Duivenvoorden et al., 2014;
Sanchez-Gaytan et al., 2015; Son et al., 2016). Designed to
mimic the atheroprotective function of endogenous pre-β HDL
particles, rHDL is composed of apolipoprotein A-I (ApoA-I) or
ApoA-I mimetic peptides complexed with phospholipids to
form 8–10 nm nanodiscs (Kuai et al., 2016). They are shown to
be capable of rapid mobilization of cholesterol from periphery
to plasma after systemic dosing and well tolerated in patients.
Intravascular ultrasound imaging studies shown the ability of
4–5 infusions of rHDL to reduce atheroma volume in CAD
patients (Khan et al., 2002; Nissen et al., 2003; Miles et al., 2004;
Tardif et al., 2007; Tardif et al., 2014). Based on these
encouraging data, a 17,400-patient phase three trial (AEGIS-
II) was initiated for CSL-112 to show possible reduction of
major adverse cardiovascular events in subjects with acute
coronary syndrome (Krause and Remaley, 2013; CSL
Behring, 2018). Although a dose-dependent increase in
plasma cholesterol efflux capacity in patients with stable
atherosclerotic disease was observed following
administration of CSL-112 (Gille et al., 2014; Gille et al.,
2018), there was no clear dose-response relationship for
rHDL infusions, with similar plaque reduction at low and
high doses for ETC-216 (Nissen et al., 2003) and no
atheroma regression for high doses of CER-001 (Tardif
et al., 2014). This lack of dose-response may be a result of
decreased expression of ATP-binding cassette transporter A1
and G1 (ABCA1 and ABCG1) following CER-001 rHDL
treatment (Tardy et al., 2015).

The atheroprotective properties of endogenous HDL are
largely reliant on its ability to efflux cholesterol from ABCA1/
G1 transporters on the plasma membrane of atheroma foam
cells and subsequently shuttle excess cholesterol to the liver
for excretion (Remaley et al., 2008). Yet, under pathological

CAD conditions, ABCA1 protein levels in atheroma are often
reduced (Albrecht et al., 2004) and the ability of endogenous
HDL to efflux cholesterol is impaired (Huang et al., 2014;
Rosenson et al., 2015; Vaisar et al., 2015). rHDL infusions are
designed to increase concentrations of functional cholesterol
acceptors in the plasma, however they have been shown to
further reduce ABCA1/G1 (Schmitz et al., 1999; Tardy et al.,
2015). Decreased expression of ABCA1 has also been
observed in advance plaques with administration of statins
(Zanotti et al., 2006; Wong et al., 2008). ABCA1/G1
expression is regulated at the transcriptional level by liver
X receptor (LXR), and several orally active small molecule
LXR agonists were developed for treatment of CAD, including
T0901317 (Tularik) (Katz et al., 2009; Hong and Tontonoz,
2014). For therapeutic efficacy, LXR agonists rely on
endogenous HDL to serve as a cholesterol acceptors,
although HDL levels and functionality are both reduced in
CAD patients (Khera et al., 2011; Rohatgi et al., 2014).
Clinical development of this drug class is also hindered by
significant off-target toxicity (Katz et al., 2009; Kirchgessner
et al., 2016), owing largely to activity of the LXRα isoform in
the liver (Oosterveer et al., 2010), inducing hepatic
lipogenesis and hypertriglyceridemia via activation of sterol
regulatory element-binding protein-1 gene (SREBP-1), fatty
acid synthase (FASN) and Cytochrome P450 Family 7
Subfamily A Member 1 (CYP7A1) (Schultz et al., 2000; Im
and Osborne, 2011). Efforts are currently underway to
develop agonists more specific to the LXRβ isoform to
reduce toxicity seen with first-generation dual agonists
(Kirchgessner et al., 2015; Kick et al., 2016; Kirchgessner
et al., 2016; Zheng et al., 2016). Yet, the issue of reduced
and/or dysfunctional HDL acceptors in CAD patients still
limits the utility of this drug class. Hence, co-administration
of rHDL and LXR agonist could serve as a synergetic
treatment for atherosclerosis by addressing both ABCA1/
G1 expression and cholesterol acceptor levels.

In this study, we propose to investigate the potential
synergetic effect of co-administering rHDL and LXR
agonist on atherosclerosis inhibition. We hypothesize that
a potential synergy between two drugs stems from the
abilities of 1) LXR agonists to increase expression of key
cholesterol transports ABCA1 and ABCG1 in foam cells, 2)
rHDL to act as a functional cholesterol acceptor, taking up
excess cholesterol via interactions with ABCA1/G1 and 3)
LXR agonist to overcome rHDL-induced reduction of
ABCA1/G1 expression. Furthermore, a synergetic effect
could potentially reduce the dose of rHDL and LXR
agonist required for therapeutic efficacy, leading to a
reduction in unwanted side effects and a renewed interest
in clinical development of these two drug classes.

MATERIALS AND METHODS

Reagents
22A peptide (PVLDLFRELLNELLEALKQKLK) was synthesized
by Genscript (Piscataway, NJ) and purity was determined to be
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>95% by HPLC. Egg sphingomyelin (SM), 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine (DPPC), and 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine (POPC) were purchased from Avanti
Polar Lipids (Alabaster, AL) and Nippon Oil and Fat (Osaka,
Japan). T0901317 (T1317), was purchased from Cayman
Chemical (Ann Arbor, MI). Anti-ABCA1 (ab18180) mouse
monoclonal antibody and secondary antibody goat-anti-mouse
IgG H + L (HRP) (ab205719) were purchased from Abcam
(Cambridge, United Kingdom). Anti-beta-ACTIN rabbit
antibody (#4970) and HRP-conjugated goat anti-rabbit
secondary antibody (#7074) were purchased from Cell
Signaling Technology (Danvers, MA).

Reconstituted High-Density Lipoprotein
Preparation
Discoidal ETC-642 mimicking rHDL was made by co-
lyophilization followed by thermal cycling, as previously
described (Di Bartolo et al., 2011; Schwendeman et al.,
2015). Briefly, 22A peptide, SM and DPPC were dissolved in
glacial acetic acid at a weight ratio of 1:1:1. The resulting
solution was frozen and freeze-dried overnight. The
lyophilized powder was reconstituted in PBS. The resulting
suspension was subjected to heat/cool cycles above and below
the lipid Tm (5 min heating at 55°C and 5 min cooling at room
temperature) until a clear solution of rHDL nanoparticles was
formed. The rHDL solution was adjusted to pH 7.4 and 0.2 µm
sterile filtered.

ApoA-I containing rHDLs were prepared by a thin-film
method, with protein and lipid compositions similar to those
reported for clinically tested rHDLs (Shaw et al., 2008; Andrews
et al., 2017). Briefly, lipids (SM or POPC) were dissolved in
chloroform and dried with nitrogen gas. The resulting lipid film
was hydrated by a solution of ApoA-I to achieve the desired
weight ratio of ApoA-I:lipids (1:1.5 ApoA-I:POPC for “CSL-112
like,” and 1:2.7 ApoA-I:SM for “CER-001 like”). The resulting
mixture was vortexed, followed by brief (<30 s) bath sonication in
order to fully disperse the lipid film. The solution then underwent
three heat/cool cycles, as described above, to form a clear,
homogeneous solution of rHDL and sterilized by 0.22 µm
filtration. All rHDL concentrations and dosages are expressed
in terms of 22A peptide or ApoA-1 protein concentration.

Lipid emulsion controls were prepared by dissolving lipids
(SM, DPPC, or POPC) in chloroform and dried with nitrogen gas.
The resulting lipid films were rehydrated in PBS, vortexed, briefly
sonicated (<30 s), and subject to three heat/cool cycles above and
below the lipid transition temperature.

Reconstituted High-Density Lipoprotein
Characterization
Quality of rHDL particles was assessed using the following
analytical techniques, and is reported in (Supplementary
Table SIII). Size distribution was determined by dynamic light
scattering on aMalvern Zetasizer Nano ZSP (Westborough, MA),
and particle purity was determined by gel permeation
chromatography with UV detection at 220 using a Tosoh TSK

gel G3000SWxl column (Tosoh Bioscience, King of Prussia, PA)
on a Waters HPLC (Schwendeman et al., 2015).

Cell Culture
J774A.1 macrophages were purchased from ATCC (Manassas,
VA) and maintained in Dulbecco’s Modified Eagle’s Medium
containing 10% fetal bovine serum (FBS) and 100 U/mL
penicillin/streptomycin.

Western Blot
Cells were switched to DMEM containing 1% FBS overnight prior
to treatment. Then, cells were treated with rHDL (100 μg/ml),
T1317 (1 μM), PBS, or rHDL + T1317 for 24 h. After treatment
cells were washed twice with ice cold PBS and lyzed in
radioimmune precipitation assay buffer containing cOmplete™
mini, EDTA-free protease inhibitor cocktail (Sigma). Protein
lysates (30 μg/lane) were separated by 7.5% SDS-polyacrylimide
gel and transferred to 0.45 μm PVDF membrane using a Bio-Rad
semi-dry transfer system. ABCA1 expression was determined by
Western Blotting using antibodies for ABCA1 (1:2,000) and beta-
ACTIN (1:1,000). Signal was detected using horseradish
peroxidase-conguated secondary antibodies (Cell Signaling
Technologies) and ECL (Amersham Biosciences).

Cholesterol Efflux
Cholesterol efflux studies were performed, as described
previously (Guo et al., 2015; Schwendeman et al., 2015). J774.1
macrophages (ATCC, Manassas, VA) were labeled with 1 μCi/ml
[1,2-3H]-cholesterol (Perkin Elmer, United States) in Dulbecco’s
Modified Eagle’s Medium containing 0.5% fatty acid-free bovine
serum albumin (BSA) and 5 μg/ml ACAT inhibitor Sandoz 58-
035 (Sigma) for 24 h. Cells were then washed twice with PBS and
equilibrated for 24 h in DMEM containing 0.5% BSA. Then cells
were washed and treated with PBS, rHDL (50 μg/ml), T1317
(1 μM), or rHDL (50 μg/ml) + T1317 (1 μM) for 12 h. Medium
was collected and cells were lyzed and collected. Efflux in cellular
and media fractions was quantified by liquid scintillation and
expressed as a percentage of total cell [3H]-cholesterol content.
Nonspecific efflux to the media is reflected in the PBS control
groups.

Quantitative Real-Time PCR
Cells were switched to DMEM containing 1% FBS overnight prior
to treatment. Then, cells were treated with rHDL (1, 10, or 100 μg/
ml based on ApoA-I or 22A peptide), T1317 (1 μM), PBS or rHDL +
T1317 for 24 h. At indicated time points post-rHDL treatment, cells
were washed twice with cold PBS and scraped and collected in lysis
buffer. Total RNA was purified with the GeneJET RNA Purification
Kit (Thermo Scientific), followed by cDNA synthesis with the
SuperScript III First-Strand Synthesis System kit (Invitrogen). For
mouse tissue, livers or aortas were homogenized and RNA isolated
using TRIzol® reagent (ThermoFisher). qPCR was carried out using
Power SYBR Green Master Mix (Applied Biosystems) and primers
for mouse Abca1, Abcg1, Fasn, and Srebp1 (Supplementary Table
SII). Relative abundance of mRNAwas normalized to the geometric
average of housekeeping controls 18sRNA and Ppia.
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FIGURE 1 | Effect of reconstituted high-density lipoprotein (rHDL) on ATP-binding cassette transporter A-1 (ABCA1) and ATP-binding cassette transporter G-1
(ABCG1) expression and rescue by LXR liver X receptor (LXR) agonists in vitro and in vivo. J774A.1 murine macrophages treated for 24 h with clinically-mimicking rHDLs
CER-001 [apolipoprotein A-I (ApoA-I)-sphingomyelin (SM) 1:2.7 w/w], CSL-112 [ApoA-I-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 1:1.5 w/w], or ETC-
642 [22A-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-SM 1:1:1 w/w] exhibit decreased levels of ABCA1 (A) and ABCG1 (B) mRNA relative to PBS
treated controls, as measured by RT-qPCR. Effect of rHDL composition on ABCA1 (C) and ABCG1 (D) expression was probed by incubating J774A.1 cells for 24 h with
rHDL prepared from either 22A peptide or ApoA-I protein complexed with SM, DPPC, or POPC lipids (all at 1:2 protein:lipid ratio by weight). Effect of adding LXR agonist
on ABCA1 (E) and ABCG1 (F) expression in macrophages treated with different combinations of rHDL (100 μg/ml) or T1317 (1 µM) for 24 h). [3H]-cholesterol efflux to
sHDL acceptor (50 μg/ml) in J774A.1 cells incubated with or without T1317 (1 µM) for 24 h (G). ABCA1 protein levels in J774A.1 macrophages were determined by
Western Blot following 24 h incubation rHDL (100 μg/ml 22A) in the presence/absence of T1317 (1 µM) (H). rHDL concentration is expressed in terms of peptide or
protein. Data represented as mean ± SEM. *p < 0.05, **p < 0.01 relative to PBS control or as otherwise indicated.
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Anti-Atherosclerosis Study in ApoE−/− Mice
ApoE−/− male mice were purchased from Jackson Laboratories
(Bar Harbor, ME) and housed at 22 ± 1°C in a 12:12-h light-dark
cycle. All animal work was performed in accordance with the
guidelines set by the University ofMichigan Animal Care and Use
Committee. ApoE−/− mice (7–9 weeks old) were placed on a

high-fat/high-cholesterol diet (HFHC, 21% fat, 34% sucrose, and
0.2% cholesterol, Harlan, TD. 88137) for 7 weeks prior to dosing,
and were maintained on the HFHC diet for the duration of the
study. Mice were randomly assigned into groups (n � 8/group) to
receive either vehicle (PBS), rHDL (30 mg/kg), T1317 (1.5 mg/kg)
or rHDL (30 mg/kg) + T1317 (1.5 mg/kg) three times per week

FIGURE 2 | Reconstituted high-density lipoprotein (rHDL)/T1317 inhibition of atherosclerosis progression in ApoE−/− mice. ApoE −/− mice were fed a high fat/high
cholesterol diet to induce atherosclerosis prior to treatement. At week 7, animals were dosed by I.P. injection three times weekly for a duration of 6 weeks with PBS, rHDL
(30 mg/kg), rHDL + T1317 (30 mg/kg rHDL and 1.5 mg/kg T1317), or T1317 (1.5 mg/kg). At the end of treatment mice were sacrificed and aortas were fixed and
sectioned for plaque area visualization by Oil Red O staining (A). Plaque area was quantified using ImageJ (B). Liver safety biomarkers in ApoE−/− mice following
6 weeks of anti-atherosclerosis therapy with PBS, rHDL (30 mg/kg), rHDL + T1317 (30 mg/kg + 1.5 mg/kg, respectively), or T1317 (1.5 mg/kg) were measured. Gene
expression of sterol response element binding protein 1 and fatty acid synthase were determined in liver lysates (C,D) and activity of liver enzymes alanine
aminotransferase and aspartate aminotransferase were determined in the plasma (E,F). ATP-binding cassette transporter A-1 (ABCA1) and ATP-binding cassette
transporter G-1 (ABCG1) expression were measured in the aortas (G,H) and livers (I,J) 48 h after administration of the final treatment dose. Data are presented as
mean ± SEM. *p < 0.05, ***p < 0.001.
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for 6 weeks by I.P. injection. 48 h following the final dose, mice
were sacrificed and perfused with 10% normal buffered formalin
to fix tissues. Aorta roots were micro-dissected, embedded in
OCT, and frozen in liquid nitrogen for analysis of lesion area. The
atherosclerotic lesions in the aortic sinus were analyzed in three
different regions, each separated by 80 μm. Lesions were
visualized by Oil Red O staining and lesion area quantified
using ImageJ software. Livers and aortas were collected and
flash frozen for use in downstream PCR applications. Plasma
was collected following a terminal blood draw and analyzed for
total cholesterol (TC), triglycerides (TG), HDL-C, LDL-C,
alanine transaminase (ALT), and aspartate transaminase (AST)
by the University of Michigan Clinical Chemistry Core.

Statistical Analysis
All experiments were performed in triplicate. Data are presented
as means ± SEM. Statistical significance between groups was
assessed by one-way ANOVA with Tukey’s correction for
multiple comparisons and p < 0.05 were considered
significant. All groups were determined to be normally
distributed by Shapiro-Wilk and Kolmogorov-Smirinov
normality tests (p < 0.05).

RESULTS

Reconstituted High-Density Lipoprotein
Affects ATP-Binding Cassette Transporter
A-1 and ATP-Binding Cassette Transporter
G-1 Gene Expression in vitro
As rHDL composition is known to significantly affect its
cholesterol efflux capacity (Davidson et al., 1995;
Schwendeman et al., 2015) and possibly ABCA1/ABCG1
expression, we prepared rHDL mimicking three clinically
tested products, i.e. CER-001, CSL-111 and ETC-642 to obtain
clinically relevant data. The rHDL formulations varied in both
lipid and protein/peptide composition: CER-001 (ApoA-I:SM, 1:
2.7 w/w), CSL-112 (ApoA-I:POPC, 1:1.5 w/w), and ETC-642
(22A:DPPC:SM, 1:1:1 w/w/w). Using J774A.1 macrophages
treated for 24 h with rHDL, we show that increasing
concentrations of rHDL decreased mRNA expression of both
ABCA1 and ABCG1 relative to PBS (Figures 1A,B). We also
show that rHDL composition affects the magnitude of reduction
for ABCA1 expression, with 100 μg/ml treatment reducing
ABCA1 expression >85% for CER-001 “like” rHDL, >60% for
ETC-642, >45% for CSL-112 “like” rHDL (Figure 1A). A similar
trend was observed for ABCG1 expression (Figure 1B).

In attempt to identify the driving component of rHDL
responsible for downregulation of ABCA1/G1 mRNA, we
incubated macrophages for 24 h with either 22A peptide,
ApoA-I protein, or lipid emulsions of SM, DPPC, or POPC.
Neither 22A peptide nor ApoA-I protein induced significant
changes in ABCA1 or ABCG1 (Supplementary Figures
SIA,B), indicating that rHDL lipid composition may have a
greater influence on gene expression. Consistent with previous
reports (Langmann et al., 1999; Akopian et al., 2015), we noticed

significant reductions in macrophages treated with lipids alone,
with slightly stronger responses elicited for SM and DPPC
compared to POPC (Supplementary Figures SIC,D).
However, reduction in ABCA1 and ABCG1 mRNA were
higher overall for rHDL particles rather than any individual
component alone.

We then investigated how whole rHDL particles prepared
from either 22A peptide or ApoA-I and lipids SM, DPPC, or
POPC influenced ABCA1 and ABCG1 mRNA expression in the
same in vitro system. In this case, rHDL was prepared similarly
for both 22A and ApoA-I based formulations, holding the
peptide/protein to lipid ratio at 1:2 by weight for all
formulations. Similar to the results seen for our clinically-
mimicking rHDLs, both ApoA-I and 22A-based rHDL at
100 μg/ml were able to reduce relative expression of ABCA1
and ABCG1, with no obvious differences between 22A vs.
ApoA-I or SM vs. DPPC vs. POPC under the tested
conditions (Figures 1C,D).

Reconstituted High-Density
Lipoprotein-Liver X Receptor Agonist
Co-Administration Synergistically
Increases ATP-Binding Cassette
Transporter A-1 and ATP-Binding Cassette
Transporter G-1 Expression and Increases
Cholesterol Efflux
Given our hypothesis that co-administration of rHDL and an
LXR agonist could act in synergy to increase cholesterol
transporter expression and maximize cholesterol efflux, we
decided to test the LXR agonist, T1317, in vitro for its ability
to upregulate ABCA1 and ABCG1 expression in the presence of
rHDL. We chose ETC-642, a peptide-based rHDL, as our model
rHDL at a concentration of 100 μg/ml, as this concentration
exhibited maximal inhibition of ABCA1 and ABCG1
expression in the earlier experiments. J774A.1 macrophages
were treated for 24 h with PBS, rHDL (100 μg/ml) T1317
(1 μM), or rHDL + T1317 at 100 μg/ml and 1 μM, respectively.
As seen in Figure 1E, the combination of rHDL and T1317
increased ABCA1 mRNA expression >3-fold compared to PBS-
treated controls (p < 0.001). This trend also held true for ABCG1
expression (Figure 1F). Notably, the combination of rHDL and
T1317 overcame rHDL-induced downregulation and even
increased expression levels of ABCA1/G1 in a manner similar
to T1317 alone (Supplementary Figure SII).

To examine the effect of combination treatment on ABCA1
protein levels, we treated J774A.1 macrophages for 24 h with PBS,
rHDL (100 μg/ml), T1317 (1 μM), or rHDL + T1317 (100 μg/ml
and 1 μM, respectively) and performed Western Blot. Aligning
with our previous data, treatment with rHDL alone diminished
ABCA1 protein levels, while the addition of T1317 restored
protein levels to that similar to PBS and free T1317-treated
controls (Figure 1H). The addition of T1317 also led to an
increase in TC efflux over rHDL alone (23.3 ± 1.3% vs. 17.6 ±
0.5%, respectively), while T1317 alone (6.6 ± 0.5%) had little
measurable efflux (Figure 1G).
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Reconstituted High-Density Lipoprotein/
T1317 Combination Therapy Inhibits
Atherosclerosis Progression in vivo
While our findings in vitro suggest that rHDL + T1317
combination therapy can upregulate ABCA1 and ABCG1 at
the mRNA and protein level as well as increase TC efflux
when compared to either drug alone, we wanted to confirm
whether these findings confer a greater anti-atherosclerosis effect
in vivo. To do this, ApoE−/− mice were fed a HFHC diet for
7 weeks prior to the start of dosing in order to establish
atherosclerosis. Then, mice were randomized to receive PBS,
rHDL (30 mg/kg), T1317 (1.5 mg/kg), or rHDL + T1317
combination therapy (injected into two sites with rHDL at
30 mg/kg and T1317 at 1.5 mg/kg, respectively) via i.p.
injection 3×/week for 6 weeks while maintained on the HFHC
diet. Mice receiving rHDL + T1317 combination therapy had a
marked reduction in total plaque area compared to PBS controls
(24.16 ± 1.42% vs. 31.59 ± 1.93%, respectively), assessed by Oil
Red O staining at the aortic root (Figures 2A,B). There were no
significant changes in plaque volume for either rHDL (28.30 ±
1.78%) or free T1317 (28.30 ± 1.39%) groups compared to
PBS-treated controls, supporting our hypothesis that rHDL +
T1317 combination therapy could act in synergy to maximize the
anti-atherosclerosis effect over either drug individually. There
were no measurable differences in aorta or liver ABCA1 or
ABCG1 mRNA expression between any of the groups (Figures
2G–J), as the final analyses were done 48 h after the final dose.

In addition to ABCA1 and ABCG1, LXR also regulates
transcription of cholesterol biogenesis genes, and the
associated side-effects have hindered LXR agonist clinical
progress. We found T1317 treatment significantly increased
the expression of FASN and sterol-response-element binding
protein 1 (Srebp1). Mice receiving rHDL + T1317
combination therapy had slightly reduced expression of Srebp1
compared to T1317-only treated mice (p < 0.05) (Figures. 2C,D)
but were still elevated compared to PBS and rHDL only treated
groups. No significant differences in ALT or AST activity between
any of treatment groups (Figures 2E,F). There were no significant
differences in plasma lipids (TC, HDL-C, LDL-C, TG) between
any of the treatment groups likely because they were measured
48 post-dose, after rHDL-mobilized cholesterol is eliminated
(Supplementary Table SI).

DISCUSSION

Numerous studies have demonstrated the safety various rHDL
particles and their abilities to alter atherosclerotic plaque
composition and decrease the overall plaque burden (Nissen
et al., 2003; Tardif et al., 2007; Di Bartolo et al., 2011; Keyserling
et al., 2011), yet, there are many potential reasons why rHDL-
infusion therapies failed to show efficacy in larger phase two
trials (Tardif et al., 2014; Nicholls et al., 2018). In a likely
attempt for the cell to limit further cholesterol loss,
decreased expression of ABCA1/G1 transporters after high
dose rHDL infusions is observed. However, this obstructs the

first step of RCT, leading to reduced rHDL-mediated cholesterol
efflux from foam cells in the atherosclerotic plaques upon
subsequent dosing. ABCA1 and ABCG1 are critical enablers
of rHDL’s anti-atherosclerotic function. Here, we show for the
first time a synergy between rHDL and LXR agonist therapies,
stemming from the dual effects: 1) LXR agonist increases
cholesterol transporters expression and cholesterol efflux in
macrophages; 2) rHDL works as cholesterol acceptor.
Combined therapy will make up for rHDL-triggered
downregulation of cholesterol transporters in macrophages,
allowing subsequent rHDL infusions to achieve maximal
efficacy.

Infusion of CER-001 did not promote regression of coronary
atherosclerosis in statin-treated patients with ACS and high
plaque burden (Nicholls et al., 2018), which may be due to
the strong (50%) downregulation of ABCA1 mRNA and
membrane protein expression at higher doses of CER-001
(Tardy et al., 2015). In this study, we first compared the
effects of clinically relevant rHDLs on the expression of
ABCA1/ABCG1 and found dose-dependent down regulation
of ABCA1/ABCG1 in the presence of all types of rHDL. We also
observed that CER-001 showed the greatest effect on ABCA1/
ABCG1 reduction, ETC-642 having slightly less, and CSL-112
having the least reduction of the three. This may be attributed to
the higher cholesterol efflux capacity of these rHDLs, as SM-
containing rHDL has been shown to induce greater cholesterol
efflux from foam cells than POPC-based rHDLs due to its higher
cholesterol binding affinity (Davidson et al., 1995; Yancey et al.,
2000; Kučerka et al., 2010; Ma et al., 2012; Schwendeman et al.,
2015). In addition, CER-001 has the highest lipid-to-protein
ratio (2.7:1 w/w), followed by ETC-642 (2:1) and CSL-112 (1.5:
1), which may also result in a higher cholesterol acceptor
capacity. The fact that the downregulation of ABCA1/ABCG1
was also observed for CSL-112 is of particular importance, as
this rHDL product is currently undergoing a large phase three
study (AEGIS-II). Failure of this study will likely constitute the
end of rHDL therapeutic development, while success will
stimulate the interest in rHDL. While CSL-112-like rHDL
inhibited ABCA1/ABCG1 to a lesser extent than CER-001-
like in our study, the CSL-112 dose used in AEGIS-II is
about 10-fold higher than the CER-001 dose that failed to
show efficacy in CHI SQUARE trial (Michael Gibson et al.,
2016; Nicholls et al., 2018). Thus, understanding how
composition of rHDL impacts downregulation of ABCA1/
ABCG1 is of critical importance.

Clinical utility of LXR agonists has been limited due to adverse
side-effects, including induction of hepatic lipogenesis and
increases in circulating LDL (Schultz et al., 2000; Lee and
Tontonoz, 2015). Attempts to solve this issue have emerged in
the form of drug-delivery systems to lower systemic exposure.
Approaches have included targeted antibody-drug conjugates
(Lim et al., 2015), poly(lactic-co-glycolic acid) (PLGA) and
other modified nanoparticle encapsulation (Zhang et al., 2015;
Yu et al., 2017), and even ApoA-I-containing PLGA
nanoparticles to target atherosclerotic plaques (Sanchez-
Gaytan et al., 2015). While these approaches have been
successful in increasing ABCA1 expression levels, they rely on
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endogenous HDL to accept the resulting effluxed cholesterol,
despite impaired functionality of HDL under pathological
conditions (Huang et al., 2014; Rosenson et al., 2015; Vaisar
et al., 2015). We previously showed that encapsulation of T1317
in rHDL nanoparticles promotes atherosclerosis regression and
avoids systemic toxicity observed with free T1317 administration
(Guo et al., 2018). We hypothesize that the improved activity of
T1317-sHDL nanoparticles is in part due to the ability of sHDL
drug carriers to serve as cholesterol acceptors. Hence, we sought to
explore the potential synergy between the rHDL drug carrier and
LXR agonist administered separately, leading to the current study.

We see in vitro that the combination of rHDL and LXR agonist
can upregulate ABCA1/ABCG1 mRNA and protein and enhance
overall cholesterol efflux. In a long-term dosing study in
atherosclerosis mice, we witnessed a reduction in overall
plaque area in mice treated with both rHDL and T1317
compared to non-treated mice, and this effect was not seen
for animals treated with low doses of rHDL or T1317 only. In
this study, we were able to achieve atheroma reduction using a
1.5 mg/kg dose of T1317 that was administered only 3 times/
week for 6-weeks. In comparison, studies administering free
T1317 by oral gavage required daily dosing in the range of
10–50 mg/kg to see significant atheroma reduction, but at the
cost of unwanted toxicity (Dai et al., 2008; Ou et al., 2008;
Honzumi et al., 2011; Kappus et al., 2014). And while we did
observe a slight reduction in liver Srebp1 mRNA levels in the
combination therapy group, more significant reductions in
T1317-induced toxicity will likely be seen with further dose
reduction following more extensive pharmacological dose-
response studies.

In conclusion, we show that rHDL and LXR agonists can act in
synergy leading to increased anti-atherosclerosis efficacy when
administered together as opposed to individually. Thus, co-
administration of rHDL and LXR agonists could be of great
potential interest to the pharmaceutical industry and revive
interest in development of these two classes of drugs.
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