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In this paper, a new item-weighted scheme is proposed to assess examinees’ growth
in longitudinal analysis. A multidimensional Rasch model for measuring learning and
change (MRMLC) and its polytomous extension is used to fit the longitudinal item
response data. In fact, the new item-weighted likelihood estimation method is not only
suitable for complex longitudinal IRT models, but also it can be used to estimate the
unidimensional IRT models. For example, the combination of the two-parameter logistic
(2PL) model and the partial credit model (PCM, Masters, 1982) with a varying number of
categories. Two simulation studies are carried out to further illustrate the advantages of
the item-weighted likelihood estimation method compared to the traditional Maximum
a Posteriori (MAP) estimation method, Maximum likelihood estimation method (MLE),
Warm’s (1989) weighted likelihood estimation (WLE) method, and type-weighted
maximum likelihood estimation (TWLE) method. Simulation results indicate that the
improved item-weighted likelihood estimation method better recover examinees’ true
ability level for both complex longitudinal IRT models and unidimensional IRT models
compared to the existing likelihood estimation (MLE, WLE and TWLE) methods and MAP
estimation method, with smaller bias, root-mean-square errors, and root-mean-square
difference especially at the low-and high-ability levels.

Keywords: longitudinal model, item-weighted likelihood, mixed-format test, dichotomous item response,
polytomous item response

INTRODUCTION

The measurement of change has been a topic to both practitioners and methodologists (e.g.,
Dearborne, 1921; Woodrow, 1938; Lord, 1963; Fischer, 1973, 1976, 1995; Rasch, 1980; Andersen,
1985; Wilson, 1989; Embretson, 1991, 1997; von Davier and Xu, 2011; Barrett et al., 2015). Item
response theory (IRT), particularly, a family of Rasch models (RM), provides a new perspective
to modeling change. Andersen (1985) proposed the multidimensional Rasch model for modeling
growth in the repeated administration of the same items at different occasions. Embretson (1991)
presented a special multidimensional Rasch model for measuring learning and change (MRMLC)
based on IRT. Embretson’s model postulated the involvement of K abilities for K occasions.
Specifically, the MRMLC assumes that on the first occasion (k = 1), performance depends on initial
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ability. The MRMLC further assumes that on later occasions
(k > 1), performance also depends on k−1 additional abilities,
termed “modifiabilities,” as well as initial ability. Thus, the
number of abilities increases at each time point. The same
items are repeated over occasions in Andersen’s model which
may lead to practice effects or memory effects and result in
local dependency among item responses (von Davier and Xu,
2011), whereas items in Embretson’s MRMLC are not necessarily
repeated. Fischer (2001) extended the MRMLC to polytomous
items by extending the partial credit model (PCM, Masters, 1982).
This paper extends Embretson’s method to measure growth
based on item responses from mixed-format tests composed of
both dichotomous and polytomous items which are frequently
used in large-scale educational assessments, such as the National
Assessment of Educational Progress (NAEP) and the Program for
International Student Assessment (PISA). For polytomous items,
each response category provides information. If categories within
an item are close together, the item information will be peaked
near the center of the location parameter of category. However, if
the categories are spread further apart, each can add information
at a different location. Therefore, the item information for a
polytomous item can have multiple peaks and can be spread over
a broader extent of the ability range. Thus, polytomous items
may contain more information than dichotomous items (e.g.,
Donoghue, 1994; Embretson and Reise, 2000, p. 95; Jodoin, 2003;
Penfield and Bergeron, 2005; Yao, 2009; Christine, 2010; Tao et al.,
2012). How to utilize the potential information difference hidden
in different item types to improve estimates of the latent trait is
the main concern in our study.

As mentioned above, it has been demonstrated that
polytomous items can often provide more information than
dichotomous items concerning the level of estimated latent
trait (Tao et al., 2012). Meanwhile, different items of the same
type may provide different amount of information about latent
trait estimation. To improve the precision of ability estimation,
the aim of this study is to develop an efficient item-weighting
scheme by assigning different weights to different items in
accordance with the amount of information for a certain
latent trait level. As early as 40 years ago, Lord (1980) has
considered to optimal item weights for dichotomously scored
items. Tao et al. (2012) proposed a bias-reduced item-weighted
likelihood estimation method, and Sun et al. (2012) proposed
weighted maximum-a-posteriori estimation, which focused
on differentiating the information gained from different item
types. In their methods, the weights were pre-assigned and
known or automatically selected such that the weights assigned
to the polytomous items are larger than that assigned to the
dichotomous items. They assign different weights to different
item types, instead of assigning different weights to different
items, and items of the same type all have the same weight. For
convenience, we called these weighting methods type-weighted
estimation. However, different items of the same type may
have different information for a certain latent trait level; the
same weights assigned to the same-type items may not be
statistically optimal in terms of the precision and accuracy
of ability estimation due to neglecting the difference in the
individual item contribution. It is expected that assigning a

weight for each item based on its own contribution may increase
measurement precision.

The remainder of this paper is organized as follows. First,
we present the MRMLC and its polytomous extension, and
then the proposed item-weighted likelihood estimation (IWLE)
method and the other two ability estimation methods: Warm’s
(1989) weighted likelihood estimation (WLE) and type-weighted
maximum likelihood estimation (TWLE). Second, we show that
the IWLE is consistent and asymptotically normal with mean
zero and a variance-covariance matrix, and the bias of IWLE is
of order n−1. Third, a simulation study is conducted to compare
the proposed IWLE method with MLE, MAP, WLE, and TWLE.
Fourth, a simulation study is conducted to show IWLE can also be
applied to general unidimensional item response models. Finally,
we conclude this paper with discussion.

MATERIALS AND METHODS

MRMLC and Its Polytomous Extension
The MRMLC assumes that the probability of a correct response
by person l on item i at occasion k can be written as:

P
(
Uilk = 1| (θl1, ..., θlk) , bi

)
=

exp
(∑k

v=1 θlv−bi
)

1+ exp
(∑k

v=1 θlv−bi
) , (1)

where Uilk is the response variable with values in {0, 1},θl1 is the
initial ability of person l on the first occasion v = 1,θl2, ..., θlk
are modifiabilities that correspond to occasion k > 1, and bi is
item difficulty Although the MRMLC may be applied to multiple
occasions, for clarity, the model will be presented with only two
occasions. To simplify the notation, the examinee subscript will
not be shown in the following derivations. Using the abbreviated
notations Pi1 and Pi2 for the probability of a correct item response
for Occasions 1 and 2, respectively,

Pi1 (θ1) =
exp

(
θ1−bi

)
1+ exp

(
θ1−bi

) , (2)

and

Pi2 (θ1, θ2) =
exp

(
θ1 + θ2−bi

)
1+ exp

(
θ1 + θ2−bi

) , (3)

Regarding the polytomous items, we use the abbreviated
notations Pij1 and Pij2 to denote the probability of selecting
response category j (where j = 1, ..., h) of polytomous item i for
Occasions 1 and 2, respectively,

Pij1 (θ1) =
exp

(
jθ1−

∑j
v=1 biv

)
∑h

r=1 exp
(
rθ1−

∑r
v=1 biv

) , (4)

and

Pij2 (θ1, θ2) =
exp

[
j (θ1 + θ2)−

∑j
v=1 biv

]
∑h

r=1 exp
[
r (θ1 + θ2)−

∑r
v=1 biv

] , (5)
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To develop a conditional maximum likelihood estimation
method for item parameters in the learning process model,
Embretson (1991) constructed a data design structure for
item calibration in which item blocks are counterbalanced
in several occasions over groups. This data design matrix is
needed to determine the occasion on which an item appears
for an individual. Every item must be observed on every
occasion, but to preserve local independence, an item should
be administered only once to an individual across the two
occasions. To incorporate Embretson’s design structure, two
groups of examinees are asked to respond to unique items
on two occasions, kig is now defined as a binary variable to
indicate the occasion on which item i is administered to group
g(g = 1, 2).

Specifically,

kig =
{

1, if item i is administered in group g under Occasion 1,
0, if item i is administered in group g under Occasion 2.

Thus, the probability of a response vector u = (u1, ..., un) in
group g, Pg for n items conditional on ability vector (θ1, θ2), item
difficulty vector b and item occasion vector kg , for k1g, ..., kng is
given by:

Pg
(
U = u| (θ1, θ2) , b, kg

)
=

n∏
i=1

[
Pi1(θ1)

ui(1−Pi1 (θ1))
1−ui

]kig
·

[
Pi2(θ1, θ2)

ui(1−Pi2 (θ1, θ2))
1−ui

]1−kig
,

where b =
(
b1, ..., bn

)
.

First, suppose that person l is assigned to a test condition
group g that receives items I. For the following considerations, it
is assumed that some of the items I = {I1, ..., In} are presented at
time point (Occasion) 1, called the “pretest,” denoted I1, and some
items are presented at point time 2, called the “posttest,” denoted
I2 according to Fischer (2001). The nonempty item subsets I1
and I2 may be completely different, may overlap, or may be
identical. For convenience, however, a notation is adopted where
I1 and I2 are considered disjoint subsets of I, I1 =

{
I1, ..., In1

}
and I2 =

{
In1+1, ..., In

}
. However, the cases in which I1 and I2

overlap are implicitly covered; it suffices to let some Ia ∈ I1 have
the same parameters as some Ib ∈ I2. Let us consider mixed-
format tests; specifically, k items I1, ..., Ik are dichotomous and
n1−k items Ik+1, ..., In1 are polytomous in the pretest; for the
posttest, m−n1 items In1+1, ..., Im are dichotomous and n−m
items Im+1, ..., In are polytomous.

Maximum Likelihood Estimator
Now we consider the problem of likelihood estimation of ability
θ = (θ1, θ2). The likelihood function of responses is the product
of two types of likelihood functions given local independence:

L(θ|U) = Ld(θ|U)Lp(θ|U), (6)

where

Ld(θ|U) =

 k∏
i=1

Pi1(θ1)
uiQi1(θ1)

1−ui

 ·
 m∏

i=n1+1

Pi2(θ1, θ2)
viQi2(θ1, θ2)

1−vi

 , (7)

and

Lp(θ|U) =

 n1∏
i=k+1

h∏
j=1

Pij1(θ1)
uij

·
 n∏

i=m+1

h∏
j=1

Pij2(θ1, θ2)
vij

,
(8)

are the likelihood functions of the dichotomous model and
the polytomous model of a mixed-format longitudinal test,
respectively, in which,

Qi1 (θ1) = 1−Pi1 (θ1) , Qi2 (θ1, θ2) = 1−Pi2 (θ1, θ2) .

The response matrix U contains the responses to dichotomous
items ui, vi and the responses to polytomous items uij, vij. The
conventional maximum likelihood estimator (MLE) θ̂ can be
obtained by maximizing the log-likelihood function logL(θ| U).

Weighted Likelihood Estimator
Warm (1989) proposed a weighted likelihood estimation (WLE)
method for dichotomous IRT model. Compared with the
maximum likelihood estimation, Warm’s weighted likelihood
estimation method can obtain less bias estimation. Penfield
and Bergeron (2005) extended this method to the case of
the generalized partial credit model (GPCM). The weighted
likelihood function of a mixed-type model can be expressed as:

w(θ)L(θ|U) = w(θ)Ld(θ|U)Lp(θ|U),

where w(θ) is the weighting function, w(θ) = I
1
2 in one or two

parameter models of IRT. w(θ) is multiplied by the likelihood
function L(θ|U), and the product is maximized. WLE was proved
to yield asymptotically normally distributed estimates, with finite
variance, and with bias of only o

(
n− 1).

Item-Weighted Maximum Likelihood
Estimator
In this section, we consider the following item-weighted
likelihood function:

IWL(θ|U) = IWLd(θ|U) · IWLp(θ|U), (9)

where

IWLd(θ|U) =
k∏

i=1

{
Pi1(θ1)

ui · Qi1(θ1)
1−ui

}wi(θ)
·

m∏
i=n1+1

{
Pi2(θ1, θ2)

vi · Qi2(θ1, θ2)
1−vi

}wi(θ)
,(10)
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and

IWLp (θ | U) =
n1∏

i=k+1


h∏

j=1

Pij1(θ1)
uij


wi(θ)

·

n∏
i=m+1


h∏

j=1

Pij2(θ1, θ2)
vij


wi(θ)

, (11)

are the item-weighted likelihood functions of the dichotomous
model and the polytomous model of a mixed-format longitudinal
test, respectively. Here the weight vector:
(w1(θ), ...,wn(θ)) satisfy wi(θ) > 0 for each i and

n∑
i=1

wi(θ) = 1.

Note that,

wi(θ) =
Ii(θ)
I(θ)

, for all i ∈ {1, 2, ..., n}, (12)

where Ii(θ) is the information function of item i given as:

Ii(θ) =


Pi(θ)Qi(θ),

for dichotomous item i,∑h
j=1 j2Pij(θ)−

(∑h
j=1 jPij(θ)

)2
,

for polytomous item i.

Pi is the probability of a correct response to item i,Qi =

1−Pi, Pij is the probability of selecting response category j (where
j = 1, ..., h) of polytomous item i, and I(θ) =

∑n
i=1 Ii(θ) is

the test information function consisting both dichotomous and
polytomous items (Muraki, 1993). Using the information ratio
of each item to the test at a certain ability level, the weights of
items are determined.

In IRT, the item and test information functions relate to how
well an examinee’s ability is being estimated over the whole ability
scale; they are usually used to calculate the standard error of
measurement and the reliability. Since the test information is a
function of proficiency (or whatever trait or skill is measured)
and the items on the test, the expression of the proposed weights
involves the ability level θ and item characteristic parameters.
The weights may be “adaptive” in the sense that they are allowed
to be estimated based on the ability level and individual test
items. By using the information ratio of each item to the test to
determine the weights, so the more information an item has at
a certain ability level, the larger weight could be assigned to it.
According to the proposed weighting method, the weight for the
polytomous item is then larger than that for the dichotomous
item and the weights for the same type item are different due
to the difference between the amounts of item information. The
weight assigned to each item just indicates its contribution to the
precision for ability parameter estimation. This item weighting
scheme maximizes the information obtained from both different
types of items and different items of the same type and may
lead to more accurate estimates of the latent trait than equally
weighting all items. If each item with same scoring procedure
has same item information at a certain latent trait level, the

weights are equal between them. Hence, the proposed item-
weighted likelihood method may be an extension of the method
proposed by Tao et al. (2012). The item-weighted likelihood
estimator (IWLE) can be obtained by maximizing the item-
weighted log-likelihood function log IWL(θ|U) (for derivation
details, see Supplementary Appendix A). Maximum likelihood
estimator (Lord, 1983) was shown to have bias of O

(
n−1). When

the weights are determined at a certain ability level, with some
assumptions made by Lord (1983), the bias of the item-weighted
maximum likelihood estimation also has bias of O

(
n−1). The

approach and techniques of this derivation were taken from, and
parallel closely, the derivations in Lord (1983). The asymptotic
properties of IWLM can be obtained by generalizing those of
Bradley and Gart (1962) (for more details, see Supplementary
Appendix B).

Type-Weighted Maximum Likelihood
Estimator
In contrast to the MLE, the type-weighted maximum likelihood
estimator (TWLE) yields usable ability estimator for mixed-type
tests composed of both dichotomous and polytomous items (Sun
et al., 2012). The type-weighted likelihood function of a mixed-
type model can be expressed as:

TWL(θ|U) = Ld(θ|U)w̃1(θ)Lp(θ|U)w̃2(θ),

where

w̃1 (θ) =

(
Id (θ)
I (θ)

)α

, w̃2 (θ) =

(
Ip (θ)
I (θ)

)β

,

I = Id + Ip,

Id =
∑k

i=1 Ii +
∑m

i=n1+1 Ii, and Ip =
∑n1

i=k+1 Ii +
∑n

i=m+1 Ii,
are test information of the dichotomous and polytomous model
based on the longitudinal model, respectively. According to
the weighting scheme proposed by Sun et al. (2012), the ratio
parameters α, β determined to make sure that the weight assigned
to the polytomously scored item is larger than that assigned to the
dichotomously scored item. Three steps are needed to determine
the ratio parameters α, β and the two weights. First, we obtain
the ML estimator θ̂0 and take it as the initial estimator. Second,
if Id

(
θ̂0

)
< Ip

(
θ̂0

)
, the two ratio parameters are all equal to

1. Otherwise, we may set α and β to be a small value ε (such
as ε < 0.4) to make sure Id

(
θ̂0

)
< Ip

(
θ̂0

)
. Then, no change is

needed for either α or β if w̃1

(
θ̂0

)
< w̃2

(
θ̂0

)
. Otherwise, we

may increase α in increments of 0.05 or less, or decrease β in
increments of 0.05 or less. We adjust α and β to ensure w̃1

(
θ̂0

)
<

w̃2

(
θ̂0

)
. Third, we maximize the type-weighted log-likelihood

function log TWL(θ|U) to obtain θ̂ with the obtained α and β

values from the above. If w̃1(θ̂) < w̃2(θ̂), the θ̂ is the TWLE.
Otherwise, the ratio parameters should be adjusted continually
basing on the above process until w̃1(θ̂) < w̃2(θ̂ ).

The above three-weighted estimations TWLE, WLE, and
IWLE have different weighting schemes. For TWLE, the larger
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weights are assigned to the polytomous items and the smaller
weights are assigned to the dichotomous items. This method
only assigns different weights to different item types, instead
of assigning different weights to different items, thus items of
the same type all have the same weight. However, different
items of the same type may have different information about
a certain latent trait level; the same weights assigned to the
same-type items may not be statistically optimal in terms of the
precision and accuracy of ability estimation due to neglecting
the difference in the individual item contribution. The proposed
IWLE assigns different weights to different items in accordance
with the amount of the information an item provides at a certain
latent trait level. Using the information ratio of each item to the
test, the weights of items are determined. This improved IWLE
procedure that incorporates item weights in likelihood functions
for the ability parameter estimation may increase measurement
precision. The WLE provides a bias correction to the maximum
likelihood method. The weight function is multiplied by the
likelihood function L(θ|U) in the WLE method, which provides
a correction to the maximum likelihood estimation method by
solving an weighted, log-likelihood equation. The WLE and
IWLE are both consistent and asymptotically normal with mean
zero and a variance-covariance matrix, and the bias of the
estimators is of order n − 1.

SIMULATION STUDY 1

Simulation Design
In this section, the performance of the three weighting methods,
the WLE, the type-weighted likelihood estimation (TWLE), and
IWLE are compared. To investigate the effects of the test-length
and the proportion of dichotomous and polytomous items in
a mixed-format test on the properties of the θ estimators, nine
artificial tests were constructed at each time point, three of them
short (10 items with 7, 5, and 3 dichotomous items), three
medium (30 items with 20, 15, and 10 dichotomous items), and
three long (60 items with 40, 30, and 20 dichotomous items). In
the simulation, the 3 levels of test length were representative of
those encountered in measuring settings using fixed-length tests.
The 3 levels of proportion of dichotomous and polytomous items
(λ = 2, 1, 0.5) were selected, so that we may have a thorough
investigation into the property of different weighting methods.

The item parameters and ability parameters are set as
follows. The difficulty parameters of the dichotomous items
were randomly generated from the standard normal distribution
N(0, 1). The polytomously scored items with four-category were
constructed. The step parameters of each polytomous item were
randomly generated from four normal distributions:

bi1 ∼ N(−1.5, 0.2), bi2 ∼ N(−0.5, 0.2), bi3 ∼ N(0.5, 0.2),
and bi4 ∼ N(1.5, 0.2).

This pattern of location parameters centers items on zero and
thus centers the test on zero. In the simulation, 17 equally
spaced θ1 values were considered, ranging from −4.0 to 4.0
in increments of 0.5. We set 3 values of θ2 (0.6, 0.8, and
1.0) for 3 different initial ability levels: high (value of θ1

larger than 2), medium (value of θ1 between −2 and 2), and
low (value of θ1 smaller than −2), respectively. Thus, a high
initial ability will have low gain, a medium initial ability will
have moderate gain, and a low initial ability will have high
gain. At each level of (θ1, θ2) ,N(N = 1000) replications were
administered for all 9 tests. In each replication, the dichotomous
item responses were simulated according to the MRMLC model
as presented in Equations 2 and 3, and the polytomous item
responses were simulated according to the PCM as presented in
Equations 4 and 5. For the tests containing response patterns
consisting of all correct responses for dichotomous items and
all 4s for polytomous items or all incorrect responses for
dichotomous items and all 4s, the Newton-Raphson algorithm
cannot converge, and thus the likelihood estimators could not
be obtained. These response patterns were removed from the
analysis, and the same item responses were scored using the WLE,
TWLE, and IWLE procedures. In the simulation, the θ in the
weight for each item is taken as θ̂, the MLE of θ. All levels of the
number of items, the proportion of dichotomous and polytomous
items, and the number of examinee were crossed, resulting in 27
conditions of test properties at each time point. For each of the 27
conditions of test properties, the WLE, TWLE, and IWLE were
obtained for each of the response patterns.

Evaluation Criteria
The bias, absolute bias, root mean squared error (RMSE) and root
mean squared difference (RMSD) of the ability estimates were
used as evaluation criteria to examine all estimation methods. The
absolute bias is calculated using Equation 13. In Equation 13, θ
denotes the true ability value and θ̂l the corresponding ability
estimate for the l th replication.

|Bias| = |
1
N

N∑
i=1

(
θ̂l−θ

)
| (13)

RMSE and RMSD are calculated using Equation 14 and 15,
respectively:

RMSE =

√√√√ 1
N

N∑
l=1

(
θ̂l−θ

)2
, (14)

RMSD =

√√√√√ 1
N

N∑
l=1

(
θ̂l−

1
N

N∑
l=1

θ̂l

)2

. (15)

N is the number of replications. In simulation studies, we fix the
number of replications at 1000, that is, N = 1000.

Results of Simulation
The weights of IWLE for 6 dichotomous and 3 polytomous items
are shown in Figures 1, 2 The purpose of these figures is to
give more intuition in terms of our item weighting scheme. The
weights are based on the individual test items and the ability level,
with θ1 ranging from −4.0 to 4.0 and 3 values of θ2(0.6, 0.8,
and 1.0). We can find that the different items are designed with
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FIGURE 1 | The weights of IWLE based on θ1 for dichotomous items (item 1 to 6) and polytomous items (items 7 to 9) in test 1.

FIGURE 2 | Weights based on θ (θ = (θ1, θ2)) at 17 ability levels for dichotomous items (item 1 to 6) and polytomous items (items 7 to 9) in test 2.

TABLE 1 | Correlation between the estimated abilities and the true abilities for all three weighting estimation methods under nine conditions.

Test

N Method 7d+3p 5d+5p 3p+7d 20d+10p 15d+15p 10d+20p 40d+20p 30d+30p 20d+40p

1000 IWLE 0.8685 0.9068 0.9189 0.9478 0.9548 0.9593 0.9663 0.9609 0.9822

WLE 0.8189 0.8378 0.8608 0.9246 0.9375 0.9470 0.9640 0.9606 0.9716

TWLE 0.8001 0.8344 0.8542 0.9216 0.9360 0.9451 0.9612 0.9796 0.9711

n1 d+ n2p means the (n1 + n2) -item test with n1 dichotomous items and n2 polytomous items.

different weights. In addition, the weights assigned to polytomous
items are larger than that of dichotomous items.

Table 1 shows the correlation between the estimated abilities
and the true abilities for all three weighting estimation methods
under nine conditions. The higher degree of correlation obtained
by the IWLE ability estimates indicates that the IWLE produces
better quality ability estimates. The results in Table 1 indicate that
the longer tests provide higher correlation between the estimated

abilities and the true abilities. In the tests with the same length,
higher proportion of polytomous and dichotomous items also
provide higher correlation between the estimated abilities and
the true abilities.

The simulation results of 3 test lengths show similar trends
for the three weighting estimators: WLE, TWLE, and IWLE.
Due to page limitation, only those for the 30-item test are
presented. The complete results can be obtained from the author.
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Tables 2–7 displays the obtained values of absolute bias, and
RMSD for WLE, TWLE, and IWLE at 17 different levels of
initial ability θ1(−4,−3.5,, 3.5, 4) and 3 different levels of growth
θ2(0.6, 0.8, 1) in the simulation scenarios.

Examining these results, the following general trends are
observed. The absolute bias are all nearly to zero for three

estimators when |θ1| < 2, or θ2 = 0.8, but IWLE has a
considerably less absolute bias than the other two estimators
when |θ1| > 2 or θ2 = 0.6 and 1.We note that in the 3 simulation
scenarios the absolute bias of IWLE is slightly larger than that
of WLE at some level of θ1 when |θ1| < 2, but is considerably
smaller than that of WLE at the low and the high levels of

TABLE 2 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 17 different levels of initial ability on 20d+10p.

20d+10p Methods

N = 1000 IWLE WLE TWLE

θ1 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

−4.0 0.5615 1.7379 1.1045 3.5101 1.1596 3.5370

−3.5 0.3221 1.3011 0.4678 2.3189 0.5249 2.3495

−3.0 0.1402 0.9134 0.1582 1.3797 0.1783 1.4074

−2.5 0.0342 0.5038 0.0361 0.5118 0.0494 0.5675

−2.0 0.0162 0.4809 0.0130 0.4401 0.0158 0.4931

−1.5 0.0047 0.4384 0.0005 0.4061 0.0054 0.4494

−1.0 0.0045 0.4020 0.0004 0.3821 0.0049 0.4237

−0.5 0.0047 0.3662 0.0119 0.3570 0.0053 0.3943

0.0 0.0092 0.3718 0.0114 0.3433 0.0107 0.3784

0.5 0.0071 0.3707 0.0041 0.3456 0.0083 0.3740

1.0 0.0076 0.3654 0.0039 0.3378 0.0078 0.3670

1.5 0.0179 0.3834 0.0164 0.3675 0.0189 0.4095

2.0 0.0112 0.4025 0.0039 0.3764 0.0169 0.4272

2.5 0.0205 0.4133 0.0187 0.4400 0.0455 0.4926

3.0 0.0190 0.5846 0.0282 0.6321 0.0508 0.6763

3.5 0.2811 1.1297 0.3414 2.0295 0.3876 2.0387

4.0 0.3805 1.3812 0.6268 2.8406 0.6900 2.8470

20 d+ 10p means the 30-item test with 20 dichotomous items and 10 polytomous items.

TABLE 3 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 3 different levels of growth on 20d+10p.

20d+10p Methods

N = 1000 IWLE WLE TWLE

θ2 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

1 0.4219 1.9411 1.0146 3.7642 1.0438 3.7842

1 0.2559 1.5026 0.4351 2.5015 0.4801 2.5460

1 0.0907 1.0243 0.1419 1.4468 0.1536 1.4836

1 0.0215 0.6990 0.0296 0.6428 0.0399 0.7196

0.8 0.0145 0.6201 0.0050 0.5732 0.0225 0.6349

0.8 0.0078 0.5947 0.0071 0.5492 0.0101 0.6095

0.8 0.0188 0.5555 0.0144 0.5204 0.0194 0.5697

0.8 0.0055 0.5402 0.0073 0.4952 0.0075 0.5518

0.8 0.0054 0.5365 0.0042 0.5032 0.0100 0.5435

0.8 0.0283 0.5380 0.0236 0.4971 0.0276 0.5439

0.8 0.0056 0.5670 0.0023 0.5213 0.0059 0.5761

0.8 0.0301 0.6168 0.0197 0.5684 0.0330 0.6224

0.8 0.0726 0.7236 0.0504 0.7475 0.0779 0.8220

0.6 0.0782 0.9579 0.1165 1.2499 0.1224 1.3136

0.6 0.2395 1.4137 0.4164 2.3609 0.4538 2.3896

0.6 0.3946 2.2477 0.9091 4.3898 0.9462 4.3887

0.6 0.7397 2.8244 1.7386 5.9953 1.7629 5.9489

20 d+ 10p means the 30-item test with 20 dichotomous items and 10 polytomous items.
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TABLE 4 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 17 different levels of initial ability on 15d+15p.

15d+15p Methods

N = 1000 IWLE WLE TWLE

θ1 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

−4.0 0.4756 1.4673 0.8064 2.9131 0.8465 2.9195

−3.5 0.1589 0.8002 0.1603 1.2443 0.2009 1.2795

−3.0 0.0605 0.6537 0.0866 0.9311 0.0965 0.9520

−2.5 0.0104 0.4371 0.0167 0.4411 0.0152 0.4712

−2.0 0.0229 0.4076 0.0266 0.3855 0.0384 0.421

−1.5 0.0163 0.3677 0.0102 0.3535 0.0146 0.3791

−1.0 0.0035 0.3349 0.0057 0.3223 0.0039 0.3425

−0.5 0.0092 0.3433 0.0038 0.3295 0.0093 0.3509

0.0 0.0038 0.3336 0.0015 0.3168 0.0039 0.3375

0.5 0.0038 0.3334 0.0050 0.3199 0.0074 0.3365

1.0 0.0001 0.3306 0.0054 0.3111 0.0038 0.3398

1.5 0.0040 0.3578 0.0003 0.3333 0.0024 0.3553

2.0 0.0160 0.3776 0.0113 0.3611 0.0164 0.3796

2.5 0.0300 0.4917 0.0248 0.5686 0.0348 0.5867

3.0 0.1358 0.6881 0.1997 0.9829 0.1484 1.0048

3.5 0.2461 1.0279 0.2718 1.7932 0.3194 1.8233

4.0 0.4730 1.5333 0.8051 3.1026 0.8775 3.1494

15 d+ 15p means the 30-item test with 15 dichotomous items and 15 polytomous items.

TABLE 5 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 3 different levels of growth on 15d+15p.

15d+15p Methods

N = 1000 IWLE WLE TWLE

θ2 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

1 0.3555 0.5993 0.7385 3.0097 0.7626 3.0257

1 0.0864 0.9536 0.1136 1.3520 0.1371 1.4041

1 0.0877 0.7725 0.1020 1.0090 0.1020 1.0338

1 0.0030 0.5857 0.0053 0.6040 0.0049 0.6358

0.8 0.0013 0.5067 0.0063 0.5133 0.0025 0.5528

0.8 0.0103 0.4933 0.0030 0.4738 0.0132 0.5085

0.8 0.0022 0.4669 0.0070 0.4513 0.0029 0.4735

0.8 0.0162 0.4728 0.0123 0.4462 0.0178 0.4820

0.8 0.0087 0.4572 0.0003 0.4324 0.0096 0.4603

0.8 0.0161 0.4787 0.0129 0.4531 0.0164 0.4796

0.8 0.0177 0.4941 0.0178 0.4640 0.0151 0.4906

0.8 0.0407 0.5626 0.0328 0.5328 0.0490 0.5632

0.8 0.0473 0.5864 0.0487 0.5805 0.0476 0.6206

0.6 0.0617 0.8184 0.0618 0.9583 0.0629 0.9855

0.6 0.1824 1.3755 0.3231 2.3313 0.3333 2.3686

0.6 0.3534 2.0572 0.8409 4.0178 0.8563 4.0486

0.6 0.5312 2.8113 1.4114 6.0129 1.4160 6.0353

15 d+ 15p means the 30-item test with 15 dichotomous items and 15 polytomous items.

ability. IWLE consistently displays the level of absolute bias that
is smaller than that of TWLE, especially substantially smaller
than that of TWLE at the low and the high levels of ability. In
addition, the absolute bias of WLE is less than that of TWLE at
the extremes of ability level. However, the changes are observed

when the proportion of the dichotomous and polytomous items
in mixed-type test is changed. With the number of polytomous
items increased, the absolute bias produced by TWLE and WLE
are more similar, even TWLE produces a little larger absolute
bias than WLE at the extremes of ability level. The similar
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TABLE 6 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 17 different levels of initial ability for 10 d+ 20p.

10d+20p Methods

N = 1000 IWLE WLE TWLE

θ1 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

−4.0 0.4139 1.4081 0.7042 2.7417 0.8002 2.9845

−3.5 0.1748 0.8937 0.2045 1.4292 0.2356 1.5412

−3.0 0.0547 0.5415 0.0580 0.7017 0.0750 0.7492

−2.5 0.0108 0.4168 0.0155 0.4233 0.0223 0.4351

−2.0 0.0035 0.3677 0.0073 0.3540 0.0047 0.3691

−1.5 0.0020 0.3567 0.0023 0.3459 0.0038 0.3579

−1.0 0.0275 0.3360 0.0237 0.3253 0.0241 0.3421

−0.5 0.0211 0.3281 0.0145 0.3196 0.0200 0.3295

0 0.0039 0.3087 0.0040 0.2968 0.0047 0.3130

0.5 0.0010 0.3030 0.0007 0.2883 0.0018 0.3053

1.0 0.0089 0.2886 0.0054 0.2798 0.0115 0.2903

1.5 0.0066 0.3048 0.0000 0.2963 0.0210 0.3024

2.0 0.0081 0.3392 0.0073 0.3282 0.0109 0.3391

2.5 0.0182 0.3904 0.0234 0.3912 0.0327 0.4157

3.0 0.0205 0.5022 0.0288 0.5837 0.0436 0.5952

3.5 0.1616 0.8334 0.1687 1.3778 0.2042 1.3954

4.0 0.3306 1.2024 0.4565 2.3132 0.5022 2.3207

10 d+ 20p means the 30-item test with 10 dichotomous items and 20 polytomous items.

TABLE 7 | Absolute bias and root mean squared difference for WLE, TWLE, and IWLE at 3 different levels of growth for 10 d+ 20p.

10d+20p Methods

N = 1000 IWLE WLE TWLE

θ2 Abs.Bias RMSD Abs.Bias RMSD Abs.Bias RMSD

1 0.3451 1.5350 0.6859 2.8275 0.7519 3.0801

1 0.1355 0.9881 0.1899 1.4906 0.2130 1.6003

1 0.0359 0.6451 0.0560 0.7772 0.0650 0.8253

1 0.0111 0.5061 0.0188 0.5386 0.0253 0.5580

0.8 0.0057 0.5151 0.0109 0.4972 0.0078 0.5181

0.8 0.0056 0.4737 0.0002 0.4611 0.0095 0.4753

0.8 0.0198 0.4510 0.0196 0.4408 0.0199 0.4593

0.8 0.0162 0.4532 0.0116 0.4398 0.0168 0.4536

0.8 0.0168 0.4385 0.0167 0.4201 0.0169 0.4428

0.8 0.0008 0.4142 0.0028 0.3979 0.0032 0.4152

0.8 0.0276 0.4301 0.0204 0.4293 0.0277 0.4389

0.8 0.0089 0.4325 0.0140 0.4250 0.0119 0.4349

0.8 0.0408 0.5412 0.0375 0.5347 0.0466 0.5510

0.6 0.0123 0.6007 0.0151 0.6038 0.0270 0.6342

0.6 0.1462 1.0715 0.2162 1.7098 0.2350 1.7319

0.6 0.3919 1.8900 0.8098 3.5369 0.8265 3.5700

0.6 0.5514 2.4670 1.3889 5.0994 1.4169 5.1159

10 d+ 20p means the 30-item test with 10 dichotomous items and 20 polytomous items.

change patterns are also observed for RMSD produced by three
estimators. The RMSD of IWLE is slightly larger than that of
WLE at some level of θ1 when |θ1| < 2, but is considerably
smaller than that of WLE and TWLE at the low and the high
levels of ability.

To investigate the performance of the proposed IWLE
method, an simulation study was conducted for the comparison
of the five estimators: MLE, MAP [with a non-informative
prior distribution U(4, 4)] WLE, TWLE, and IWLE under the
above simulation condition. Figures 3–8 show the results of
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FIGURE 3 | RMSE of the five θ1 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 20d+10p.

FIGURE 4 | RMSE of the five θ1 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 15d+15p.

FIGURE 5 | RMSE of the five θ1 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 10d+20p.
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FIGURE 6 | RMSE of the five θ2 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 20d+10p.

FIGURE 7 | RMSE of the five θ2 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 15d+15p.

FIGURE 8 | RMSE of the five θ2 estimation methods MLE, MAP, IWLE, WLE, and TWLE for 10d+20p.
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RMSE calculated from 30-item test in the following simulation
scenarios:

(1). 30-item test includes 20 dichotomous items and 10
polytomous items (20 d+ 10p).

(2). 30-item test includes 15 dichotomous items and 15
polytomous items (15 d+ 15p).

(3). 30-item test includes 10 dichotomous items and 20
polytomous items (10 d+ 20p).

The RMSE presented in Figures 3–5 show that among the
five θ1 estimation methods, IWLE has a slight large RMSE when
|θ1| < 2, but is considerably smaller than that of MLE, MAP, WLE
and TWLE at extreme levels of the latent trait. The RMSE of WLE
is very similar to that of MLE and TWLE. EAP has lower RMSE
than MLE, WLE, TWLE, and IWLE in the middle of the ability
range because of the shrinkage. The RMSE plotted in Figures 6–8
shows the similar change patterns for θ 2.

The proposed IWLE method outperforms the MLE, MAP,
WLE and TWLE in terms of controlling the absolute bias, RMSE,
and RMSD at the low and the high levels of ability, but has
a slight large RMSE and RMSD in the middle range of the
ability scale.

In general, test length had a dramatic impact on the relative
performance of the five estimators. We can observe the strongest
differences between the five estimators are obtained when the
test length is short. The absolute bias, RMSE, and RMSD of five
estimation methods have a slightly decrease with the length of test
increased. The proportion of dichotomous and polytomous items
in a mixed-format test appears to affect the absolute bias, RMSE,
and RMSD of five estimation methods.

SIMULATION STUDY 2

When we only care about the ability of the examinee without
considering the ability growth at multiple time points, the

FIGURE 9 | RMSE of the two θ estimation methods MLE and IWLE for 10p+20d.

FIGURE 10 | RMSE of the two θ estimation methods MLE and IWLE for 15p+15d.
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FIGURE 11 | RMSE of the two θ estimation methods MLE and IWLE for 20p+10d.

unidimensional IRT models are the focus of many educational
psychometrists. In fact, our IWLE method can’t only be used
to analyze multidimensional IRT models, but also can be
implemented for unidimensional IRT models. In this simulation
study, we evaluate the accuracy of the IWLE method in the
unidimensional models.

The proposed IWLE method is applied to the unidimensional
IRT models for mixed-format test that is the combination of the
two-parameter logistic model and the partial-credit model. We
consider the following item-weighted likelihood function:

IWL(θ|U) = IWLd(θ|U) · IWLp(θ|U),

where

IWLd(θ|U) =
k∏

i=1

{
Pi(θ)ui · Qi(θ)

1−ui
}wi(θ)

,

and

IWLp(θ|U) =
24n∏

i=k+1

h∏
j=1

;
{
Pij(θ)uij

}wi(θ),

Pi(θ) is determined by dichotomously scored items; Pik(θ) is
determined by polytomously scored items. Here the weight wi(θ)
assigned to item i is defined as equation 4, and

∑n
i=1 wi(θ) = 1.

The 3 levels of test length (10 items, 30 items and 60 items)
and the 3 levels of proportion of dichotomous and polytomous
items (λ = 2, 1, 0.5) were selected. The item parameters were
generated similar to simulation 1, and 17 equally spaced θ1 values
were considered, ranging from−4.0 to 4.0 in increments of 0.5.

The simulation results of three test lengths show similar
trends. The proposed IWLE method outperforms the MLE in
terms of the absolute bias, RMSE and RMSD at the low and
high levels of ability. However, the IWLE has a slight large
absolute bias, RMSE and RMSD in the middle range of the
ability scale compared with the MLE. Figures 9–11 show the
results of RMSE calculated from 30-item test. According to the
simulation results, we find that the IWLE can also be applied

to the general unidimensional IRT models for tests composed of
both dichotomous and polytomous items.

DISCUSSION AND CONCLUSION

In this study, an improved IWLE procedure that incorporates
item weights in likelihood functions for the ability parameter
estimation is proposed. The weights may be “adaptive” in the
sense that they are allowed to be estimated with the ability level
and individual test items. We assign different weights to different
items in accordance with the amount of the information an item
provides at a certain latent trait level. Using the information ratio
of each item to the test, the weights of items are determined.
We also give the rigorous derivations for asymptotic properties
and the bias of IWL estimators. The results from the simulation
study clearly demonstrate that the proposed IWLE method
outperforms the usual, MLE, MAP, WLE and TWLE in terms
of controlling absolute bias, RMSE, and RMSD especially at low
and high ability levels. Latent trait estimation is one of the most
important components in IRT, but when an examinee scores
high (or low) in a test, we known that the examinee is high (or
low) on the trait but we do not have a very precise estimate of
how high (or low). It could be considerably higher (or lower)
than the test instrument’ scale reaches. In the case, improving
latent trait estimation especially at extreme levels of ability scale
is worthy of attention.

Improving latent trait estimation is always important in
longitudinal survey assessments, such as the Early Childhood
Longitudinal Study (ECLS) and the PISA (von Davier and Xu,
2011), which aims at tracking growth of a representative sample
of the target population over time. The proposed weighting
scheme also can be applied in the general unidimensional item
response models. Other issues should be further explored. First,
the proposed weighting scheme could be generalized to other
application settings where latent ability needs to be estimated
for each person such as computerized adaptive testing (CAT).
Second, although the Rasch model and the PCM are commonly
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used in practical tests, there are other more general item response
models, for instance the three-parameter logistic (3PL) model
and the generalized partial credit model. Therefore, it is worth
studying the extension of the IWLE to these more complex
models, with different test lengths and sample sizes. Third,
more than two occasions can be considered in longitudinal
study, so the proposed weighting method can be generalized
to deal with more general situations. Finally, the proposed
IWLE method can be extended to multidimensional longitudinal
IRT model.

From a practical point of view, we would not use a
test that is way too difficult or way too easy items. This
is because each item should have a certain discrimination
to distinguish the examinees with different ability levels. In
fact, the reliability and validity of the test items are pre-
calibrated before the actual assessment. When the examinees
answer the pre-calibrated test, some examinees answer all items
correctly while others do not answer all items correctly. In
this case, the extreme ability estimator will occur. Thus, the
extreme ability occur because there are large differences between
examinees’ abilities rather than items being too difficult or too
easy (the test items are pre-calibrated, reliable and valid). In
addition, the examinees were obtained through a multistage
stratified sample in the actual assessment. In the first stage,
the sampling population is classified according to district, and
schools are selected at random. In the second stage, students
are selected at random from each school. Therefore, in this
case, there are some extreme cases of the examinees’ ability.
For example, some examinees with high abilities answer all
the items correctly, or some examinees with low abilities
answered all the items incorrectly. Traditional methods (WLE
and TWLE) fail to estimate these extreme abilities. However,
our IWLE method is more accurate in estimating these

extreme abilities. This is the main advantage of our item-
weighted scheme.
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