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ABSTRACT The growing ubiquity of electronic devices is increasingly consuming
substantial energy and rare resources for materials fabrication, as well as creating
expansive volumes of toxic waste. This is not sustainable. Electronic biological mate-
rials (e-biologics) that are produced with microbes, or designed with microbial com-
ponents as the guide for synthesis, are a potential green solution. Some e-biologics
can be fabricated from renewable feedstocks with relatively low energy inputs, often
while avoiding the harsh chemicals used for synthesizing more traditional electronic
materials. Several are completely free of toxic components, can be readily recycled,
and offer unique features not found in traditional electronic materials in terms of
size, performance, and opportunities for diverse functionalization. An appropriate in-
vestment in the concerted multidisciplinary collaborative research required to iden-
tify and characterize e-biologics and to engineer materials and devices based on
e-biologics could be rewarded with a new “green age” of sustainable electronic ma-
terials and devices.
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“GE, WE BRING GOOD THINGS TO LIFE”—ADVERTISING SLOGAN

We know electronics can bring good things to life. Can life return the favor and
bring good things to electronics? The expanding development of small electronic

devices and the “Internet of things” are revolutionizing society, but not necessarily in
a sustainable manner. The mining and processing of common inorganic electronic
component materials, such as high-grade silicon and metals, are energy intensive and
environmentally invasive. The production of synthetic organic conductive materials
requires high energy inputs and/or harsh chemical processes. Most electronic devices
are now considered “disposable,” but they contain toxic metals and organics, are
difficult to recycle, and are not biodegradable. Therefore, it is not surprising that
electronic waste (e-waste) is becoming a substantial environmental and health concern
(1, 2).

What if electronic components and devices could be made from sustainable organic
feedstocks or from carbon dioxide and renewable electricity? What if they could be
synthesized with no toxic chemicals at room temperature with water as the “solvent”?
What if the electronic materials produced this way were completely nontoxic, and
when your electronic device was broken or outdated, these components could be
thrown on your compost pile or converted to methane at the local municipal waste
treatment plant?

This green electronic future may be possible with e-biologics (biologically produced
electronic materials and related biomimetics). Microbes are one of the most promising
catalysts for fabricating e-biologics, in part because of their highly evolved capacity to
work at the nanoscale desirable for most electronic devices, as well as the ease of
sustainably growing microbes on renewable feedstocks for inexpensive mass produc-
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tion. New classes of microbially produced minerals and proteins with not only conduc-
tive but also transistor and supercapacitor properties have been discovered in the last
several years (Table 1). In addition to their superior green credentials, e-biologics may,
in some instances, have advantages over traditional electronic components in size,
physical properties, and electronic performance. Highlights of just some of the possi-
bilities follow.

MICROBIAL DEPOSITION OF METALLIC AND SEMIMETALLIC ELECTRONIC
MATERIALS

The extent to which e-biologics may help meet the goal of a sustainable future for
electronic devices depends on the approach taken. Until recently, most research has
focused on using microorganisms to produce nano-size metallic or semimetallic ma-
terial that can serve either as a conductor, as the sensing component in electronic
sensors, or for electrical energy storage. A diversity of microbes or enzymes extracted
from microbial cells can produce nanoparticles from a wide range of metals, including
gold, silver, palladium, and platinum (3, 4). Sizes and shapes depend on the microor-
ganisms and environmental conditions employed. Semiconductor materials such as
metal sulfides, metal oxides, and elemental selenium can also be microbially produced
either intracellularly or extracellularly (3). Remarkable in this regard is the formation of
arsenic-sulfide nanotubes by Shewanella species from the reduction of As(V) to As(III),
concomitant with the reduction of thiosulfate to sulfide (5, 6). The nanotubes (20 to
100 nm by ca. 30 �m) form extracellular networks, that upon aging are not only
electrically conductive but also exhibit photoluminescence, photoactive, and transistor-
like properties (5, 7).

These inorganic e-biologics are not completely green, because they contain toxic
metals or metalloids. However, the biosynthetic route has the advantage that it can be
carried out in aqueous medium at standard temperature and pressure, reducing energy
requirements and eliminating harsh chemical treatments associated with more tradi-
tional fabrication approaches. Furthermore, the production of these e-biologics is
powered with renewable organic substrates, which generate the catalysts (microbes

TABLE 1 e-Biologic types, fabrication methods, potential applications, and potential advantages over abiotic materials

Material Fabrication method Potential applications

Potential advantages over abiotic
materials

Reduction in:
Flexibility
in product
designcEnergya

Harsh
chemicalsb

Toxic
waste

Metal/metalloid precipitates Microbially mediated precipitation
of soluble forms of
metals/metalloids

Nanowires, transistors, capacitors � �

Protein scaffolds for metals In vitro assembly of peptides Nanowires, capacitors � � �
Lipid-cytochrome filaments Outer membrane extensions dried

and chemically fixed
Nanowires, transistors � �

Electrically conductive pili Microbial expression from native
or synthetic PilA monomer
gene

Nanowire electrical connections,
conductive composite
materials, nanosensors,
transistors, capacitors

� � � �

Self-assembling conductive
protein wires

In vitro assembly of peptides Nanowire electrical connections,
conductive composite
materials, nanosensors,
transistors, capacitors

� � � �

Living biofilms Cell growth Conductive “polymers” and
circuits with potential for self-
repair, sensors, biological
computers

� � � �

aEnergy required for obtaining feedstock and fabrication of the material.
bChemicals for synthesis.
cPotential for modifying structure with diverse aptamers.
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and their enzymes) and the electron donor, typically NAD(P)H, that serves as the
reductant for metal, metalloid, and sulfur components.

Furthermore, not all metal precipitates are toxic. Leptothrix ochracea oxidizes ferrous
iron naturally dissolved in groundwater to produce nontoxic ferric nanoparticles that
show promise as anode materials for lithium ion batteries due to their high capacity for
discharge/charge (8, 9). An additional benefit is that the ferrous iron oxidation provides
energy to support cell growth.

PROTEIN SCAFFOLDS FOR ELECTRONIC MATERIALS

Another promising strategy for organizing conductive metals at the nanoscale is to
exploit biological molecules as scaffolds for templating metals or minerals. This ap-
proach has been intensively investigated with DNA, but DNA is fragile, and protein-
based wires are expected to be more stable (10). Amyloid proteins can assemble in vitro
into nanofilaments that are micrometers long and highly robust, withstanding high
temperatures (ca. 100°C), pH extremes, common protein denaturants, and organic
solvents (10). The filaments are typically poorly conductive, but simply introducing a
cysteine into an amyloid monomer expressed in Escherichia coli yields a filament that
binds gold and silver, creating wires (final diameter of 100 nm) with the conductivity
and ohmic behavior of a metal wire (10). A diversity of other peptides that assemble
into similar nanofilaments can also be decorated with metals to produce conductive
nanowires that may have applications as energy storage devices (11).

The need for precious metals to confer conductivity to an amyloid protein nanowire
was eliminated with a chimeric protein in which a portion of a microbial rubredoxin was
fused with a portion of a fungal prion protein (12). Electrons hop over the ca. 1 nm
separating the individual iron molecules of each monomer in the resultant nanowires
(5 nm by 12 �m). The electron transport properties of individual wires were not
reported, but nanowire networks were conductive, effectively transporting electrons
between electrodes and a laccase enzyme (12).

ORGANIZING ELECTRON TRANSPORT PROTEINS IN LIPID MEMBRANES

Nanowires that rely on electron hopping between iron-based electron transport
proteins can also be produced from cytochrome-rich membrane extensions of She-
wanella oneidensis (13–16). In live cells, the cytochromes are spaced too far apart to
support long-range electron hopping along the length of the filaments (17). However,
when the filaments are sheared from the cells, dried, and chemically fixed, they exhibit
conductivities that are high (up to 1 S cm�1) for a biologically produced organic
material (14). It is likely that the substantial shrinkage of the filaments associated with
drying and fixation (from �500 nm in the hydrated physiological state down to 10 nm)
brings the cytochromes close enough together (ca. 1 nm) to facilitate the proposed
hopping mechanism of electron transport (13, 18, 19).

The conductive properties of the dried filaments, coupled with a mechanical
strength comparable to those of organic polymers (20) and transistor-like response of
individual filaments (15), suggest that they might be suitable substitutes for organic
semiconducting nanomaterials in electronic devices such as biosensors, organic light-
emitting diodes (LEDs), and organic solar cells (15, 20). Strategies for mass production
of the wires and their alignment in devices are available (15). The potential for making
S. oneidensis wires without fixation with toxic glutaraldehyde should be examined, as
eliminating this step from the process would increase the attractiveness of these
filaments as a green electronic material.

MICROBIALLY PRODUCED CONDUCTIVE PROTEIN NANOWIRES

Electrically conductive pili (e-pili) are another type of “microbial nanowire,” but they
are completely different in form and function than those that can be produced with
S. oneidensis (21). Whereas S. oneidensis wires are comprised of a mixture of lipids and
diverse proteins, purified e-pili are comprised of a single peptide monomer, PilA, which
is homologous to the pilin monomer of many type IV pili (22, 23). A diversity of
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microorganisms appear to be capable of expressing e-pili (24–26), but to date, only the
e-pili of Geobacter sulfurreducens have been studied in detail. The thin (ca. 3-nm)
G. sulfurreducens e-pili can transport electrons along their length of up to 10 to 30 �m
(27–29). Networks of e-pili transport electrons over centimeters (30). Such long-range
electron transport in a biological protein is unprecedented and “surprising” (31).
Typically, electron transport of ca. 10 nm is considered to be a great distance for protein
complexes (31, 32).

The mechanisms for long-range electron transport for e-pili are still a matter of
debate (21, 33). However, there is consensus among those that have studied highly
purified individual e-pili that, as was originally proposed (22, 30), electrons are trans-
ported along the e-pilus protein filament themselves, not metals or redox-active
proteins associated with the e-pili (27, 29). It is also clear that it is possible to change
the properties of e-pili with simple genetic manipulation of the PilA sequence. For
example, by manipulating the density of aromatic rings in PilA (28, 34), it is possible to
tune the conductivity of G. sulfurreducens over a broad range (1 mS/cm to 1 kS/cm).
Conductivity can also be tuned over 3 to 4 orders of magnitude simply by changing the
pH at which e-pili are prepared (27, 28, 30).

e-Pili are highly durable, yet biodegradable, and contain no toxic components,
eliminating e-waste. One advantage of e-pili over many nonbiological electronic ma-
terials is that they can be processed and function well in water and they are stable over
a wide range of pH values (from pH 2 to 10). However, if needed, e-pili can also be
employed in processing approaches common with more traditional electronic materials
because they are stable when dried under vacuum and in a diversity of organic solvents
(Y.-L. Sun, University of Massachusetts, personal communication). Furthermore, e-pili
have the potential to be functionalized by the addition of amino acid sequences that
can function as linkers to enhance attachment to substrates, serve as aptamers for
sensing applications, and can covalently link e-pili to polymeric materials to produce
conductive composites. e-Pili can readily be mass produced with high uniformity from
inexpensive, renewable feedstocks, such as acetate, with energy inputs for fabrication
estimated to be 100-fold less than that required for processing traditional electronic
materials (V. Zhirnov, Semiconductor Research Corporation, personal communication).

SELF-ASSEMBLING CONDUCTIVE PROTEIN NANOWIRES

The production of electrically conductive protein nanowires could be simplified if
the nanowires would correctly assemble in vitro from peptide monomers. Rational
design of such structures will require a better understanding of the e-pilus structure
and mechanisms for electron transfer. However, progress is already being made.
Peptides derived from type IV pili can assemble into nanotubes that differ in structure
from the type IV pili but maintain a similar diameter and some external physical/
chemical characteristics (35). Peptide sequences of 20 amino acids designed from
portions of the G. sulfurreducens PilA sequence yielded fibers, but conductive properties
still need to be evaluated (36). The short peptide glycine-phenylalanine-proline-
arginine-phenylalanine-alanine-glycine-phenylanine-proline self-assembled into helical
filaments of single monomer diameters that promoted �-� stacking of the phenylala-
nines in a manner similar to that proposed (30, 37) to confer conductivity to G. sul-
furreducens e-pili (38). Films of the fibers were conductive (38). Various other short
peptides will, under the appropriate conditions, assemble into networks of nanofila-
ments that exhibit conductivity, which is enhanced by increasing the �-� stacking of
aromatic amino acids (39–41). These results further suggest that it may eventually be
possible to design self-assembling peptides that yield protein nanowires with conduc-
tivities comparable to those of microbially assembled e-pili.

CELLS AND BIOFILMS AS LIVING ELECTRONIC DEVICES

An additional step toward green electronics is to move beyond mere incorporation
of e-biologics as components of electronic devices and grow a living device that is
electronically responsive. G. sulfurreducens biofilms are as naturally conductive as some
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synthetic organic conducting polymers and exhibit transistor-like as well as superca-
pacitor properties (30, 42, 43). E. coli biofilms can be made conductive by introducing
metal-binding motifs to curli fibers and exposing the biofilms to gold nanoparticles
(44). Peptides that facilitate attachment of semiconducting materials or promote
mineral nucleation on curli fibers are also available (44, 45). Multiple strategies have
been developed for controlling the spacing of the functionalized regions along the
length of the curli fibers, further expanding the range of filament performance (44).
Living biofilms can potentially be programmed to extend, and in the case of e-pili also
retract, filament networks in response to chemical, light, or electrical signals. Encasing
cells in polymeric materials can help stabilize electronic biofilms (46), and genetic
modification greatly increased the cohesiveness and conductivity of the electronic
biofilm material (47). Three-dimensional (3-D) printing of cells can facilitate high-
resolution patterning (48). When cell viability is maintained, biofilm-based electronic
devices have the capacity for self-repair. The ability of some microorganisms to
generate a current makes self-powering devices possible (49). Living sensors and
microbial computers can be constructed by introducing genetic circuits that control
when the cells can produce an electrical signal (50, 51).

CONCLUSIONS AND OUTLOOK

It remains to be seen whether commercially viable applications will emerge from
e-biologics. The available research shows that the potential societal benefits on both
the front end (fabrication) and back end (disposal) could be enormous in terms of
resources saved and reduction of toxic e-waste. However, the sustainability of
e-biologics is unlikely to be the driver for their initial incorporation in electronic devices.
More likely, early adoption will require enhanced performance over existing materials.
For example, conductive proteins may be superior for some sensing applications
because it should be easier to functionalize protein nanowires with diverse aptamers
that interact with analytes than comparable nonbiological nanowire materials, such as
carbon nanotubes or silicon nanowires. Additional benefits of e-biologics may be
realized in the development of sensors for biomedical and environmental monitoring
where there is a premium on biocompatibility and/or the ability to function in water.
e-Pili are stable and function well in water, whereas silicon nanowires dissolve (52).
Billions of years of evolution have optimized some e-biologics for electron-based
electrical communication with cellular components, a key advantage for some biomed-
ical applications.

The search for e-biologics in nature has been very limited and should be expanded
to identify unique materials that may expand applications. Intriguing in this regard are
the cable bacteria, which form multicellular chains that appear to be capable of
transporting electrons over centimeters (53). Their mechanism for electron transport is
not known, but it might involve some novel form of conductive biological material.
Simple screening tools for prospecting for new electronic materials within the diverse
world of difficult-to-culture microorganisms (25) are helpful, but ultimately, sophisti-
cated characterization techniques, not commonly accessible to microbiologists, are
essential to evaluate these materials. Interdisciplinary collaboration between microbi-
ologists, physicists, material scientists, biochemists, and electrical engineers will be
necessary to move this field forward and make the applications a reality.
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