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Statistical determinants 
of visuomotor adaptation 
along different dimensions 
during naturalistic 3D reaches
E. Ferrea1*, J. Franke1,2, P. Morel1,4,5 & A. Gail1,2,3,5

Neurorehabilitation in patients suffering from motor deficits relies on relearning or re-adapting motor 
skills. Yet our understanding of motor learning is based mostly on results from one or two-dimensional 
experimental paradigms with highly confined movements. Since everyday movements are conducted 
in three-dimensional space, it is important to further our understanding about the effect that 
gravitational forces or perceptual anisotropy might or might not have on motor learning along all 
different dimensions relative to the body. Here we test how well existing concepts of motor learning 
generalize to movements in 3D. We ask how a subject’s variability in movement planning and sensory 
perception influences motor adaptation along three different body axes. To extract variability and 
relate it to adaptation rate, we employed a novel hierarchical two-state space model using Bayesian 
modeling via Hamiltonian Monte Carlo procedures. Our results show that differences in adaptation 
rate occur between the coronal, sagittal and horizontal planes and can be explained by the Kalman 
gain, i.e., a statistically optimal solution integrating planning and sensory information weighted by 
the inverse of their variability. This indicates that optimal integration theory for error correction holds 
for 3D movements and explains adaptation rate variation between movements in different planes.

Studies of motor control and motor adaptation previously have been performed mostly in one or two-dimen-
sional settings1–7. It is unclear, how well these findings generalize to movements in 3D, since 3D settings apply 
much less physical constraints on body pose and movements8,9. Unless movements are constrained in a hori-
zontal plane by a table or supported by an exoskeleton, gravity induces a force anisotropy; unless movements 
are conducted in a frontoparallel plane, visual depth induces a perceptual anisotropy. It is unknown, if and how 
differences in the way subjects plan movements and in the way they perceive the environment and their own 
movement along different dimensions translate into motor adaptation anisotropy. Here we directly compared 
adaptation in different dimensions in the context of naturalistic movements in 3D.

Perceptual as well as other factors might contribute to adaptation anisotropies. Studies in 3D virtual reality 
(VR) found that adaptation along a vertical axis entails a reduced learning rate relative to the other two axes when 
a simultaneous triaxial perturbation was applied10. The authors proposed that their results are a consequence of 
the higher weight given to proprioception when adjusting movements along the vertical axis compared to sagittal 
or horizontal axis, considering/assuming that motor learning based on proprioceptive feedback entails a lower 
learning rate than based on visual feedback. We will refer to the variability attributed to visual or proprioceptive 
feedback and affecting the estimate of the effector (hand) position as “measurement variability”11. This term 
does not only include the variability that is accessible to the central nervous representations only via sensory 
feedback but also includes the variability that is added to the movement during execution due to motor noise 
at the “periphery”12 (e.g., muscles). However, not only measurement variability matters. According to optimal 
feedback control theory (OFC), the nervous system optimally (with respect to a specified goal) combines sensory 
feedback (e.g. visual and proprioceptive) information with a forward prediction of the body’s state to control 
movements and to correct errors13–16. During motor adaptation, this forward model is updated to reduce a 
sensory prediction error arising from a mismatch between its prediction and the sensory feedback. Variability 
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is also present in the forward model in the form of variability in movement planning11,12,17–21 which might result 
from the stochastic nature of neuronal processes in sensorimotor transformations. We referred to it as “planning 
variability”, and it directly affects the reliability of the forward model prediction22–26. Here, we test the prediction 
of optimal integration theory that planning and measurement variability between different dimensions relative 
to the body determine the corresponding motor adaptation rates17–20,27.

According to optimal integration theory, a statistically optimal solution for the update of the forward model 
during adaptation is the Kalman filter28, which updates the forward model from the experienced error pro-
portionally to the inverse of measurement variability and planning variability11,29,30. Since a close approxima-
tion of the Kalman gain is given by the planning variability divided by the sum of planning and measurement 
variabilities11, an increased variability in the neuronal processing affecting the forward model (high planning 
variability) would increase the Kalman gain and allow faster corrections of the experienced error, whereas a 
higher variability in the sensory feedback (high measurement variability) would decrease the Kalman gain and 
therefore lead to slower adaptation. Previous studies found that human behavior approaches that of an optimal 
learner11,21,31 showing that adaptation rate positively correlates with the Kalman gain calculated from the plan-
ning and measurement variabilities. Also, individual differences between subjects in the rate of motor adaptation 
can be largely explained by individual differences in the Kalman gain12, a prediction which we here test in the 
context of 3D movements. To study adaptation in naturalistic 3D movements, we leverage existing differences 
in planning and measurement variability in the different planes of space (coronal, sagittal, horizontal) instead 
of experimentally inducing variability. From previous work, we expect that the higher variability associated with 
depth perception reduces the rate of adaptation15,32. At the same time, planning variability might be elevated 
along the vertical axis given the stronger proprioceptive rather than visual component33 due to the need of 
compensating gravitational forces34–36.

Current experiments and models propose that sensorimotor adaptation is supported by two learning pro-
cesses, which act on different timescales, one fast adapting and fast forgetting and one slow adapting and slow 
forgetting7,37. To estimate adaptation rates separately for each learning process and link them to Kalman gain, we 
will fit both fast- and slow-state processes during sensorimotor adaptation. Compared to one-state models22,23,26, 
two-state models are sometimes believed to explain motor adaptation as a combination of explicit and implicit 
learning mechanisms, where explicit learning allows fast adaptation and implicit learning changes performance 
more slowly4,6,38. Two-state models also better explain phenomena like savings, i.e. improved learning due 
to repeated exposure39–41, and anterograde interference, i.e. the negative influence of past learning on future 
learning2,42, that was found to be partially correlated with explicit learning5. Moreover, neurophysiological evi-
dence of two-state learning dynamics was found in humans and monkeys43,44. In a VR context, explicit learning 
was found to have a stronger influence on the final adaptation level than in non-VR adaptation paradigm8. Given 
that two-state dynamics were found to better model adaptive behaviours of visuomotor rotation paradigms, 
especially in VR settings, our method will be focused on a two-state space model but the results will be also 
compared with a one-state model.

By considering the stochastic nature of error-based learning, we can independently estimate the measure-
ment and planning uncertainty from the empirical movement data during a 3D adaptation task using stochastic 
modelling. Stochastic modeling has been shown to better identify the time course of the hidden states45 compared 
to purely numerical methods such as least square fitting. Specifically, we use Bayesian inference via Hamiltonian 
Markov chain Monte Carlo sampling (referred to as Hamiltonian Monte Carlo, HMC) to implement a novel mul-
tilevel hierarchical version of the two-state space model fitting. Hierarchical modelling generally allows greater 
regularization of the subjects’ parameters and simultaneous estimates of the parameter distributions ultimately 
resulting in less overfitting of the data46. We evaluated the hierarchical model and compared it to another state-
of-the-art model performing Bayesian inference via an expectation–maximization (EM) algorithm45 without a 
hierarchical structure. We show that HMC allows for a better extraction of data on the two underlying motor 
learning states and the planning and measurement variabilities. Using hierarchical HMC models, we confirm 
that two-state models better explain our experimental three-dimensional data than single-state models. We, 
therefore, use the two-state hierarchical HMC model to test whether differences in adaptation dynamics can 
be found between movements and perturbations of different directions relative to the subject’s own body and 
whether these differences comply with optimal integration theory.

Materials and methods
Subjects.  Data were collected from 26 healthy subjects (age range 20–32, 10 females, 16 males). The study 
was performed under institutional guidelines for experiments with humans, adhered to the principles of the 
Declaration of Helsinki, and was approved by the ethics committee of the Georg-Elias-Mueller-Institute for Psy-
chology at the University of Goettingen. All the subjects were right-handed, had normal or corrected-to-normal 
vision and received financial compensation for their participation. The informed consent was obtained from all 
subjects and/or their legal guardian(s). Subjects received detailed written instructions for the task. They were 
asked to paraphrase the instructions in their own words to make sure they understood the task. The experiment 
was carried out in one single appointment that lasted between 2.5 and 3 h, depending on the subjects’ freely 
chosen breaks among blocks (see later).

Virtual reality setup.  Subjects sat in a darkened room at typical room temperature with no distracting 
noises. Subjects performed the visuomotor task in a three-dimensional (3D) virtual reality with Wheatstone 
stereoscopic view. Visual displays on two monitors were controlled by a customized C++ software similar to 
what was described in previous studies47,48. The images of the two monitors (one for each eye, BenQ XL2720T, 
27-inch diagonal, 1920 × 1080, 60 Hz refresh rate, BenQ, Taepei, Taiwan) were reflected by two semi-transparent 
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mirrors. (75 × 75 mm, 70/30 reflection/transmission plate beamsplitter, covered from the back to block transmis-
sion; stock #46–643, Edmund Optics Inc., Barrington, New Jersey, United States) that were angled 45° relative to 
the two monitors on each side of the subject (Fig. 1A).

The two screens render a 3D view of virtual objects on a dark background. To accommodate test subject 
ergonomics, we tilted the plane of view (mirrors and monitors) downward from horizontal by 30° towards the 
frontal direction (virtual horizontal). This ensured that arm movements in the physical space could be carried 
out in an ergonomic posture in front of the body while the virtual representation of the hand (the cursor) was 
aligned with the actual hand position. The virtual cube that defined the subjects’ workspace was centered on and 
aligned with the sagittal axis of the body. For the rest of the paper, we describe orientation relative to the axes of 
this cube, i.e. relative to the virtual, not the physical horizontal and vertical.

To optimize the 3D perception of the virtual workspace for each subject, the inter-pupillary distance was 
measured (range: 51 to 68 mm, mean = 59.48 mm) and the 3D projection was modified in the custom-made 
software accordingly. This has been shown to benefit depth perception, reduce image fusion problems and reduce 
fatigue in participants49.

Subjects performed controlled physical arm movements to control cursor movements in the 3D environment. 
For this, they moved a robotic manipulator (delta.3, Force Dimension, Nyon, Switzerland) with their dominant 
hand to place the 3D cursor position into visual target spheres. The manipulator captured the hand position at 
a sampling frequency of 2 kHz with a 0.02 mm resolution. Subjects could neither see their hand nor the robot 
handle. Instead, a cursor (yellow sphere, 6 mm diameter) indicated the virtual representation of the robot handle 
and therefore the hand position (Fig. 1B).

Behavioral task.  Subjects performed a 3D center-out reaching task, i.e. started their reaches from a central 
fixation position (indicated by sphere, semitransparent grey, 25 mm diameter) to one of eight potential target 
positions (grey sphere, 8 mm diameter) arranged at the corners of a 10 cm-sided cube centered on the fixation 
position (Fig. 1B,C). Each subject completed three blocks with breaks in between. One block consisted of 600 
successful trials: 120 baseline trials, then 240 perturbed trials, and 240 washout trials again without a perturba-
tion (Fig. 1D). Each block lasted between 20 and 25 min, depending on the performance of the subject. Breaks 
between blocks were adjusted according to the subject’s needs and usually lasted between 10 and 15 min for com-

Figure 1.   Virtual reality setup with robotic manipulator for testing visuomotor rotation adaptation of 
naturalistic reaches in different planes relative to the body. (A) Schematic representation of the 3D virtual reality 
setup. The two angled mirrors reflect the image from the two screens to the two eyes independently providing 
stereoscopic vision. The mirrors are semitransparent to allow calibration of the virtual reality space with the 
real hand position. During the experiments, transparency is blocked, so that the subjects do not see the robotic 
manipulator and their hand, but only the co-registered cursor. (B) Spatial and temporal structure of the 3D 
reaching task. Following a brief holding period in the center of a virtual cube, the subject has to reach to one 
of eight targets arranged at the corners of the cube. For ergonomic reasons, the cube is orientated relatively to 
the slightly downward-tilted workspace and head of the subject, not according to true horizontal. (C) Example 
baseline trajectories of a single subject. (D) Time course of the perturbation experiment. Following a baseline 
phase of 120 trials, a 30-degree visuomotor perturbation is applied for 240 trials, followed by a washout of 240 
additional trials. In three separate blocks for each subject, the perturbation is applied in the sagittal, coronal 
and horizontal plane, respectively. Note that all reaches are conducted along a diagonal direction, i.e., each 
movement is affected by either of the perturbations.
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pensating potential fatigue/savings/anterograde interference effects (see later). Before the actual experiment, a 
10-min training session was run to make subjects comfortable with the three-dimensional environment and to 
ensure a correct understanding and execution of the task.

At the beginning of each trial, subjects moved the cursor (co-localized with the physical hand position) into 
the central fixation sphere and held the cursor there for 200 ms (“hold fixation”; Fig. 1B). After this holding 
period, one of the eight potential targets was briefly highlighted by a spatial cue (semitransparent grey sphere 
of 25 mm diameter, centered on the target). The corners of the cube, and hence also the target, remained vis-
ible after the cue stimulus disappeared to allow precise localization of the target in the 3D space. The size of the 
spatial cue corresponded to the eligible area in which the movement had to end to be considered successful. 
The spatial cue remained visible for 300 ms and then disappeared together with the fixation sphere. This disap-
pearance served as a GO signal for the subjects. Subjects then had 500 ms time to leave the fixation sphere and 
begin their hand movement towards the target. For successful completion of the trial, it was sufficient that the 
cursor completely entered the target sphere, without the need to stop inside the eligible area. Success or failure 
was indicated by sound signals: high-pitch for success, low-pitch for failure. A trial failed if subjects had not left 
the starting sphere 500 ms after the GO signal, if the movement was stopped (speed below 3 cm/s) at any point 
outside the target area or lasted longer than 10 s. After each trial, subjects could immediately start a new trial by 
moving the cursor back to the starting position. The cursor was visible throughout all movements. The subjects 
were instructed about the task, not about specific failure criteria, but they experienced success and failure during 
the 10-min training session.

Within each block, we consistently applied the same 2D visuomotor perturbation to the 3D position of the 
cursor during all perturbation trials. Each perturbation affected the cursor position either within the xy-, the 
yz- or the xz-plane, respectively. This means, for every perturbation, one out of the three dimensions was left 
unperturbed, corresponding to the axis of rotation for the perturbation. In the perturbed trials, the workspace 
was rotated by 30 degrees counterclockwise around either the x (rotation in the sagittal plane), y (rotation in 
the horizontal plane) or z (rotation in the coronal plane) axes in each of the three blocks (Fig. 1D). The rotation 
was applied in each block to one of the three planes. As proof of concept, we verified that the projections of the 
trajectories on the perturbed planes look similar (Fig. 2A). The order of the blocks (perturbation planes) were 
controlled over the experiment using stratified randomization between subjects, to prevent potential effects of 
fatigue, interference or savings between blocks.

In the three blocks, the subjects conducted the same movements in terms of starting and end positions. 
We chose the corners of a cube as targets since any movement from the center of the cube to a corner always 
is a diagonal movement that is composed of equally large x-, y- and z-components. Therefore, the same target 
movement can be subjected to perturbations in each of the three planes parallel to the surfaces of the cube. This 
allowed us to compare perturbations in different body-centered dimensions without changing movement start 
and end positions, thereby avoiding potentially confounding effects of posture.

Within each block of trials, the order of the targets was pseudo-randomized such that all eight targets were 
presented within each set of eight successful trials. These 8-trial sets counted as epochs and the model fitting 
analysis was carried out on epochs rather than on single trials.

Data preprocessing.  Data were stored for offline analysis performed in MATLAB® R2018a (MathWorks, 
Inc., Natick, Massachusetts, United States). Data plots were generated with gramm, a MATLAB plotting library50. 
Trajectories were aligned in time to the start of the movement, defined as a speed increase above 3 cm/s, to when 
the hand reached the target, and resampled in 50 time steps, so that each trajectory was normalized in duration.

To calculate the spatial deviation of the hand position for each perturbed plane independent of target direc-
tion, the trajectory of each trial was projected on the axis orthogonal to the center-to-target direction and laying 
in the plane of the applied perturbation (Fig. 2B, perturbed dimension). To remove biases that would result from 
curved trajectories independent of any perturbation, we computed the average trajectory during baseline trials 
for each subject and block and subtracted these mean trajectories from each trajectory in the according block. 
From each of these normalized projections, the angular error from the straight line to the target can be calculated. 
In other words, we calculated for each movement the baseline-corrected trajectory after projecting it into the 
perturbed plane and then computed the deviation of this trajectory from a straight line to the target in this plane. 
Figure 2C shows, for one example subject, the average of the projected trajectories at baseline, during the last 
eight perturbation trials (late adaptation) for the one example plane (coronal plane). While baseline-corrected 
trajectories are on average straight during baseline (by construction), the early adaptation phase is characterized 
by curved trajectories with online movement corrections to reduce the error induced by the perturbed visual 
feedback. Later during adaptation, trajectories on average were straight again, i.e., the subject aimed at a direction 
suited to compensate the effect of perturbed feedback from beginning of the movement. To quantify movement 
corrections over the course of adaptation, we measure the deviation of the trajectory along the perturbed dimen-
sion when half the distance along the center-to-target dimension is travelled (Fig. 2C) and quantify it as angle.

Fitting model and procedure.  Existing Bayesian tools for fitting adaptation models12,45 can only estimate 
parameters from single experimental runs (changes over repeated trials in one task condition and one subject) 
despite the often hierarchical nature of the experiment (repeated trials interleaved with multiple conditions, 
multiple subjects).

To get more reliable estimates of subject-level and population-level learning parameters, we developed a 
hierarchical-model version of single-state and two-state models of adaptation. Hierarchical models for Bayesian 
inference allow to regularize the single subject fitted values by introducing a hyper-parameter at the population 
level. For this, we used the probabilistic programming language Stan51, through its MATLAB interface. Stan 
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allowed us to perform Bayesian inference with its implementation of a Hamiltonian Markov chain Monte Carlo 
method using a NUTS sampler algorithm52 for fitting the model parameters to the empirical data.

The underlying trial-by-trial adaptation model for the movement angle corrections is the following. For the 
trial n in subject j and perturbation plane p , the measured movement angle yjp(n) is:

with xjp(n) being the two-dimensional hidden internal state (planning angle). C is equal to [1, 1] to express the 
measured movement angle  yjp(n) as the sum of the two hidden states. εu,jp(n) is the measurement noise of the 
movement due to limited sensory accuracy of the agent, described by a normal distribution with zero mean: 
εu,jp(n) ∼ N

(

0, σu,jp
)

 . We refer to this term as measurement noise since in the model it reflects the uncertainty 
of estimating the position of the hand based on the sensory feedback with zero mean and standard deviation 
σu,jp from which we calculated the measurement variability by squaring the term σu,jp(σ 2

u,jp ). We use this term 
to differentiate it from the uncertainty arising at the central brain level (planning noise; see below).

We could also have termed “measurement variability” as execution variability since what is measured is the 
variability of the trajectory. However, since in our experimental paradigm/model, the differences in measurement 
variability modulate the execution variability, we prefer the term measurement variability.

The internal state xjp(n+ 1) in trial n+ 1 depends on the state in the previous trial n , with retention A, and 
the error e in the previous trial, with learning rate B. The error e is expressed as ejp(n) = p − yjp(n), where p is equal 
to thirty degrees during perturbed trials and zero degrees otherwise. The state update is affected by a planning 
noise (or state update error) εx(n) , which gives us the following:

(1)yjp(n) = C · xjp(n)+ εu,jp(n)

(2)xjp(n+ 1) = Ajpxjp(n)+ Bjpejp(n)+ εx,jp(n).

Figure 2.   Quantification of adaptation level. (A) Example trajectories from one subject. Each row/color of 
the graph corresponds to different planes of rotation. The trajectories are projected onto the plane which is 
perpendicular to the axis of visuomotor rotation for representation and analysis of the data in each of the three 
conditions (coronal, horizontal, sagittal). The trajectories show similarities across the three planes. (B) Within 
each plane, the trajectories are quantified along the two task relevant dimensions, the center-to-target dimension 
and the dimension orthogonal to it in the same plane, which we refer to as “perturbed” dimension. To compare 
data across tasks, each trajectory was resampled and rotated into this reference frame. At half of the normalized 
trajectory, the adaptation angle was calculated and used for model fitting. In this schematic representation, the 
subject-centered dimensions refer to the original movement axis (x, y or z) and define the original horizontal, 
sagittal or coronal planes of the setup. Movements are represented relative to task-relevant dimensions. The 
virtual target indicates the direction which would correct for the perturbation if movements were re-aimed at. 
(C) Examples of transformed trajectories from one subject during late adaptation.
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In the single-state model, Ajp and Bjp are positive scalars, and εx,jp(n) ∼ N
(

0, σx,jp
)

 . σx,jp is the standard 
deviation of the internal state error and allows calculating the planning noise by squaring the term σx,jp ( σ 2

x,jp ). 
For the two-state model, with the subscripts s and f indicating “slow” and “fast”:

In our model, all subject and plane-level parameters: σu,jp, as,jp , af ,jp, bs,jp , bf ,jp, σx,jp were drawn from popu-
lation-level normal distributions, e.g., for as,jp we define as,jp ∼ N

(

µas ,p, σas
)

 . Here, µas ,p and σas are population-
level hyper-parameters, corresponding to the population (between-subject) average of the slow retention for 
perturbation plane p and the population standard deviation of the slow retention.

To keep the model simple, we did not include common per-subject offsets in the average hyper-parameters 
across planes; in other words, the model we used did not take into account the fact that the same subjects partici-
pated in experimental runs with different perturbed planes. A variation of the model which permitted per-subject 
offsets yielded equivalent results (data not shown).

Bayesian inference requires priors for the hyper-parameters, which we chose wide to not constrain the model. 
Retention average hyper-parameter ( µas ,p,µaf ,p in the two-state model and µA,p in the single-state model) priors 
were ∼ N(1, 9) , learning rate average ( µbs ,p,µbf ,p and µB,p ) priors were ∼ N(0, 9) , and their population stand-
ard deviation hyper-parameter ( σas , σaf , σbs , σbf  and σA, σB ) priors were half-Cauchy distributions (location = 0, 
scale = 5)53. Priors of the population average and standard deviation hyper-parameters of the measurement and 
planning noise ( µσx ,p,µσu ,p and σσx , σσu ) were half-Cauchy distributions (location = 0, scale = 15). The conclusions 
from the model fitting do not critically depend on the exact choice of any of these parameters.

Steady‑state Kalman gain.  From the variances of the noise processes, we calculated the steady-state 
Kalman gain, as derived by Burge and colleagues11. In short, by combining measurement and state-update equa-
tions of the Kalman filter and assuming that a steady-state is reached, we can introduce the term σ 2

X+

t
 which 

consist of the variance of the best estimates given the two noisy measurements (see Burge et al., 2008, for full 
formula derivation):

The Kalman gain (K), weighting the contribution of planning and measurement variabilities in error cor-
rection, is calculated as follows and indicates the amount of correction that should be attributed to the error:

Validation of fitting procedure.  To validate our hierarchical Bayesian fitting algorithm, we compared 
it to a non-hierarchical algorithm by applying both to surrogate data sets. For this, we generated N = 100 arti-
ficial experimental runs using an underlying two-state time course with the same number of baseline, per-
turbation, and washout trials as in our experiment. For each simulation, each parameter was drawn from a 
random normal distribution approaching the values we observed in our data: as ~ N(0.93,0.03), af ~ N(0.55,0.2), 
bs ~ N(0.06,0.04), bf ~ N(0.18,0.08), planning variability ~ N(1.5,1), measurement variability ~ N(6,3). We then 
compared the accuracy of parameter estimations from different fitting methods, namely an EM algorithm45 and 
a non-hierarchical and a hierarchical HMC algorithm.

To quantify whether our two-state hierarchical algorithm introduces spurious correlations among the learning 
rates and the Kalman gain, we applied it to two versions of the surrogate datasets: One dataset was built with 200 
completely uncorrelated samples, whereas in a second data set, we imposed the slow learning rate (bs) equal to 
0.3 times the Kalman gain calculated according to (4).

Results
The subjects performed the task (three conditions: baseline, perturbation and washout) with a high success 
rate in all perturbed planes ((number of correct trials)/(number of total trials not aborted before start of move-
ment) > 99%). We used a generalized linear mixed effect model (GLMM) with a binomial distribution to test 
the effect of the perturbation in the different planes (fixed effect) on the success rate, with the subjects as ran-
dom effect. With the sagittal plane as intercept, there was no significant effect for the slope for the horizontal 
plane (t = 1.5477, DF = 34,963, p = 0.1217) and no significant effect for the slope of the coronal plane (t = 1.3976, 
DF = 34,963, p = 0.16223). This means that we did not observe differences in performance among the three 
perturbation planes.

Ajp =

[

as,jp 0

0 af ,jp

]

with constraints as,jp > af ,jp > 0

Bjp =

[

bs,jp
bf ,jp

]

with constraints bf ,jp > bs,jp > 0

εx,jp(n) ∼ N

([

0

0

]

,

[

σx,jp 0

0 σx,jp

])

.

(3)σ 2

X+

t
=

−σ 2
x +

√

(σ 2
x )

2 + 4σ 2
x σ

2
u

2
.

(4)K =

σ 2

X+

t
+ σ 2

x

σ 2

X+

t
+ σ 2

u + σ 2
x

.
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The subjects showed stereotypical adaptation time courses (Fig. 3A: average across subjects; supplementary 
Figs. 1–3: single subjects) during and after introduction of the perturbation with typical error correction profiles 
that compensate for the applied rotation. To test for differences among the three planes regarding the level of 
adaptation reached by the subjects (Fig. 3A), a one-way between-subjects ANOVA was conducted to compare 
the effects of the perturbed plane over the final adaptation level. The final adaptation level was calculated as the 
average of the movement deviation over the last 4 epochs of the perturbation period (Fig. 3B). We found that the 
subjects adapt differently to the perturbations depending on the plane of rotation (F(2,69) = 30.77, p = 2.8E−10). 
The final level of adaptation was significantly higher for perturbations in the coronal plane compared to the 
sagittal plane (coronal-sagittal comparison, p = 7.6E−05, post-hoc multi-comparison test corrected with Tukey’s 
honestly significant difference) and horizontal plane (coronal-horizontal comparison, p = 1.0E−08) (Fig. 3B). 
Moreover, perturbations in the sagittal plane provoke stronger adaptation than perturbations in the horizontal 
plane (sagittal-horizontal comparison, p = 0.004) (Fig. 3B).

To understand the underlying dynamic of the differences in adaptation, we modeled adaptation behavior in 
the three different visuomotor perturbation planes with a two-state model, which separately identified the slow 
and fast processes underlying adaptation. While our hierarchical Bayesian model fits data across conditions 
and subjects (see “Methods” section), Fig. 3C shows the fitted curves for one example subject performing three 
adaptation conditions.

Before comparing adaptation between the different planes, we evaluated whether in our three-dimensional 
task, a two-state model fits the data better than a single-state model. The single-state model shows larger root-
mean-square residuals, i.e., larger difference between modeled and observed adaptation trajectory (paired t-test, 
p = 6.6e−16). To take into account the number of free parameters when comparing models, we additionally 
computed the widely applicable information criterion (WAIC), an approximation of cross-validation for Bayes-
ian procedures54. The two-state model shows a lower WAIC compared to the single-state model (3.54E+04 and 
3.58e+04, respectively), confirming the advantage on using a two-stage model.

To validate our hierarchical fitting algorithm, we tested whether model parameters are better reconstructed 
by our two-state Bayesian HMC hierarchical algorithm compared to a state-of-the-art EM algorithm45. We also 
compared the HMC hierarchical model with the corresponding non-hierarchical HMC model. For this, we 
generated multiple surrogate two-state adaptation datasets with randomly sampled parameters (see Methods). 
We then tested how well the three algorithms retrieve the parameters of the surrogate datasets. The hierarchical 
algorithm better reconstructs all parameters (error is smaller and correlation is higher) (Fig. 4). We therefore 
decided to use a two-state model and independently fit the parameters for each perturbation plane.

Optimal integration (OI) theory predicts that the rate of adaptation correlates with the weighing between 
internal estimation and external sensory information for assessing the state of the system. A learner optimally 
integrating these two types of information approximates a Kalman filter that combines them depending on their 
respective variabilities. If planning (internal estimate) variability is high and measurement (sensory information) 
variability low during adaptation, the experienced error will be given credibility, and therefore faster learning 
will happen. In the opposite case, the learner tends to disregard the experienced error and corrections would 
happen slowly.

We fitted all learning parameters of the two-state model and the measurement and planning variabilities from 
our empirical data (Fig. 5A). From the posterior distributions of the slow learning coefficients (bs) of the three 
perturbation types, we calculated the distribution of the hyperparameter differences and express the credibility of 
the null value being included in this difference55. We found that the probability of the null value being included 
in the difference of two distributions is always lower than 5% (null value probability coronal-horizontal = 0, null 
value probability coronal-sagittal = 0.0249, null value probability sagittal-horizontal = 0.0033). When repeating 
the same analysis with the fast learning coefficients (bf) we also found that the probability of the null value being 
included in the difference of the distributions is also lower than 5% for all the comparisons (null value prob-
ability coronal-horizontal = 1.4444E−05, null value probability coronal-sagittal = 0.0376, null value probability 

Figure 3.   Visuomotor adaptation in three different planes relative to the body. (A) Averaged time course 
of adaptation across subjects for all perturbation planes. (B) Adaptation level reached at the end of the 
perturbation period for each plane (average of last four epochs, red box panel A). (C) Examples of data fitted 
with a one-state and a two-states learning model, respectively. Black points represent the subject’s data (average 
movement angle at half-trajectory within 8-trial epochs; 105 epochs represent 360 concatenated baseline trials, 
240 adaptation trials and 240 washout trials). The black dashed line shows the perturbation profile.
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Figure 4.   Comparison of hierarchical and non-hierarchical fitting algorithms. Parameter estimation quality for 
our HMC hierarchical fitting procedure (orange), an HMC non-hierarchical fitting procedure (red), and a EM 
fitting procedure45 (blue). For each random parameter setting of the surrogate two-state datasets, we represent 
the error in parameter reconstruction (estimated minus set parameter) for each fitting procedure, including 
the distributions of the errors, average and 95% confidence intervals of the squared error; and the correlation 
(average d 95% CI) between the estimated and set parameters (CC).
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sagittal-horizontal = 0.0213). These results indicate that we can assume with a high level of certainty (> 95%) 
that the learning coefficients differs among the perturbation types. To test if the above-mentioned mechanism 
of OI can explain the observed differences between the perturbed planes in our experiment, we also correlated 
planning and measurement variabilities with the slow learning rate bs for each experimental run in our dataset 
(Fig. 5B). Correlations between planning variability and the learning rate, as well as between measurement 
variability and learning rate, were low (respective R2: 0.13 and 0.11), but with a trend consistent to the OI pre-
dictions, i.e., low measurement noise and high planning noise correlate with higher values of the slow learning 
rate. When combining the contribution of the two noise parameters into an estimate of a Kalman gain for each 
subject, the slow learning rate was explained much better (R2 between K and bs: 0.48), with a high Kalman gain 
being associated with high learning rate. Notably, this correlation between Kalman gain (K) and slow learning 
rate (bs) is determined by the different levels for K and bs between the perturbation planes. This means, the slow 
learning rate is mostly explained by the plane of the workspace in which the perturbation is applied (R2 = 0.94), 
while it does not correlate with the Kalman gain variation across the individual subjects within a perturbation 
condition. Last, the fast learning component shows a correlation with the Kalman gain among perturbed planes 
(R2 between K and bf: 0.34).

A long washout plus additional waiting time between conditions prevented savings or anterograde effects 
when switching between different planes of perturbation. To test for this, a forward stepwise linear regression 
was used to identify possible predictors of the learning rates (bf or bs independently) out of the order of execu-
tion (1st executed task, 2nd execution task or 3rd executed task) and perturbed axis. At each step, variables were 
added based on p-values < 0.05. For both learning rates bs and bf, only the perturbed axis was added to the model 
with p = 2.98E−44 and p = 8.22E−14 respectively. This means that we did not observe a significant contribution 
of savings or anterograde effects on the learning rates.

Since the task uses multiple reach targets, one separate model could be fitted for each target unless one 
assumes full generalization between sequentially visited targets. To avoid this pitfall and corresponding increase 
in complexity, we fitted the model using epochs, motivated by the fact that in each epoch each target was visited 
one time. When we also tested the model for the case where full generalization happens between two consecutives 

Figure 5.   Comparison of two-state model parameters between the perturbation planes. (A) Estimated fast and 
slow retention ( af ,jp, as,jp ), learning rates ( bf ,jp, bs,jp ), and measurement and planning variabilities ( σx,jp , σu,jp ) 
for the sagittal (S), horizontal (H) and coronal (C) perturbation planes. Each color represents one subject. The 
error bars correspond to 95% credible intervals (i.e., contain 95% of the posterior probability) for the population 
average hyper-parameters µas ,p, µaf ,p, µbs ,p, µbf ,p, µσx ,p, µσu ,p . The steady-state Kalman gain K was 
computed from the posteriors of the measurement noise and planning noise. (B) Relationships between the slow 
learning rate bs and variability related parameters: measurement noise variability, planning noise variability, and 
steady-state Kalman gain. Points correspond to individual subjects’ parameters in the different rotation planes 
(coded by color). The correspondingly colored lines represent linear fits based on the across-subject parameter 
values within each plane. The grey line corresponds to a linear fit based on subjects’ parameters values across 
all planes. The horizontal and vertical error bars correspond to 95% credible intervals for the corresponding 
parameter population average hyper-parameters.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10198  | https://doi.org/10.1038/s41598-022-13866-y

www.nature.com/scientificreports/

targets, we found similar results as for the model trained on epochs (R2 between K and bs: 0.29, Supplementary 
Fig. 4).

We also validated the ability of our method to extract correlated learning parameters whenever present. For 
this, we simulated an additional set of data where the slow learning rate bs was imposed to be 0.3 times the steady-
state Kalman gain (see Methods). Figure 6A shows that we were able to reconstruct such correlation with our 
method. Conversely, when no correlation between the slow learning rate and the Kalman gain was introduced 
in the dataset, the method does not introduce spurious correlation. Figure 6 overall confirms the validity of our 
method for the study of correlations between two-state model parameters.

Discussion
We tested if observations and model assumptions about optimal integration (OI) theory for motor learning, as 
previously derived from one- or two-dimensional highly confined reach tasks, also hold true for largely uncon-
strained movements in three-dimensional space. We show that the rate of visuomotor adaptation under 3D 
stereoscopic vision depends on the plane in which a 2D visuomotor rotation perturbation is applied. Subjects 
adapted best to perturbations in the coronal plane followed by sagittal and horizontal planes. The rates of slow 
and fast learning correlated well with the Kalman gain when considering the variation across perturbation con-
ditions, but not across subjects within a condition. We could separately assess the within and across condition 
parameters with our novel hierarchical Bayesian HMC fitting of the data. These results show that important 
aspects of OI theories of motor control derived from 2D movements generalize to the largely unconstrained 3D 
movements studied here, at least at the average population level, but do not extend to the individual subject level 
for any of the applied perturbations12.

A novel two‑state hierarchical HMC algorithm for precise estimation of motor learning param-
eters.  We developed a novel HMC Bayesian fitting procedure with a multilevel hierarchical structure to take 
into account effects from multiple subjects performing a motor adaptation task in three different learning con-
ditions, i.e., when different planes relative to the body were perturbed. Naturally, such a hierarchical approach 
shows lower goodness-of-fit to single-subject adaptation curves than algorithms that focus on single-subject 
data since the hyper-parameter at the population level (i.e. all the samples coming from a same distribution) act 
as regularization term. But multi-subject experiments are typically designed to determine the effects of experi-
mental variations on the motor learning behavior independent of test subject. Hence, it is most important to best 
estimate the underlying learning parameters.

For the current experimental design, our procedure is better able to reconstruct actual model parameters 
than a state-of-the-art EM fitting algorithm45 or a non-hierarchical Bayesian HMC model, as revealed from the 
surrogate testing. This is due to the low identifiability of such two-state models for relatively short adaptation 
experiments comprising only dozens or few hundreds of trials per condition. The low identifiability is a result of 
random fluctuations in the shape of the adaptation curve and is easily associated with various learning param-
eters. In the hierarchical model, each parameter is sampled from a population-level distribution, the parameters 
of which are also part of the model. This makes extreme values for the reconstructed parameter less likely.

Using our hierarchical model, we show that a two-state model fits the data significantly better than a single-
state model. The two-state model is well established for subjects performing in a 2D environment7,37 and better 
explains learning mechanisms such as savings and anterograde interference in 2D settings38. As previously 
hypothesized4,6, the fast learning process could be partly associated to an explicit process and the slow learning 

Figure 6.   Recovery of simulated correlations between model parameters by the HMC algorithm. (A) A 
correlation among bs and K was introduced in the surrogate data by setting bs equal to 0.3 times K (dashed 
black line). (B) When no correlation between bs and K was added to the surrogate data, the HMC fitting 
algorithm did not introduce artificial spurious correlations.
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process to an implicit process, both with anatomically distinct associated brain areas6,20,43. While it is plausible 
to assume that an interplay of explicit and implicit learning mechanisms is independent of the dimensionality 
of the task, to our knowledge, the two-state model to date has not been demonstrated for adaptation paradigms 
involving 3D movements. If one accepts the association of fast state with explicit learning and slow state with 
implicit learning then the fact that we found a two-state model to better fit the adaptation data than a single-
state model, without having used a paradigm that explicitly enforces two-states dynamics (like re-learning after 
washout trials37), would indicate that the explicit learning component is more pronounced in our 3D compared 
to classic two-dimensional paradigms. This finding is also in line with a recent study showing that VR visuomotor 
rotation tasks have a stronger explicit component than non-VR tasks8. Last, despite the general assumptions that 
two-states model better explains phenomena like savings and anterograde interference than one-state models, a 
novel modelling framework56 taking into account the context where learning happens has been recently showed 
to better account for these phenomena than two-state models.

Differences in estimated planning and measurement noises explain differences in learning 
rate.  Motor learning studies are informative for motor rehabilitation protocols for patients that need to 
relearn or re-adapt existing motor schemes. These patients will necessarily perform their movements in a three-
dimensional environment57–60. In our experiment, subjects adapted best to perturbations in the coronal plane, 
followed by sagittal and horizontal planes. Differences in the slow and fast learning rates between the planes 
were associated with different adaptation levels that were achieved during perturbation trials in our data. In the 
following, we will discuss how these anisotropies in adaptation are related to anisotropies in estimated planning 
and measurement noise, and, hence, could be explained by effects of gravity and depth perception, respectively.

The fact that adaptation is slowest in the horizontal plane likely is explained by an anisotropy in planning 
variability resulting from gravity. Previous studies suggested that movements along the vertical dimension have a 
higher level of planning variability associated with gravity compensation33–36. Optimally combining uncertainties 
on planning together with uncertainties on the estimation of the effector position here then means that sensory 
measurements should be given more credibility in vertical movements due to the higher planning variability. 
This leads to the prediction that adaptive corrections in the horizontal plane should arise slower than corrections 
in the sagittal or coronal plane, since the latter contain the vertical dimension with the higher measurement 
credibility. Consistent with this view, perturbations in the horizontal plane in our data were associated with the 
slowest adaptation rates and lowest estimates of planning variability, while estimated measurement variability 
in the horizontal plane was close to the coronal plane (Fig. 5B).

The fact that adaptation is fastest in the coronal plane likely is explained by anisotropies in measurement 
variability resulting from visual depth perception. In our model, measurement noise represents the reliability of 
the subject’s measurements of the cursor position, i.e., the visual feedback about the movement. Subjects have 
to rely mainly on stereoscopy to estimate visual depth and visual localization is less precise in depth15,32. Since 
depth is not perturbed by a rotation in the coronal plane, measurement error is least in the coronal condition 
and adaptation should be faster compared to visuomotor rotations in the sagittal and horizontal planes which 
both resulted in perturbations of cursor depth. Consistent with this view, perturbations in the coronal plane were 
associated with the fastest adaptation rates and lowest estimates of measurement noise (Fig. 5B). Corresponding 
to this, other studies showed that subjects tend to adapt worse when the measurement variability (or sensory 
noise) was higher due to blurred error feedback11,14,21.

Final adaptation levels in our experiment tended to be lower than reported in the literature for 2D paradigms 
(see for example61). Whether this was due to higher complexity of 3D movements and/or more difficult 3D target 
and cursor localization is unclear. Adaptation experiments with movements being constrained to the coronal 
plane but otherwise using the same apparatus yielded higher adaptation levels in line with values reported by 
others (data not shown). Therefore, we think that the increased measurement variability of our experimental 
setting explains why we observe lower adaptation than standard adaptation experiments with expected lower 
measurement variability. In addition, it is possible that the generalization of adaptation among targets in our 3D 
space is reduced when compared to 2D movements and therefore lower adaptation rates have to be expected.

Optimal integration theory in 3D.  Previous studies11,12,21,26,31, provided evidence for the OI theory dur-
ing visuomotor adaptation. They showed that the planning component of motor noise correlates positively with 
the adaptation rate while the measurement component correlates negatively, at least when the respective noise 
component is experimentally kept constant. While the adaptation data from our 3D movements yielded similar 
trends, the correlation of slow learning rate with either measurement or planning variability was weak. For an 
optimal learner, the Kalman gain is indicative of the level of correction attributed to the experienced error11,21,31. 
This Kalman gain positively correlates with the slow learning rate in our data, supporting the idea that subjects 
optimally integrate the information relative to the internal state with experienced (visual) feedback. However, 
and as opposed to what was suggested in previous studies12,31, we observe the correlation between Kalman gain 
and learning rate only across different perturbation conditions. Within each perturbation condition and across 
individual subjects, there was no correlation between Kalman gain and learning rate.

One speculative reason for not observing this relationship is that in our experimental settings the ranges of 
measured learning rates (bs) are mainly determined by the plane of adaptation (Fig. 5B). It could be, that in our 
case, the higher measurement uncertainty of 3D adaptive movements affected the learning rate at the level that 
single subject differences could not any longer be observed.
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Conclusion
Here, we develop a novel HMC fitting procedure to correlate learning rates and noise levels estimated with the 
same model and without the need to experimentally manipulating these error variabilities. By applying this model 
to a sensorimotor adaptation task with naturalistic movements in 3D, we found that the rate of adaptation with 
which subjects counteract applied visuomotor rotations, depends on the statistics of the combined errors with 
which subjects plan and perceive movements. These errors differ between different axes relative to the body, 
likely due to gravity compensation during planning- and perception-induced anisotropies. This insight could be 
used in motor rehabilitation strategies by specifically targeting the orientation of the body relative to the target 
while performing reaching movements to accelerate learning.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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