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Abstract: Mitosis is a highly sophisticated and well-regulated process during the development and
differentiation of mammalian gametogenesis. The regulation of mitosis plays an essential role in
keeping the formulation in oogenesis and gametogenesis. In the past few years, substantial research
progress has been made by showing that cyclins/cyclin-dependent kinase (CDK) have roles in the
regulation of meiosis. In addition, more functional signaling molecules have been discovered in
mitosis. Growing evidence has also indicated that miRNAs influence cell cycling. In this review, we
focus on specific genes, cyclins/Cdk, signaling pathways/molecules, and miRNAs to discuss the latest
achievements in understanding their roles in mitosis during gametogenesis. Further elucidation of
mitosis during gametogenesis may facilitate delineating all processes of mammalian reproduction
and the development of disease treatments.
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1. Introduction

Gametogenesis is an essential biological process to produce heritable haploid gametes in
mammalian gonads, which includes oogenesis and spermatogenesis [1–3]. Between eight and
nine days post-coitum (dpc), the majority of primordial germ cells (PGCs) are arrested at the G2 phase
of the cell cycle [4]. In the germ cell proliferation stage, mouse PGCs enter into the genital ridge by
migrating along the endoderm and mesentery of the hindgut, during which PGCs proliferate to form a
certain number of germ cells via mitosis [5–7]. After arrival at the genital ridge, germ cells not only
differentiate into spermatogonia or oocytes to enter gametogenesis but also form the syncytium in
which multiple cells share one cytoplasm because of incomplete mitosis [8]. The syncytium contains a
mass of cytoplasm that has many nuclei but no internal cell boundaries due to a series of incomplete
cell division cycles. Before entering the genital ridge, there is no difference between XX (female)
and XY (male) PGCs. However, starting at about 12.5 dpc, female and male PGCs begin to diverge
dramatically [9]. In male mice before spermatogenesis, the mitosis of germ cells stops at the G0/G1
phase, which resume division when germ cells become spermatogonia after birth [8]. After mice are
born, their germ cells begin to differentiate into spermatogonia via a series of mitotic cell divisions [10].
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Conversely, in the female ovary, the mitosis of germ cells continues. Germ cells enter their first meiosis
at 13.5 dpc and are then arrested in the diploid phase at 17.5 dpc [11]. During meiosis, homologous
chromosomes align and pair with the synaptonemal complex formation to undergo homologous
recombination. Then, oocytes and spermatocytes also generate haploid germ cells [12,13].

It is clear that mitosis is an essential process for PGC migration and auxocyte proliferation.
Mitosis, a phase of the cell cycle, involves the following processes by which chromosomes migrate
to the middle of the cell simultaneously and segregate into two daughter cells equally through
the mitotic spindle before cytokinesis [14]. There are four phases in the cell cycle: G1, S, G2, and
M. The G1 phase is alternatively called the pre-replicative phase, during which some mRNAs and
proteins required for other phases are synthesized [15]. The S phase involves DNA replication, histone
synthesis, and nucleosome replication [16–18]. In the G2 phase, active cell growth and protein synthesis
ensures that cells enter mitosis. The M phase includes both mitosis and cytokinesis to separate
the genome and ensures that the two daughter cells inherit an equal and identical complement of
chromosomes [14,19]. It is exceedingly complex and highly regulated. Therefore, the M phase is usually
divided into five phases: prophase, prometaphase, metaphase, anaphase, and telophase. Prophase,
the first phase of mitosis in mammalian cells, includes the condensation of chromosomes, movement
of centrosomes, formation of the mitotic spindle, and nucleoli breakdown. Afterwards, the nuclear
envelope breaks down, and the chromosomes inside form protein structures named kinetochores
during prometaphase [20]. Kinetochores are protein structures that form at the centromere during
cell division and attach the chromosomes to the spindle fibers. In metaphase, chromosomes align
along the metaphase plate and attach to microtubules anchored to centrosomes which duplicate in
the S phase but separate in mitosis [21]. During anaphase, the separated sister chromosomes move
from the center of the spindle in the metaphase plate toward opposite poles of the cell (anaphase A),
and the mitotic spindle fibers elongate (anaphase B) [22]. Finally, as chromosomes reach the cell poles,
a nuclear envelope is reassembled around each set of chromatids, nucleoli reappear, and chromosomes
begin to decondense back into the expanded chromatin that is present during interphase.

2. Mitosis of Male Gametogenesis

Spermatogenesis is the process through which diploid spermatogenic stem cells grow into
haploid sperms in the male testis. There are some indispensable stages, including the mitosis of the
spermatogonial stem cell (SSC), meiosis of the spermatocyte, and spermiogenesis. The mitotic division
of SSCs is located adjacent to the basement membrane, which produces type A or B spermatogonia
(see Figure 1) [23]. Type A spermatogonia replenish the stem cells, and type B spermatogonia develop
into spermatocytes [24,25]. A single type A spermatogonia (Asingle or As) undergoes a self-renewing
division to produce two new As cells. As spermatogonia, often considered SSCs, must undergo
division to produce a pair of spermatogonial cells (Apaired or Apr). They then differentiate into 4–16
and even 32 spermatogonial cells (Aaligned or Aal) via a series of mitotic cell divisions [26,27]. Due
to rapid and incomplete cytokinesis, Apr and Aal connect to one another using intercellular bridges
(see Figure 2) [27,28]. Studies of the mouse male germline have shown that the cytoplasmic bridges
may permit “cytoplasmic sharing” of essential signals for synchronous cell divisions and facilitate
the sharing of gene products between post-meiotic haploid spermatids so that genetically distinct
spermatids remain phenotypically diploid [29,30]. During the mitosis of type A1 spermatogonia,
which differentiate from Aal cells, these germ cells located in the basement membrane migrate to
the seminiferous tubules [31]. A1 spermatogonia subsequently undergo six mitoses each, forming
A2, A3, A4, In, and B spermatogonia. Sertoli cells (SCs) also play a central role in spermatogenesis,
providing structural support and nutrition to developing germ cells and producing proteins that
influence the mitotic activity of spermatogonia [32,33]. The small kinetochore-associated protein
(SKAP) is a component of the mitotic spindle, which is essential for faithful chromosome segregation
during anaphase [34]. SKAP−/− mice grow normally without any obvious developmental defects.
Therefore, SKAP is dispensable for somatic cell divisions in mice. However, SKAP affects mitosis in
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spermatogenesis because Skap−/− mice have smaller testes and a strong decrease in sperm production
before meiosis compared with wildtype mice [35].
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Figure 1. Characteristics of mammalian spermatogonial stem cell (SSC) development. Gray areas
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3. Mitosis of Female Gametogenesis

Oogenesis is the process of female gamete development which takes place in ovaries. It is complex
and regulated by a vast number of intra- and extra-ovarian factors [36]. Oogonia, which are generated
from PGCs, proliferate by mitosis and form primary oocytes. However, unlike spermatogenesis,
oogonia are formed in large numbers from PGCs by mitosis during early fetal development, which
then arrest at prophase stage of the first meiotic division around the time of birth [37,38].

4. Gene Regulation of Mitosis during Mammalian Gametogenesis

PGCs divide into eggs or spermatids and emerge as clusters of multiple cells that share one
cytoplasm in early embryos [39,40]. Then, PGCs propagate rapidly and grow in number but stop
propagation during the late pregnancy period in mammals [41]. In this period, female germ cells enter
the meiotic prophase instantly, whereas male germ cells subsequently arrest in the G1 phase until
puberty. The process of mitosis in gametes is regulated by several genes. Studies have demonstrated
that the specific deletion of Mastl in mouse PGCs leads to the failure of cells to proceed beyond the
metaphase-like stage of mitosis. This mitotic defect results in the activation of the DNA damage
response pathway. Thus, the majority of Mastl−/− PGCs undergo apoptosis [42]. Pin1, a peptidyl-prolyl
isomerase, is involved in the regulation of mammalian PGC proliferation. PGCs have a prolonged cell
cycle in the absence of Pin1, leading to fewer cell divisions and strikingly fewer Pin1−/− PGCs by the end
of the proliferative phase. Therefore, male and female Pin1−/− mice have profound fertility defects [43].
The PTEN gene can inhibit cell proliferation via restraint of the PI3K/AKT pathway, as revealed
by Pten−/− PGCs both in vivo and in vitro. These cells show significantly increased mitosis [44–46].
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Similarly, Kit (Kit oncogene) and Kitl (Kit ligand or stem cell factor) are also required for the migration
and proliferation of PGCs throughout embryogenesis [47,48].

Some DNA repair-associated genes are also involved in the proliferation of PGCs. Rev7 and Mcm9
are related to cell cycle regulation and homologous recombination repair by recruiting RAD51 to sites
of DNA damage in mammals [49–51]. Germ cell depletion is the result of reduced PGC numbers both
before and after they arrive in the primitive gonads of Mcn9 mutant mice [52]. Rev7−/− mice display
the loss of germ cells by apoptotic cell death during migration and germ cell aplasia in both testes and
ovaries after birth [53]. According to these studies, DNA repair-associated genes, such as Rev, also
regulate gamete mitosis.

In many mammalian species, the Nanos2 gene encoding RNA-binding proteins was identified as
functional in controlling the proliferation of PGCs and maintaining the stemness of undifferentiating
SSCs [54]. In male nanos2/nanos3-null mice, the size and weight of their testes are reduced and no gamete
cells can be detected compared to nanos2/nanos3+/+ mice [55,56]. These findings suggest that Nanos
genes are involved in the maintenance of mitosis in gametes by supporting their proliferation and/or
suppressing apoptosis. The Sox4 gene is expressed in gonadal supporting cells, the organizing center
of gonad organogenesis. However, Nanos2 in male Sox4-null mice is expressed at levels substantially
lower than in wildtype testes, indicating that the mitosis of male germ cells is severely impaired in
Sox4–/– testes [57]. DND1 expressed in mouse germ cells regulates the mitotic arrest of male germ cells
through the translational regulation of cell cycle-related genes [58].

4.1. Cyclin/CDK Regulation of Mitosis during Mammalian Gametogenesis

Cdks are serine/threonine kinases, and their catalytic activities are modulated by interactions
with cyclins and Cdk inhibitors. They have roles in regulating the cell cycle, transcription, and mRNA
processing [59]. In mammalian somatic cells, there are at least four different Cdks to regulate the
interphase of mitosis: Cdk2, Cdk3, Cdk4, and Cdk6. After interphase, Cdk1 drive cells through
mitosis (Figure 2A) [60,61]. To perform kinase activity, CDK must bind to a cyclin as a regulatory
protein. Only the cyclin–CDK complex is an active kinase. Using a cell cycle array revealed that PGCs
were comparable with somatic cells in the G1 phase, and it included expression of cyclin D3 (ccnd3),
the retinoblastoma protein (pRB) family, and CDK inhibitors [62]. According to the mammalian
PGC cycle, cyclin E and cyclin D were found to be the predominant cyclins. Cyclin D activates
Cdk4/6, and the pRB family is phosphorylated in the early G1 phase. On the contrary, the reason
why prospermatogonia undergo mitotic arrest at the G1/S phase checkpoint is that cyclin E1/2 and
cyclin B1/2 are downregulated and cyclinB3 is upregulated, which result in the hypophosphorylation
of pRB. Then, E2F transcription factors are released, leading to the activation and transcription of
E2F-responsive genes for cell cycle progression [63]. During the late G1 phase, Cdk2 is stimulated via
binding to cyclin E [64]. A study shows that the presence of lower levels of cyclin E1/E2 and cyclin
B1/B2 in the 13.5–14.5 dpc cell cycle arrested prospermatogonia, as compared with mitotic 11.5–12.5 dpc
PGCs [62]. Subsequently, prospermatogonia pass the restriction point of the G1/S phase and enter the
S phase. Similar to E-type cyclin binding, cyclin A synthesized at the onset of S phase also activates
Cdk2 that phosphorylates proteins involved in DNA replication [65]. At the transition phase of G2/M
in germinal cells, cyclin A2 binds to Cdk1, which is required for the initiation of prophase. Finally, the
cyclin B complex with Cdk1 drives entry into the M phase [66,67].

Ccna2, a cyclin A gene, is expressed in the spermatogonia of the adult mouse testis, which may
have an S phase function in the mitotic cell cycle of spermatogonial germ cells. During embryogenesis,
D-type cyclin expression is primarily restricted to CCND3 in male germ cells [68]. Cyclins D1 and D3
are expressed in spermatogonia at all cell cycle phases of the seminiferous tubule epithelium in the
adult testis. However, cyclin D2 is detected at the stage when type Aal spermatogonia differentiate
into type A1 spermatogonia, indicating that cyclin D2 is involved in SSC proliferation [69]. The
Cdkn1b-encoded protein binds to and prevents the activation of cyclin E–CDK2 and cyclin D–CDK4
complexes. Cdkn1b−/− SSCs show suppressed proliferation and diminished expression of CDK4 and
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pRB1, resulting in the poor phosphorylation of pRB1. In cultured SSCs, pRB1 deficiency leads to cell
cycle arrest and apoptosis [70]. In mitosis-arrested male germ cells, p27Kip1 and p15INK4b encoded
by Cdkn1b and Cdkn2b genes are upregulated, which inhibit CyclinE–cdk2 and CyclinD–cdk4/6,
respectively. P27Kip1 and p15INK4b ensure that hypophosphorylated pRB can inhibit the G1/S phase
transition and suppress cyclin E expression [63]. pRB1 is required for germ cell entry into G1/0 arrest
in the normal gonad. However, in pRB−/− mice, upregulation of other cell cycle suppressors, including
Cdkn1b and Cdkn2b, can induce delayed germ cell arrest [71].Cells 2019, 8, x 5 of 15 
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4.2. APC/C Regulation of Mitosis during Mammalian Gametogenesis

The anaphase-promoting complex or cyclosome (APC/C), the E3 ubiquitin ligase, plays an
important role in the regulation of the mitotic cell cycle [72]. In the mitotic cell, the spindle assembly
checkpoint (SAC) ensures that each daughter cell inherits an identical set of chromosomes. With
the activated APC/C, it coordinates the accurate attachment of sister chromatid kinetochores to the
spindle [73].

During mitosis in mammalian gametogenesis, the germ cell cycle is controlled by the oscillation in
activity of CDKs. Like the somatic cells, this precisely regulated degradation process is accomplished
by APC/C catalyzed ubiquitination in germ cells [74]. Cell division cycle 20 (CDC20) and CDC20
homologue 1 (CDH1) are the activating subunits of APC/C (Figure 2B) [74]. The APC/C is inactive
from the late G1 phase to early prophase to ensure its main substrates accumulate. The APC/C–CDH1
complex mainly regulates the process of anaphase and the early G1 phase. At the G1/S transition,
APC/C–CDH1 is inactivated by a combination of binding to the APC/C inhibitor early mitotic inhibitor
1 (EMI1), degradation of ubiquitin-conjugating enzyme E2C (UBE2C), and CDH1 phosphorylation.
APC/C–CDC20 complexes are primarily regulated by the degradation of related substrates in the
prometaphase and metaphase phases [75]. In the G2 phase, CDC20 is phosphorylated by CDK1, partially
activating the phase using APC/C interaction. In the prometaphase, the activity of the APC/C–CDC20
complex is inhibited during the G2/M phase. The APC/C–CDC20 complex ubiquitinates cell cyclin
A and NIMA-related expressed kinase 2A (NEK2A). Cyclin B1–CDK1 complexes and securin keep
the cell in the M phase. Thus, in the metaphase, the APC/C–CDC20 complex degrades cyclin B1 and
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CDK1 to end cell division. In anaphase, CDH1 is dephosphorylated and the APC/C–CDH1 complex is
activated. The APC/C–CDH1 complex ubiquitinates CDC20, Aurora A/B, and other kinases to promote
the end of mitosis [72].

5. Signaling Pathways/Molecules Regulating Mitosis during Mammalian Gametogenesis

SSCs are located in the basal membrane of the convoluted spermatogonia, which can not only
undergo self-renewal to maintain a stable SSC number but also generate spermatocytes by directional
differentiation [76]. The processes of SSC self-renewal and differentiation are also regulated by some
signaling pathways or signaling molecules [77].

The steady state of mitosis in SSCs is driven by a complex paracrine and endocrine system within
structurally well-organized tissue. Central to this system are SCs that provide nutritional and structural
support for the self-renewal and differentiation of germ cells (Figure 3) [78,79]. GDNF, a paracrine factor,
is secreted by SCs. It promotes SSC self-renewal and maintenance via mitosis. In mice, GDNF plays a role
in promoting spermatogonial self-renewal using RET tyrosine kinase and a ligand-specific co-receptor,
GFRα1, which is expressed on undifferentiated type A spermatogonia [80–82]. Because GFRαA1 and
RET are concomitantly expressed in Apaired spermatogonia and some Aaligned spermatogonia, GDNF
induces and maintains the proliferation of these cells as SSCs begin differentiation [83]. According
to single cell RNA-seq data from mice and humans, GFRα1 is mostly expressed in undifferentiated
spermatogonia and co-expressed with Pou3f1, Bcl6b, and Etv5 [84,85]. Etv5 is a transcription factor
secreted by SCs which can promote the RET synthesis of GDNF receptor and ensure that the GDNF
signal pathway is transmitted from the extracellular to the intracellular space [86]. Pou3f1 is a member
of the transcriptor OCT combined with the family, which also has an important modulatory function for
SSC proliferation [87]. Bcl6b, a member of the poxvirus and zinc finger (POZ) family of transcriptional
repressors, is another target of GDNF that was recently identified in SSCs by microarray analysis [88].
When GDNF is applied to a germline stem cell culture, Akt is phosphorylated rapidly, and the addition
of a chemical inhibitor of PI3K prevents GS cell self-renewal, indicating that the PI3K/Akt pathway is
essential for the self-renewal of spermatogonial stem cells [89]. GDNF binds to GFRα1 on the SSC
membranes to form the GDNF–GFRα1 complex, which binds and activates RET. The MAPK, SFK,
and PI3K/AKT signaling pathways will be further activated [90]. In SSCs, the phosphorylation of
AKT is mainly activated by PI3K, which results in AKT self-activation. The activation of AKT can
switch up the expression of transcription factors, such as Etv5, Pou3f1, and Bcl6b, to promote SSC
self-renewal [91].

Similarly, the SFK (SRC family kinase) pathway also mediates GDNF functions in SSCs in vitro [92].
Experiments using SSCs treated with GDNF have shown that GDNF increases the number of SSCs
and that downstream targets of the GDNF/RET signaling pathway, such as ID4, BCL6, ETV5, and
LHX1, are critical for SSC self-renewal [93,94]. GFRα-1 and Ret are expressed in SSCs, and the Src
family co-precipitates with Ret after GDNF stimulation. SFK promotes SSC proliferation through Ret
activation. Src and Yes play an especially predominant role in the immediate response of primary
SSCs to GDNF. Further, Src activates a PI3K/Akt signaling pathway and switches up the expression of
transcription factors, such as Etv5, Pou3f1, and Bcl6b [95].

FGF is also a bona fide mitosis factor for the self-renewal of spermatogonial stem cells. In vitro
studies have shown that FGF2 promotes mitogenic effects, and the differentiation of SSCs can be
blocked by the addition of FGF2 to culture medium, although it’s in vivo effects are unclear [96,97].
FGF2 relies on MAP2K1 activation to drive SSC self-renewal via upregulation of Etv5, Bcl6b, and Lhx1
genes, according to a mouse germline stem cell culture system that allows the in vitro expansion of
SSCs [98]. Similar to FGF2, FGF5 promotes the proliferation of cultured GFRα1+ spermatogonia and
mouse SSC line C18-4 in a time- and dose-dependent manner via ERK and AKT activation [99,100].
FGF5 also upregulates genes associated with self-renewal, such as Etv5, Id4, and Shisa6 [101–103].
CXCL12, a chemokine protein, specifically binds to the CXCR4 receptor, which is expressed in Sertoli
cells to regulate SSC self-renewal and maintenance. The signaling response to CXCL12–CXCR4
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activation is involved in the prevention of the transition to a progenitor state, the regulation of SSC
proliferation, and the guidance of SSC homing to cognate niches [104].Cells 2019, 8, x 7 of 15 
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Taken together, GDNF and FGF2 signaling work in concert to activate PI3K/AKT, SFK, and
MAP2K1, which are critical regulators to switch up the expression of transcription factors. Furthermore,
the transcription factor Etv5 regulates CXCR4 expression in SSCs, thereby controlling the signaling
response of CXCL12 to influence self-renewal, proliferation, and homing [105].

6. mRNA Regulation in Mitosis during Mammalian Gametogenesis

During the mitosis of mammalian gametes, microRNAs (miRNAs), small non-coding RNAs
18–23 nt in length, are viewed as active regulators in the post-transcriptional regulatory processes
of germ cells [106,107]. Dicer, as an RNase III endonuclease, plays a critical role in the biogenesis of
miRNAs [108]. In the Dicer-deleted testis, PGCs and spermatogonia exhibit poor proliferation [109].
Here, we discuss some specific roles of a few miRNA molecules in mitosis during gametogenesis
(Table 1). miR-17-2 is highly expressed at the stage of PGC development, which regulates the mitosis of
PGCs. Moreover, miRNA-17-5p, -18, -19a, and -19b, which are only expressed in females, regulate PGC
exit from mitotic proliferation [110]. MiR-19a and -19b may regulate PTEN dosage, which negatively
controls PGC proliferation [111]. In a recent study, miRNA-31-5p mimics decreased the level of cyclin
A2 rather than cyclin D1 or cyclin E1, which regulates the proliferation and DNA synthesis of human
SSCs via the PAK1-JAZF1-cyclin A2 pathway [112]. The miR-290-295 cluster is only present in placental
mammals. It consists of seven miRNA precursors: miR-290, miR-291a, miR-292, miR-291b, miR-293,
miR-294, and miR-295. The miR-290-295 cluster affects the cell cycle of PGCs at multiple points. Under
certain conditions, it might assist G1/S progression and regulate the G2–M transition of PGCs and ES
cells [110,113]. MiR-302 family members were specifically expressed in PGCs, and the validated target
gene is the cyclin-dependent kinase inhibitor 1A (Cdkn1a). MiR-302 downregulated Cdkn1a to ensure
that PGCs enter the G1/S transition of mitosis [114]. MiR-202 family members, including miR-202-3p
and miR-202-5p, are highly expressed in mouse spermatogonial stem cells (SSCs) and are oppositely
regulated by GDNF, a key factor for SSC self-renewal. By using CRISPR/Cas9-mediated knockout
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of miR-202 in cultured SSCs, a study found that miR-202−/− SSCs initiate premature differentiation,
accompanied by reduced stem cell activity and increased mitosis [115]. Dmrt1 determines whether
male germ cells undergo mitosis and spermatogonial differentiation or meiosis by controlling cyclical
gene expression in Sertoli cells [116]. MiR-224 targets the DMRT1 3′-UTR, and the overexpression of
miR-224 influences SSC differentiation by suppressing DMRT1 expression [117].

Table 1. miRNA molecules implicated in germ cell mitosis.

Name Expression Proposed Function
Targets Involved
in Mammalian
Gametogenesis

Reference

miR-17-92 cluster PGCs, ES cells

Regulator of
differentiation,

proliferation and
apoptosis

STAT3, E2F1, PTEN [110,118,119]

miRNA-31-5p SSCs Regulator of SSCs
proliferation

JAZF1 and Cyclin
A2 [112]

miR-290-295
cluster PGCs G1 to S phase cell cycle

control WEE1, FBXL5 [110,113]

miR-202 SSCs Regulator of cell cycle
and apoptosis of mitosis Rbfox, Cpeb1 [115]

miR-224 SSCs
Control SSCs

self-renewal and cyclical
gene expression

DMRT1 [117]

MiR-302-67
cluster PGCs targeting inhibitors of

the G1/S transition Cdkn1a [114,120]

miR-125a Later male PGCs Control of differentiation LIN28 [110]

miR-200c Early PGCs Control of apoptosis ZEB1, TRKB [110,121]

miR-21 SSCs SSCs self-renewal,
anti-apoptosis ZEB1, TRKB [122]

miR-221 PGCs Regulate mitotic arrest in
male germ cells DND1 [123]

miR-34c PGCs Cell cycle regulator CCND3, CCNG1,
CCNB1 NOTCH2 [124,125]

7. Concluding Remarks

We have systematically summarized the regulation of genes, cyclins/CDK, signaling molecules,
and miRNAs in mitosis during gametogenesis. PGCs undergo rapid mitosis during migration to
the reproductive ridge, and spermatogonial stem cells undergo mitosis during self-renewal and
differentiation [118]. In recent years, with the deepening of research and technological progress,
we are gradually expanding our knowledge of mitosis during gametogenesis, although specific
mitosis mechanisms of gametes are still unclear. For example, it remains to be revealed how different
intracellular pathways activated by external signals are integrated and functionally associated with
cell cycle cyclins, CDK controllers, and miRNAs in mitosis of gametes [64]. In addition, it is unknown
how male, but not female, mouse PGCs enter mitotic arrest at 13.5–14.5 dpc. To further explore
these aspects, in vitro reconstitution of mouse germ cell development from mPSCs may provide a
robust foundation to understand the mitosis mechanism of germ cells, including signaling pathways,
transcriptional networks, and epigenetic regulation. In the near future, omics analysis and structural
biology may also play indispensable roles in resolving basic issues in gamete mitosis. Many molecules
involved in the regulation of mitosis during gametogenesis have been identified; however, further
investigation will be essential to elucidate the signaling pathways assigned for maintenance of
undifferentiated state, self-renewal, and differentiation [82]. In the future, the functions of putative
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mitosis during gametogenesis molecules and signaling pathways need to be verified via a functional
transplantation assay.
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NEK2A NIMA-related expressed kinase 2A
PI3K phosphatidylinositol 3-kinase
POZ poxvirus and zinc finger
pRB retinoblastoma protein
SCs Sertoli cells
SFK src family kinase
SKAP Small kinetochore-associated protein
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