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One of the most significant challenges in the application of brain-computer interfaces
(BCI) is the large performance variation, which often occurs over time or across users.
Recent evidence suggests that the physiological states may explain this performance
variation in BCI, however, the underlying neurophysiological mechanism is unclear.
In this study, we conducted a seven-session motor-imagery (MI) experiment on 20
healthy subjects to investigate the neurophysiological mechanism on the performance
variation. The classification accuracy was calculated offline by common spatial pattern
(CSP) and support vector machine (SVM) algorithms to measure the MI performance
of each subject and session. Relative Power (RP) values from different rhythms and
task stages were used to reflect the physiological states and their correlation with
the BCI performance was investigated. Results showed that the alpha band RP from
the supplementary motor area (SMA) within a few seconds before MI was positively
correlated with performance. Besides, the changes of RP between task and pre-task
stage from theta, alpha, and gamma band were also found to be correlated with
performance both across time and subjects. These findings reveal a neurophysiological
manifestation of the performance variations, and would further provide a way to improve
the BCI performance.

Keywords: relative power, brain rhythms, motor imagery, performance variation, electroencephalogram

INTRODUCTION

Recent evidence suggests that Motor Imagery (MI) based Brain-Computer Interface (BCI) has
great promise in motor functional rehabilitation with stroke patients (Monge-Pereira et al., 2017).
However, only a few MI-BCI systems have been applied so far for stroke patients as a standardized
clinical treatment (Cervera et al., 2018; López-Larraz et al., 2018). One of the biggest obstacles to
the wide adoption of BCI in stroke rehabilitation is the considerable variation in BCI performance.
A previous study showed that about 30% of subjects failed to reach proficiency in using BCI
systems over a standard training period (Blankertz et al., 2010). These subjects used to be described
as “BCI illiterates” or “non-performers/responders/regulators.” Numerous studies have attempted

Frontiers in Human Neuroscience | www.frontiersin.org 1 August 2021 | Volume 15 | Article 701091

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.701091
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2021.701091
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.701091&domain=pdf&date_stamp=2021-08-13
https://www.frontiersin.org/articles/10.3389/fnhum.2021.701091/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-701091 July 15, 2022 Time: 9:5 # 2

Zhou et al. Relative Power and MI Performance

to explain the causes or reasons for this phenomenon (Ahn and
Jun, 2015). Prior researchers have shown how basic individual
characteristics (e.g., gender, age, or lifestyle) may match BCI
performance. A study reported that females and users who play
musical instruments well are likely to be good BCI performers
(Randolph, 2012). Besides, it was found that neuroanatomical
features were also correlated with BCI performance. For
example, the structural integrity and myelination quality of
deep white matter structures were found to be positively
correlated with individual performance (Halder et al., 2013).
These basic physiological factors can be classified as stable
traits that usually are difficult to change in a short time.
On the other hand, some studies showed that psychological
states (e.g., motivation, confidence, or frustration) were also
associated with BCI performance (Nijboer et al., 2011). Besides,
better spatial imagination abilities (e.g., kinesthetic imagination
scores or mental rotation scores) may account for better MI-
BCI performance (Vuckovic and Osuagwu, 2013; Jeunet et al.,
2015). These psychological factors can be classified as fluctuating
states of users, reflecting the differences in mental states. These
studies indicated that regulating or learning mental states in a
relatively short time may be a potential solution to improve the
performance of “BCI illiteracy” users.

At present, there are still some difficulties in quantifying
the psychological states or mental abilities objectively.
It is widely accepted that neurophysiological signals [e.g.,
electroencephalography (EEG), functional Magnetic Resonance
Imaging (fMRI), or magnetoencephalography (MEG)] can
be used to infer psychological states and can be measured in
real-time (Borghini et al., 2014). Hence the neurophysiological
interpretation of the BCI performance variation has received
increased attention in recent years. A decade ago, the power
spectral density (PSD) of sensorimotor rhythms (SMR) from
a 2-min resting state was proposed as a neurophysiological
predictor of MI performance (Blankertz et al., 2010). From
previous studies, it is well known that SMR power decreased
during MI, which is defined as event-related desynchronization
(ERD). A possible explanation is that higher SMR from the
resting state yields a larger decrease in MI tasks, which may
result in better performance. After that, a study reported that
higher frontal theta and lower posterior alpha-band powers
during a few seconds before MI can represent the higher
attentional level of the users, and thus may enhance the BCI
performance (Bamdadian et al., 2014). Whereas another study
focused on relative power level (RPL) of resting-state suggested
that higher theta and lower alpha band RPL may indicate lower
performance (Ahn et al., 2013). These plausible conflicting
results here may due to the difference in experimental paradigms
and parameters (e.g., signal segments, feature selections, or brain
regions), which results in the difficulty to compare and reproduce
previous findings.

On the other side, several intra-subject studies investigated
the neurophysiological factors affecting performance over time.
Trial-wise studies found that pre-cue SMR and gamma-band
oscillations were positively correlated with performance within
a day (Grosse-Wentrup and Schölkopf, 2012; Maeder et al.,
2012). Another session-wise study on 13 stroke patients suggested

that the pre-cue relative beta band power, as a mental fatigue
index, was positively correlated with MI performance over 6
weeks (Foong et al., 2020). These findings suggest that some
of the neurophysiological factors may reflect the changes of
mental states in the time domain and could be further used
for monitoring and updating the system according to the
expected mental state.

In addition to the resting-state factors, the association between
performance and the physiological state changed from pre-
task to during-task stage was also considered an important
influencing factor for BCI performance. A study found that
on-task changes of Mahalanobis distance of theta power were
negatively correlated with MI performance across subjects
(Trambaiolli et al., 2019). They suggested that higher bilateral
theta activity, which leads to lower Mahalanobis distance, may
represent greater attention or working memory load and thus
results in greater BCI performance. Another study found a
negative correlation between BCI scores and relative on-task
changes in both high alpha and low beta powers defined by
Individual Alpha Frequency (IAF) across four sessions (Corsi
et al., 2020). This result is reasonable that the higher decoding
BCI scores were associated with a stronger decrease of SMR
power during MI, i.e., a larger ERD.

By far, the neurophysiological factors of performance
variation have not been systematically investigated. Most studies
concentrated on a single perspective across subjects or time
and some results were limited by relatively small sample size.
Besides, the neurophysiological factors proposed before hardly
achieved the expected results in replicate experiments (Jeunet
et al., 2015; Zhang et al., 2015). Therefore, the purpose of
our study was to explore: (1) the similarities and differences
in performance variation from inter-subject and inter-session
analysis. (2) the correlation between neurophysiological signals
and MI performance across subjects and time. (3) whether there
is a relatively stable neurophysiological factor to indicate the
BCI performance.

MATERIALS AND METHODS

Subjects and Experimental Protocol
Twenty healthy subjects (11 males, mean age: 23.2 ± 1.47 years,
range 21–27 years, all right-handed) participated in the study.
Four of them had participated in MI studies before. None of
the participants reported a history of psychiatric or neurological
disorders. The study was designed and conducted according to
the Declaration of Helsinki and was approved by the Human
Research Ethics Committee of The Second Affiliated Hospital of
Zhejiang University School of Medicine. All subjects were asked
to read and sign an informed consent form before the experiment
and received financial compensation after the experiment for
their time and effort.

The subjects were asked to participate in seven sessions across
2 weeks, once every 2 days. Each session lasted around 40 min
and was organized into 6 runs. Subjects have a short rest between
runs. During each run, subjects performed 40 trials (4 different
MI-tasks, 10 trials per task, presented in random order), with
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FIGURE 1 | (A) MI-BCI experiment paradigm. (B) Chosen electrodes (gray) in the international 10–20 system. The electrodes are artificially grouped into different
brain regions according to their location and marked in the figure. SMA, supplementary motor area; L_PMC, left premotor cortex; R_PMC, right premotor cortex;
L_M1, left primary motor cortex; R_M1, right primary motor cortex; L_S1, left primary sensory cortex; R_S1, right primary sensory cortex.

each trial lasting 9 s (Figure 1A). During the experiment, subjects
sat in a comfortable chair in front of a computer screen and were
instructed to relax their arms, minimize any physical movement
or eye blinking throughout the EEG recording process. At the
beginning of a trial, a fixation cross appeared on the screen and
stayed for 1 s. After that, a cue in the form of an arrow appeared
to inform the subjects to start performing MI tasks. The arrow
pointed either to the left, right, down, or up, and subjects were
asked to perform MI tasks of the left hand, right hand, both feet,
and the idle task, respectively. Each task lasted for 5 s. During
the idle task, subjects were instructed to relax and think about
nothing. After the task, an inter-trial interval of 3 s was followed.
No feedback was provided for the subjects during the experiment.

EEG Recording and Pre-processing
EEG recording was performed using a 64-channel Synamps2
system (Neuroscan, Inc.) with a sampling frequency of 500 Hz.
Twenty-six EEG scalp electrodes were prior-selected according
to the international 10–20 system, as seen in Figure 1B. The
reference was on the top of the head, and the ground was on
the medial frontal of the head. The horizontal electrooculogram
(EOG) and vertical EOG were recorded using the same system.
A band-pass filter between 0.5 and 100 Hz and a notch filter of
50 Hz was applied directly to the amplifier.

The obtained EEG signals were then pre-processed to reduce
biological artifacts such as eye movements, blinking, heart, and
muscular activities. The Independent Component Analysis (ICA)
was applied to eliminate interference from eye movement and
blinks (Vigario et al., 2000). In this study, the function was
implemented through the MNE-Python package (Gramfort et al.,
2013; Ablin et al., 2018). The dedicated EOG sensors were used
as a “pattern” to check the Independent Components (ICs)
against, any ICs that match the EOG pattern were automatically
marked and excluded. In addition, a single-channel method,
EEMD-CCA, was used to reduce the muscle noise contamination
in the EEG, which is a combination of Ensemble Empirical
Mode Decomposition (EEMD) and Canonical Correlation
Analysis (CCA) (Chen et al., 2016; Foong et al., 2020). Single-
channel EEG signals were decomposed into multiple Intrinsic

Mode Functions (IMFs) using EEMD. Then, muscle artifact
components were isolated by CCA due to the low autocorrelation
(Clercq et al., 2006).

BCI Performance Analysis
After pre-processing, the classification result was analyzed offline
as a measurement of BCI performance. First, the EEG signals
were band-pass filtered by linear phase Finite Impulse Response
(FIR) filter between 8 and 30 Hz. During each trial, signals
from 0.5 to 4.5 s after task onset were extracted and split
into 4 × 1 s epochs. EEG epochs were then spatially filtered
using the One Versus Rest (OVR) Common Spatial Pattern
(CSP) algorithm (Ang et al., 2012). The CSP algorithm aimed at
finding spatial filters such that the band power of the spatially
filtered EEG signals was maximally different between the two
classes. For multi-class filtering, the OVR algorithm computed
the CSP features that discriminate each class from the rest. After
that, these features were fed into the Support Vector Machine
(SVM) with a regularization parameter C of 0.8 and a Radial
Basis Function (RBF) kernel to generate subject-specific models,
which was implemented through the python package Scikit-
learn (Pedregosa et al., 2011). A 10-fold cross-validation (CV)
procedure was performed to validate the results.

The classification accuracy and macro-averaged F-score were
used in this study to evaluate the performance of each subject in
each session (Metz, 1978; Sasaki, 2007). In multi-class problems,
macro-averaged F-score exhibits more robust than accuracy for
performance assessment (Sokolova and Lapalme, 2009). The
accuracy and macro-averaged F-score were calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F score = 2×
Precision× Recall(
Precision+ Recall

) (4)
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where TP was the number of true positives, TN was the number of
true negatives, FP was the number of false positives, and FN was
the number of false negatives. For the macro-averaged results, the
precision and recall were calculated independently for each label
and then the average was taken.

Relative Power Analysis
The EEG powers of each band were different across the subjects,
thereby making it difficult to see a pattern at the group level. The
Relative Power (RP), which indicates the ratio of the power of a
frequency band to the total band power, could be used to reduce
this problem (Ahn et al., 2013). In this study, RP was computed
as follows:

First, the EEG segments from –4 to 5 s were extracted for
each trial. To investigate the changes of RP in the time domain,
each trial was split into pre-task stage (–3 to 1 s), cross stage (–
1 to 0 s) and task stage (0.5–4.5 s) (see Figure 1A). The signals
lasting 0.5 s at the beginning and end of tasks were discarded.
The trials in the task stage were further split by the type of task.
Second, the frequency bands ranged from theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and low gamma (30–50 Hz) were
selected for spectral power analysis according to previous studies
(Ahn et al., 2013). Welch’s method with a 500 ms Hamming
window and no overlapping was used to calculate power spectral
density (PSD), which is one of the most used spectral estimation
techniques to date (Welch, 1976; Proakis and Manolakis, 1996).
The absolute band power is equal to the area under the PSD curve
and calculated by the integration method. After that, the RP of
each band was obtained by dividing the absolute power by its total
absolute power in 4–50 Hz. Then RP was averaged over 6 runs for
each subject and session.

Statistical Analysis
T-test was applied to statistically analyze the significance of
RP difference for group analysis. Spearman–rank correlation
and repeated measures correlation (Bakdash and Marusich,
2017) were performed to analyze the correlation between
RP and the performance from subject and session aspects
separately. A false discovery rate (FDR) of α = 0.05 was used
to correct the significance level for multiple comparisons.

The statistical and correlational methods used in this
paper were implemented by the python package Pingouin
(Vallat, 2018).

RESULTS

MI Performance Across Subjects and
Time
After the experiment, we first computed the offline classification
accuracy and macro-F score to evaluate performance for each
subject and session. The classification was mainly focused
on the three-class classification of MI tasks (i.e., left hand,
right hand, and both feet). The average accuracy for all the
subjects and sessions was 50.43 ± 10.49%, and the macro-
F score was 47.92 ± 10.45%. The across-subject accuracy
ranged from 39.95 ± 1.82% to 73.49 ± 5.64% and the
macro-F score from 37.09 ± 1.33% to 71.79 ± 6.89%.
Besides, binary classification of the dominant-hand MI task
(i.e., right hand) and the idle task was also investigated.
The average accuracy was 68.95 ± 10.54%, and the macro-
F score was 66.62 ± 10.93%. The across-subject accuracy
ranged from 57.36 ± 3.55 to 90.03 ± 6.92% and macro-
F score from 55.71 ± 3.24 to 89.14 ± 6.02%. The results
showed that all of the subjects obtained performances higher
than the random level of 33.33% for three-class classification
and 50% for binary classification. The classification accuracy
was further chosen for evaluating MI performance in the
following because the accuracy and macro-F score performed
consistently in this study.

The three-class classification accuracy of each subject was
plotted as columnar and binary classification accuracy as points
in Figure 2A. According to the general performance, subjects
were separated into the high-performance group (HP, n = 8)
and low-performance group (LP, n = 8), which is also marked
in Figure 2A, and the other four middle-performance subjects
(id: 4, 8, 13, 19) were excluded. A positive correlation was found
between averaged performance across sessions and its standard
deviation (SD) (see Figure 2B, r = 0.735, p < 0.001). No

FIGURE 2 | (A) Averaged accuracy of each subject. The histogram and dot plot represent three-class and binary class classification accuracy, respectively. The
random levels of 33.33 and 50% are aligned and shown by a gray dotted line. Subjects were sorted and then assigned to the High Performance (HP, n = 8) and Low
Performance (LP, n = 8) group according to the three-class accuracy performance. (B) Correlation between SD and three-class accuracy (r = 0.56, p = 0.01). Each
dot represents a subject. (C) Averaged three-class accuracy of each session.
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FIGURE 3 | (A) Spatial distributions of RP between HP and LP group over four frequency bands and stages. (B) The difference between RP from MI task and
pre-task stage. (C) The significant difference of T-test between groups from the pre-task stage and on-task changes (1RP).

significant performance increase was observed across sessions as
shown in Figure 2C.

Relative Power Difference Between High
and Low Performance Group
To examine the relationship between RP changes and
performance in the time domain, topographical images of
RP were plotted as shown in Figure 3A. RP from four different
stages (i.e., pre-task, cross, idle task, and MI task) and four
frequency bands (i.e., theta, alpha, beta, and low gamma)
were calculated in both groups. MI task stage was obtained by
averaging three types of MI tasks (i.e., left hand, right hand,
and both feet). As shown in Figure 3A, there was an observed

difference between HP and LP groups during the pre-task stage.
Specifically, the alpha band RP from the HP group was relatively
higher than the LP group, whereas theta and gamma band
RP were relatively lower. Besides, there are clear tendencies of
decreasing from alpha band RP and increasing from theta and
gamma band RP in the HP group during the process from the
pre-task stage to the MI task stage, while no obvious trend was
observed in the LP group.

To better demonstrate the RP changes during the process,
the difference of RP between the MI task and the pre-task
stage was calculated as 1RP (see Figure 3B). After that,
a t-test was applied to statistically analyze the significant
difference between groups from the pre-task stage and on-
task changes (1RP) (see Figure 3C). In the pre-task stage,
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FIGURE 4 | The Spearman–rank correlation between pre-task RP and performance across subjects. Alpha band RP was positively correlated with three-class
classification accuracy (r = 0.484, p < 0.05) and binary-class classification accuracy (r = 0.546, p < 0.05). Whereas no statistical significance was found in the
correlation between theta and gamma band RP and three-class classification accuracy (theta: r = –0.376, p = 0.102; gamma: r = –0.325, p = 0.162) or
binary-class classification accuracy (theta: r = –0.284, p = 0.224; gamma: r = –0.369, p = 0.109).

FIGURE 5 | The Spearman–rank correlation between 1RP and performance across subjects. Alpha band 1RP was negatively correlated with three-class
classification accuracy (r = –0.564, p = 0.01) and binary-class classification accuracy (r = –0.431, p = 0.058). Whereas theta and gamma band 1RP were
positively correlated with three-class classification accuracy (theta: r = 0.615, p < 0.01; gamma: r = 0.549, p < 0.05) and binary classification accuracy (theta:
r = 0.54, p < 0.05; gamma: r = 0.528, p < 0.05).

alpha band RP from the HP group was significantly higher
and mainly in the supplementary motor area (SMA), whereas
no significant difference was found in the other three bands.
For on-task changes, alpha band 1RP was found significantly
lower in the HP group mainly in the SMA and left premotor

cortex (PMC). Whereas theta band 1RP of the HP group
was significantly higher in SMA, and gamma band was also
significantly higher, mainly in SMA, bilateral PMC and primary
motor cortex (M1), whereas no significant difference was
found in beta bands.
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FIGURE 6 | The repeated-measures correlation between 1RP and performance across sessions. Colors identify the values obtained for the same subject across
sessions. Binary-class classification accuracy was negatively correlated with alpha band 1RP factor (r = –0.237, p < 0.001) and positively correlated with theta and
gamma band 1RP factors (theta: r = 0.277, p < 0.01; gamma: r = 0.348, p < 0.001). Whereas no significant correlation was found in three-class classification.

Correlations Between RP Factors and
the MI Performance
The aforementioned significant frequency bands (i.e., theta,
alpha, and gamma) from corresponding brain regions were
selected as RP factors to further investigate to explain MI
performance variation. The RP values were obtained by averaging
the electrodes of the corresponding brain regions, as shown
in Figure 1B. The MI performance was measured by three-
class classification (i.e., left hand, right hand, and both feet)
and binary-class classification (i.e., right hand and idle task)
accuracy. Spearman-rank correlation was applied from both
the pre-task stage and on-task changes. The result from the
pre-task stage was shown in Figure 4. The alpha-band RP
was found to be significantly and positively correlated with
MI performance. Although a negative correlation was observed
between performance and RP from theta and gamma band, it
failed to reach statistical significance. For the results from on-
task changes as seen in Figure 5, significant correlations were
found between 1RP and performance. The alpha band 1RP
was negatively correlated with performance, whereas theta and
gamma band 1RP were positively correlated with performance.

To investigate whether RP is correlated with performance
across sessions, the repeated-measures correlation analysis that
considered the time-domain nature of data was performed. From
the pre-task stage, no significant correlation was found. From on-
task changes, similar results were obtained when calculating the
correlation between performance and 1RP. As seen in Figure 6,
theta and gamma band 1RP were positively correlated with
binary-class classification accuracy, while alpha band 1RP was

negatively correlated with binary-class classification accuracy.
However, there was no significant correlation between 1RP
and three-class classification accuracy. We assumed that the
correlation between 1RP and performance was related to
the type of task.

Moreover, the correlations between 1RP and the classification
accuracy from 11 combinations of four types of tasks (i.e., 6
for binary-class, 4 for three-class, and 1 for four-class) were
analyzed. Table 1 presents the correlation coefficient (CC) and
corresponding significance level from inter-subject and inter-
session aspects, respectively. A false discovery rate (FDR) of
α = 0.05 was used here to corrected the significance level. As
seen from Table 1, 1RP factors were significantly correlated with
almost all combinations of classification results from the inter-
subject aspect. In contrast, from the inter-session aspect, only the
accuracies of classification containing idle tasks were found to be
significantly correlated with 1RP factors, especially from alpha
and gamma bands.

DISCUSSION

As mentioned in the literature review, performance variation
has been an obstacle that degrades the reliability of BCI systems
(Ahn and Jun, 2015). The subject who failed to reach a criterion
level of performance in BCI tasks used to be labeled as “BCI
illiterates.” Currently, some researchers are tending to adjust
the former beliefs. They suggested that “BCI illiteracy” relies
on the flawed assumption that users possess physiological or
functional traits that prevent proficient performance during

Frontiers in Human Neuroscience | www.frontiersin.org 7 August 2021 | Volume 15 | Article 701091

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-701091 July 15, 2022 Time: 9:5 # 8

Zhou et al. Relative Power and MI Performance

TABLE 1 | The correlation between 1RP and performance across
subjects and sessions.

Intra-subject Intra-subject

Task Theta Alpha Gamma Theta Alpha Gamma

L-R 0.370 –0.496* 0.311 0.087 –0.073 0.161

L-F 0.648** –0.568* 0.550* 0.045 –0.056 0.086

R-F 0.635** –0.522* 0.577* 0.030 0.017 0.078

L-I 0.532* –0.421 0.498* 0.223 –0.217* 0.294**

R-I 0.540* –0.431 0.528* 0.277* –0.237* 0.348**

F-I 0.627** –0.466* 0.478* 0.138 –0.250* 0.260**

L-R-F 0.615** –0.564* 0.549* 0.133 –0.089 0.187

L-F-I 0.660** –0.512* 0.562* 0.161 –0.211* 0.287**

R-F-I 0.611** –0.492* 0.544* 0.145 –0.176 0.219*

L-R-I 0.595** –0.487* 0.490* 0.209 –0.235* 0.341**

L-R-F-I 0.651** –0.541* 0.556* 0.208 –0.212* 0.313**

The first column represents the combination of tasks from which the classification
accuracy was calculated. The inter-subject columns represent the Spearman–rank
correlation coefficient between 1RP and performance across subjects, and intra-
subject columns represent the repeated-measures correlation coefficient between
1RP and performance across sessions. The p-value was corrected by a false
discovery rate. L, left hand MI; R, right hand MI; F, both feet MI; I, Idle task;
*p < 0.05; **p < 0.01.

BCI use (Thompson, 2019). Moreover, no certain criteria were
determined when identifying “BCI illiterates.” Consistent with
previous studies (Blankertz et al., 2010), the performance of
subjects in this study was found to be evenly distributed (see
Figure 2A). Hence the proportion of “BCI illiterates” was
largely determined by the criterion level which may be selected
relatively arbitrarily. Therefore, the result of labeling users as
“BCI illiterates” should be interpreted with caution. Besides, one
of the results in this study indicated that higher performers
seemed to be more variable (see Figure 2B), which was also
reported in previous researches (Maeder et al., 2012). This may
increase the difficulty of BCI applications and highlight the
importance of investigating performance variation.

In reviewing the literature, the neurophysiological signal is
considered a valid target to understand how BCI performance
varies. However, no consistent conclusion was drawn on the
proposed indicators and their relationships with performance.
The relative power (RP) has been considered an important
parameter for analyzing EEG during cognitive tasks, which
have lower inter-subject variability and may be more reliable
than absolute power (AP) (Nuwer, 1988; Harmonya et al.,
1993). Other researchers suggested that AP and RP yield
complementary information (Leuchter et al., 1993). Therefore,
RP was selected here as a neurophysiological indicator to examine
the relationship between brain rhythms and MI performance. As
seen in Figure 3, PR differences of theta, alpha, and gamma band
were observed between HP and LP groups during the process.
Notably, it is well known that ERD was distinguished among
different MI tasks. However, no significant RP difference was
found among the three types of MI tasks, which is consistent with
previous studies (Ahn et al., 2013). This result may be explained
by the fact that the RP calculating in this study was normalized by
total power, which largely diminished the ERD differences among

tasks. Hence the RP value of the MI task here was obtained by
averaging three types of MI tasks for further analysis.

In previous findings, higher alpha band PSD in the resting
state has been found to correlate with better performance
(Blankertz et al., 2010). In another cognitive performance study,
alpha band power in the resting state was positively correlated
with attention-span scores (Mahjoory et al., 2019). Hence the
higher alpha band in the resting state may represent the
potential larger ERD in the MI task as well as the higher
attentional level of subjects. Although it is reasonable, the
predictor of alpha-band power failed to reach the expected
results in several similar experiments (Jeunet et al., 2015; Zhang
et al., 2015). Since the band powers may vary from person
to person, RP could be used to normalize features. In this
study, the results of correlation analysis indicate that alpha band
RP over SMA from a few seconds before MI was positively
correlated with the BCI performance (see Figure 4). Similar
results were obtained in previous studies (Ahn et al., 2013; Kwon
et al., 2020). In addition, the alpha-band RP from the resting
state was proposed before as an index of tracking cognitive
function. Studies found that people with amnestic Mild Cognitive
Impairment (aMCI) or Subjective Cognitive Decline (SCD) had
lower alpha band RP compared with the control group (Bian
et al., 2014; López-Sanz et al., 2016). Therefore, alpha band
RP may be a promising stable neurophysiological indicator
for MI performance.

From on-task analysis, changes of RP were also found to
correlate with performance. Subjects with higher performance
seemed to have a larger decrease in alpha band 1RP and a
larger increase in theta and gamma band 1RP (see Figure 5).
The decrease of the alpha band 1RP is likely to be related
to ERD, which may make MI tasks more distinguishable when
ERD is larger. Notably, previous studies proved that ERD mainly
focused on the bilateral motor cortex, whereas the results of
1RP showed that SMA and PM also participate in the process
of MI. The larger increase in theta and gamma band 1RP
was possibly affected by the decrease of total power due to the
ERD. Besides, higher RP of theta band was considered to be
associated with cognitive performance or memory consolidation
(Finnigan and Robertson, 2011; Reiner et al., 2014), and low
gamma RP was found to be significantly negatively correlated
with the inattention score (Roh et al., 2016). Here, the larger
increase in theta and gamma band 1RP may represent more
consistent MI patterns or higher attentional levels and thus result
in a better performance.

To investigate the similarities and differences in performance
variation over subjects and time, the RP factors were further
analyzed across sessions in this research. Results showed a similar
relationship between binary-class performance and 1RP from
theta, alpha, and gamma bands, but no significant correlation
was found in three-class performance (see Figure 6). Further
analysis shows that the inter-subject correlations between 1RP
and performance are task-independent. However, from inter-
session analysis, 1RP was more likely to be correlated with the
performance from tasks which contained idle task (see Table 1).
This result suggests that RP factors from the pre-task resting
state and the idle task may have a similarity and represent
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mental states that changed over time. This is further exemplified
in the previous study that enhancing the alpha band during
resting state by mindfulness training could improve BCI
performance between MI and idle task rather than MI of
individual hands (Stieger et al., 2020).

In this study, feedback was not applied to limit autonomic
regulation when engaged in BCI tasks. Although subjects cannot
see the feedback during the task, they were informed that the
financial compensation was related to their offline performance
to ensure a higher engagement. The averaged accuracy among
subjects showed no significant performance increase across
sessions (see Figure 2C). This result may suggest that without
feedback, subjects could not regulate their brain to reach the
expected output even over a relatively long time. In the literature,
feedback has long been identified as an effective way for
learning and training in BCI systems. Usually, the feedback
indicates whether subjects have successfully achieved a task
or not, which is unintuitive for subjects to learn to improve
their control strategies (Jeunet et al., 2016). Recent studies on
neurofeedback treatment gained extensive attention (Alkoby
et al., 2018; Jeunet et al., 2018). Neurophysiological factors
might be more appropriate instructions to help subjects learn
to modulate brain signals. The preliminary findings have shown
that neurofeedback of the alpha band could improve cognitive
performance (Zoefel et al., 2011) and MI-BCI performance
(Bamdadian et al., 2015). Another co-adaptive BCI training
study showed that performance was associated with modulation
of the alpha band power in subjects with larger improvement
(Abu-Rmileh et al., 2019). In this study, RP factors have
been proposed as a reliable neurophysiological indicator of MI
performance. Therefore, future studies on BCI neurofeedback or
neural training paradigms using neurophysiological factors such
as RP are recommended to help subjects modulate their brain
oscillations more effectively and improve their BCI performance,
so that more subjects may benefit from the advantages of
BCI interventions.

A limitation of this study is that only power features of
rhythms were exploited, and other analysis aspects such as brain
connectivity features should be involved to better understand the
mechanisms underlying the BCI performance variation. Besides,
the beta band is thought to be an important rhythm in MI tasks.
However, in this study, no significant change was found in beta
band RP, which may be diminished due to the RP calculation
method. Moreover, experiments with larger sample size and over
the longer term should be undertaken in further studies.

CONCLUSION

Neurophysiological signals have been considered a promising
target to understand how BCI performance varies. In this paper,
the results indicate that changes in relative EEG rhythms power
significantly correlated with variation in MI performance across
time and subjects. Specifically, the pre-task alpha band RP

was found to positively correlate with performance and was
proposed as a stable neurophysiological indicator. During the
task, results showed that the alpha band 1RP was negatively
correlated with performance, whereas theta and gamma band
1RP were positively correlated with performance. From intra-
subject analysis, a similar relationship between performance and
1RP factors was found. This is the first study of performance
variation which examines from pre-task to task and both across
time and subjects. The findings of this study complement those of
earlier studies and could inform future experiments to investigate
the effects of neurophysiological factors on building BCI systems
with neurofeedback.
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