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Background

Thioacetamide (TAA) is an organosulfur, white 
crystalline compound having liver damaging and 
carcinogenic activity by causing cytomegaly.1 It is 
used to induce an acute liver injury in rats. TAA gets 
metabolized to thioacetamide-S-oxide and aceta-
mide immediately after administration to rats. 
Thioacetamide-S-oxide binds to macromolecules in 
a cell that are responsible for the change in cell per-
meability and Ca++ uptake. This interruption of cal-
cium stores increases nuclear volume, enlarges 
nucleoli, and inhibits mitochondrial activity eventu-
ally leading to hepatic necrosis.2,3 The toxicological 
studies have revealed the neurotoxicity of TAA in 
humans and animals.4 Generation of a large amount 
of reactive oxygen species (ROS) due to TAA can 
overwhelm the antioxidant defense mechanism and 
damage cellular ingredients such as lipids, proteins, 

and DNA; this in turn can impair cellular structure 
and function.5 Regardless of the route of exposure, 
TAA rapidly distributes to nearby tissues and has 
also been reported to be a genotoxic, reproductive 
toxicant and rodent carcinogen.6 It is also reported 
that liver, kidney, spleen, and erythrocyte have sig-
nificant binding capacity with TAA. Many studies 
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were done to understand the changes elicited mor-
phologically and biochemically that occur in the 
liver of TAA-treated rats.7–10

Rutin has a strong antioxidant potential and is a 
derivative (glycoside) of quercetin. Based on the 
antioxidant potential of quercetin,11–14 it is hypoth-
esized that rutin can have a significant therapeutic 
activity in diseases caused due to oxidative stress.15 
Rutin is both water-soluble and alcohol-soluble 
antioxidant found in high amounts in plants maxi-
mally in citrus fruits. Rutin attaches to the iron ion 
Fe2+, preventing its binding to hydrogen peroxide, 
and hence preventing the generation of a highly 
reactive free radical that can damage cells.16 Rutin 
has also been reported to inhibit the vascular 
endothelial growth factor in vitro.17,18 This in turn 
decreases the vascular permeability that is primary 
protection against certain injuries and inflamma-
tion. In this study, we, therefore, sought to evaluate 
the hepatoprotective role of rutin against TAA-
induced oxidative stress.

Materials and methods

Chemicals

All the chemicals required in this study, including 
rutin and TAA, were purchased from Sigma 
Chemical Co., St Louis, USA. UV-kinetic diagnos-
tic kits were procured from United Diagnostic 
Industry, Riyadh.

Animals

A total of 24 Wistar rats (male), weighing 100–
120 g, were taken from the breeding laboratory of 
King Saud University and kept in departmental ani-
mal care facility. Rats were kept in polypropylene 
cages at room temperature with a 12 h light–dark 
cycle and relative humidity of 60% ± 15%. Animals 
were provided purified water ad libitum with stand-
ard laboratory rat chow. The study was approved by 
the animal ethics committee of Institutional Review 
Board of King Saud University, and the ethical 
guidelines for use and care of laboratory animals in 
experiments were strictly followed.

Experimental protocol

Total 24 rats were divided into four different groups 
consisting of six rats each. The groups were cate-
gorized as: Group I: control group; Group II: rats 

receiving TAA; Group III: rats receiving rutin;  
and Group IV: rats receiving rutin before TAA 
treatment.

Group I: control group received vehicle alone 
(saline; pH 7.8); Group II: TAA single intraperito-
neally injection of 300 mg kg−1 of body weight in 
week 2; Group III: rutin 10 mg kg−1 of body weight 
daily for 2 weeks; Group IV: rutin 10 mg kg−1 of 
body weight daily for 2 weeks followed by TAA 
injection on last day of rutin treatment. TAA and 
rutin both were dissolved in 1 mL of saline; TAA 
was administered intraperitoneally, whereas rutin 
was administered orally. TAA dosage was selected 
on the basis of previous literature.19 The rats were 
sacrificed 24 h after the last treatment by asphyxia-
tion with carbon dioxide.

Sample preparation

After 24 h of treatment, blood from retro orbital 
plexus under anesthesia was collected in clean 
tubes, centrifuged at 3000g for 20 min at 4°C and 
serum was stored at −20°C until further analysis. 
All the groups of rats were sacrificed and the livers 
dissected, weighed, and placed in the Petri dishes. 
Right lobes of the excised livers from all groups 
were processed for histology; the rest of the liver 
samples were homogenized and stored in −80°C 
until further analysis.

Serum enzyme analysis

Measurement of transaminases. Aspartate aminotrans-
ferase (AST) and alanine aminotransferase (ALT) 
were measured by method of McPherson and Pin-
cus20 using UV-kinetic diagnostic kits. AST and 
ALT are both tissue enzymes that catalyze the 
exchange of amino and keto groups between alpha 
amino and keto acids. Tissue toxicity releases 
enzymes to general circulation, hence increasing 
their levels. AST and ALT activities were deter-
mined by the decrease in extinction of NADH fol-
lowed at 340 nm in a coupling reaction. Each unit 
of enzyme activity was defined as micromoles of 
NADH decomposed per minute using molar 
absorbance of 6.22 × 103 × M−1 Cm−1.

Measurement of alkaline phosphatase. Alkaline phos-
phatase (ALP) was calculated by the method of Bow-
ers and McComb21 by a colorimetric kinetic diagnostic 
kit. Hydrolysis of p-nitrophenyl phosphate by ALP 
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produces inorganic phosphate and p-nitrophenol 
which at alkaline pH yields yellow p-nitrophenoxide 
ions measured by following the absorbance increase 
at 405 nm per unit time. One unit of ALP activity was 
defined as micromoles of p-nitrophenol produced per 
minute using molar absorbance of 18.75 × 103 ×  
M−1 Cm−1.

Measurement of lactate dehydrogenase. The quantitative 
determination of lactate dehydrogenase (LDH) is 
achieved using lactate to pyruvate kinetic method 
using UV-kinetic diagnostic kit. Activity was eval-
uated by measuring the extinction decrease in 
NADH at 340 nm.20 One unit of LDH activity was 
defined as micromoles of NADH decomposed per 
minute using molar absorbance of 6.22 × 103 ×  
M−1 Cm−1.

Measurement of total bilirubin. The endpoint determina-
tion of total bilirubin was done by the method of 
Malloy and Evelyn22 using a colorimetric endpoint 
detection diagnostic. The intensity of purple color 
was directly proportional to bilirubin concentration 
in the serum recorded within 1 min for unconju-
gated bilirubin and after 5 min for conjugated bili-
rubin after adding methanol at 540 nm. The total 
bilirubin value was represented as the sum of bili-
rubin glucuronide (conjugated) and azobilirubin 
(unconjugated). Values were expressed as milli-
grams per deciliter.

Protein estimation

The protein content in the samples (both serum and 
tissue homogenate) was measured by the modified 
method of Markwell et al.23 Bovine serum albumin 
(BSA) was used to make the standard curve.  
The amount of protein was calculated later from 
the obtained standard curve. Protein values were 
expressed as milligrams per deciliter.

Tissue analysis

DNA fragmentation assays for apoptosis. Apoptotic 
changes in the liver were evaluated colorimetri-
cally by DNA fragmentation of known amount of 
DNA according to the procedure of Perandones 
et al.24 Liver samples were homogenized in 700 µL 
hypotonic lysis buffer (0.2% Triton X-100, 10 mM 
Tris, 1 mM EDTA), incubated at 50°C for 2.4 h 
and centrifuged for 15 min at 11,000 r/min. The 

supernatants contained small DNA fragments that 
were acid extracted and used for quantification by 
adding two volumes of diphenylamine (DPA) at 
600 nm.

Histology

The right lobes of the excised livers from all groups 
were processed for histology. The processing was 
done as follows: fixation of the samples in a 10% 
neutral buffered formalin solution, block prepara-
tion in paraffin, section cutting (5–6 µm thick), and 
staining with hematoxylin–eosin stain. The pro-
cessed sections were analyzed and photographed 
by a blinded expert pathologist without any prior 
information about the experimental groups.

Statistical analysis

Values were expressed as mean ± standard devia-
tion (SD). The data were generally statistically 
representative in terms of number, mean, and SD. 
Comparison between different groups was done 
using independent sample T-test for comparing 
two groups, and one-way analysis of variance 
(ANOVA) test was used for comparison between 
more than two groups with least significance  
difference as multiple comparison. Correlation 
between various variables was done by utilizing 
Pearson correlation coefficient (R) using linear 
regression with graphic representations. A proba-
bility value (P value) less than or equal to (0.05) 
was deliberated as significant. All statistical calcu-
lations were done using computer program SPSS 
(Statistical Package for Social Science) version 
(11.0).

Results

In the TAA-treated group (Group: II), the levels of 
all the liver marker enzymes were markedly ele-
vated and there was an increase in total DNA frag-
mentation, indicating liver toxicity in this group of 
animals. In the other group (Group: IV) which 
received pretreatment of rutin, before TAA, the 
elevation of all the liver toxicity markers were 
reversed and DNA fragmentation was markedly 
reduced. Histopathological examination of liver 
sections showed the significant protection by rutin 
with no significant difference between control and 
rutin groups.
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Figure 1(a) shows significant increased levels of 
AST in TAA-treated rats (P < 0.0001) when com-
pared to control indicating the induction of liver 
damage. Rutin treatment alone caused non-signifi-
cant decrease in the AST levels in rutin only treated 
rat group compared to control. Pretreatment of 
rutin in TAA group reversed the increased levels of 
AST and showed significant protection when com-
pared with TAA-treated group. The decreased AST 
levels in group IV were insignificant compared to 
control group. Figure 1(b) shows increase in ALT 
levels by TAA significantly (P < 0.0001) and rutin 
non-significantly when compared to control. Rutin 
pretreatment followed by TAA assault reduced the 
levels when compared with TAA group and signifi-
cant difference was observed when compared with 
this group and control group. It was depicted that 
rutin was completely protective with respect to 
ALT enzyme.

Figure 1(c) shows the significant increased lev-
els of ALP in TAA group when compared to con-
trol. Pretreatment of rutin followed by TAA assault 

showed significant protection as compared to TAA 
alone group (P < 0.0001). Figure 1(d) shows sig-
nificant increase in levels of LDH in TAA alone 
treated groups (P < 0.001) and complete protection 
of LDH levels was observed in groups pretreated 
with rutin followed by TAA assault.

Figure 2(a) shows the concentration of bilirubin 
in all treated groups. There was significant effect 
observed on bilirubin content in TAA alone group 
(P < 0.0001); however, rutin alone treated group 
also showed significantly increased levels of bili-
rubin (P < 0.001). The increased levels reached to 
baseline when TAA was treated in combination 
with rutin. This further describes rutin as a protec-
tive flavonoid. Figure 2(b) shows the effect of TAA 
and rutin alone as well as together on hepatic pro-
tein content in rats of all groups. With the exposure 
to 300 mg TAA, protein levels were reduced sig-
nificantly (P < 0.01) when compared to control. 
Rutin alone as well as along with TAA groups did 
not show any significant difference in hepatic pro-
tein content when compared to control.

Figure 1. (a) ALT, (b) AST, (c) ALP, and (d) LDH enzyme activities in the control, thioacetamide (TAA), rutin (R), and TAA + rutin 
(TAA + R) groups in rat. Data between the groups were equated with an analysis of variance (ANOVA) and Tukey’s multiple 
comparison tests.
****P < 0.0001 when equated to control and **P < 0.01 when equated to control (n = 6).
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Figure 3 shows the extent of DNA fragmenta-
tion in all treated groups. DNA fragmentation was 
significantly increased in TAA-treated group, but 
complete protection of DNA strands was observed 
in groups pretreated with rutin pretreated group 
followed by TAA toxicity.

Figure 4 shows the changes produced by treat-
ments with TAA and rutin alone and in combina-
tion. Normal rat liver hepatocytes have well-defined 
cytoplasm and nuclei. Treatment with TAA caused 
widespread intracellular vacuolization and aster 
(infiltration of inflammatory cells). Mild conges-
tion was observed with congested portal area. 
Rutin-treated liver had nodular widened portal area 
with less inflammatory cell infiltration. Liver sec-
tion from rutin pretreated group followed by TAA 
assault exhibited less changes in morphology as 
compared with TAA alone treated group. This 
group exhibited mild vacuolization and infiltration 
of inflammatory cells in portal area. Hepatocytes 
have dark eosinophilic cytoplasm with cells having 
heterochromatic nuclei.

Discussion

Liver, the largest glandular vital organ, plays vari-
ous roles in regulating physiological processes. 
On the other hand, liver diseases have become the 
major causes of deaths all over world. Among 
them, drug-induced liver injury is one of the com-
mon causative factors that poses a major clinical 
and regulatory challenge.10,25 TAA at 300 mg kg−1  
body weight as a single dose has been reported to 
cause oxidative stress.19 The aim of this study was 

to examine the effect of flavonoid rutin against 
TAA-induced oxidative stress in rats. In this study, 
rutin caused significant reversal of increased liver 
enzyme activities, DNA fragmentation, and histo-
pathological changes induced by TAA. Protein 
levels were reduced significantly in TAA-treated 
groups possibly due to the formation of protein 
adducts with TAA. TAA acts as an electrophilic 
agent and leads to formation of s-oxide that can 
covalently bind to the lysine residues forming 
adducts with sulfhydryl groups hence lowering the 
protein levels and causing significant damage. 
Protein adducts with TAA were also reported in 
previous studies.26 This study reported the increase 

Figure 2. (a) Total bilirubin and (b) protein concentrations in the control, thioacetamide (TAA), rutin (R), and TAA + rutin 
(TAA + R) groups in rat. Data between the groups were equated with an analysis of variance (ANOVA) and Tukey’s multiple 
comparison tests.
**P < 0.001 when compared to control (n = 6); ***P < 0.0001 when compared to control.

Figure 3. Percentage change of DNA fragmentation in the 
control, thioacetamide (TAA), rutin (R), and TAA + rutin 
(TAA + R) groups in rat. Data between the groups were 
compared with an analysis of variance (ANOVA) and Tukey’s 
multiple comparison tests.
****P < 0.0001 when compared to control (n = 6).
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in liver transaminases (AST and ALT) and other 
enzymes LDH and ALP by TAA treatment which 
is concomitant to previous literature.5 Rutin 
exerted a powerful protective effect on the liver 
toxicity induced by different xenobiotics in other 
studies.27 This study for the first time reports the 
significant protection by rutin pretreatment with 
TAA toxicity. Rutin at 10 mg kg−1 body weight for 
2 weeks significantly restored the changes elicited 
by TAA assault on liver markers of injury and his-
tology. When total bilirubin was evaluated in the 
control and treated groups, rutin alone group 
showed significant increase but when treated in 
combination the increased values reached to base-
line showing the protective effect. These results 
were in accordance with previous study.28 Bilirubin 
IXα has been recognized as a potent antioxidant. It 
is found to be toxic in infants but is considered to 
promote health in adults. Clinical literature from 
the last 10 years demonstrates that mildly increased 
serum bilirubin levels are significantly associated 
with decreased occurrence of chronic diseases, 

including cardiovascular diseases (CVDs), and 
CVD-related mortality or risk factors.29 In this 
study, rutin significantly reversed genotoxicity 
induced by TAA in liver tissue which was evalu-
ated in terms of DNA fragmentation by DPA. The 
carcinogenicity of TAA has been demonstrated 
due to a disruption of function associated with 
spindle checkpoint immediately ahead of facilita-
tion of cell proliferation.30 However, rutin treat-
ment alone had no effect on DNA fragmentation. 
Rutin probably caused remarkable changes in tis-
sue morphology; however, it was at the same time 
protective too. Previously, we have shown quercetin 
as protective against acrylamide hepatotoxicity.31 
In this study, we conclude that rutin which is a  
glycosidal derivative of quercetin has a hepatopro-
tective activity against TAA toxicity and prophy-
lactic use of rutin against TAA poisoning is also 
suggested. These results contribute to the better 
understanding of rutin in the hepato-protection 
and reversal of genotoxicity, thus emphasizing its 
use in the human diet.

Figure 4. Liver sections of normal and treated groups at scale bar 100 µm. (a) Normal histological appearance of liver tissues with 
central vein and portal area shown by arrows. Hepatocytes have well-defined nuclei. (b) Thioacetamide-treated liver section with 
widespread intracellular vacuolization and infiltration of inflammatory cells (aster). Mild congestion is observed with congested 
portal area (thick arrows). (c) Rutin-treated liver section having nodular widened portal area with less inflammatory cell infiltration. 
(d) Rutin + TAA-treated liver section with mild vacuolization and mild infiltration of inflammatory cells in portal area (dark arrow). 
Hepatocytes have dark eosinophilic cytoplasm with cells having heterochromatic nuclei (n = 3).
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