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ABSTRACT

We present KeyPathwayMinerWeb, the first online
platform for de novo pathway enrichment analysis
directly in the browser. Given a biological interac-
tion network (e.g. protein–protein interactions) and
a series of molecular profiles derived from one or
multiple OMICS studies (gene expression, for in-
stance), KeyPathwayMiner extracts connected sub-
networks containing a high number of active or dif-
ferentially regulated genes (proteins, metabolites) in
the molecular profiles. The web interface at (http:
//keypathwayminer.compbio.sdu.dk) implements all
core functionalities of the KeyPathwayMiner tool set
such as data integration, input of background knowl-
edge, batch runs for parameter optimization and vi-
sualization of extracted pathways. In addition to an
intuitive web interface, we also implemented a REST-
ful API that now enables other online developers to
integrate network enrichment as a web service into
their own platforms.

INTRODUCTION

Interaction networks are at the core of systems biology
research ever since it became possible to detect protein–
protein interactions. Since then, more advanced detection
methods have been developed and with them, biological
interaction networks have been growing (1) from a few
thousand interactions as in the Human Protein Reference
Database (2) to several hundred thousand interactions as in
BioGrid (3), IntAct (4) or I2D (5). Together with the contin-
uous growth of molecular interaction information, research
efforts in systems biology have been directed toward mean-

ingful ways of integrating biological networks with molec-
ular profiles (6).

Exploiting current interaction databases has led to the de-
velopment of pathway-level enrichment methods for stan-
dard downstream analyses in biological and biomedical set-
tings. In their simplest form, classical pathway enrichment
approaches attempt to aggregate the individual measure-
ments of genes (or their products) in a pathway to produce
a single score representing the pathway’s level of activity or
deregulation. However, these methods rely on a pre-defined
list of pathways of known biological processes that play a
role in normal or diseased cell function. This may bias the
search towards known pathways and overlook unknown,
yet important functional modules that may be just a small
part of or completely independent from any of the pathways
available.

To overcome this limitation, so-called de novo network
enrichment approaches have become increasingly popular.
A wide range of methods have spawned inspired by the pi-
oneering work of Ideker et al. (7). Although existing ap-
proaches differ in many relevant aspects (optimization cri-
teria, algorithmic implementation, scoring function, etc.),
they all aim for extracting connected subnetworks from a
larger interaction network. These are significantly enriched
with active, i.e. deregulated, biological entities (genes, pro-
teins, metabolites). Popular methods are JActiveModules
(7), BioNet (8), DEGAS (9), GiGa (10), HotNet (11) and
KeyPathwayMiner. Drug target identification, functional
annotation and biomarker discovery are some of the vari-
ous applications de novo network enrichment methods offer
to the biomedical community.

We have previously developed and extended KeyPath-
wayMiner, a set of de novo network enrichment methods for
extracting condition-specific pathways from single or multi-
ple OMICS datasets in a flexible and intuitive manner (12–
14). Note that KeyPathwayMinerWeb can handle different
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and multiple OMICS data types. However, to improve read-
ability, in the remainder of this article we assume a given
case/control gene expression dataset and use correspond-
ing nomenclature, although KeyPathwayMinerWeb would
work with any OMICS dataset as long as the IDs of the ex-
pression study match the IDs in the utilized (or uploaded)
network.

Similar to other de novo network enrichment tools, Key-
PathwayMiner is integrated into the network visualization
and analysis framework Cytoscape (15). Alternatively, de
novo network enrichment is available in scripting languages
such as R (8). However, the user experience in Cytoscape
as well as in scripting languages suffers from a steep learn-
ing curve. This limits the use of de novo network enrichment
tools for biomedical researchers, which rely on user-friendly
and intuitive tools. Preferably such tools should be acces-
sible without technical barriers. Here, web applications are
superior to desktop applications, since they do not have any
local dependencies and do not have to be installed. To our
knowledge, however, no de novo network enrichment tool is
available as a web application yet.

This motivated us to develop KeyPathwayMinerWeb, a
web frontend for the KeyPathwayMiner software library,
providing a responsive and interactive user interface as well
as a RESTful API allowing other developers to integrate de
novo network enrichment as a web service.

KEYPATHWAYMINER

In KeyPathwayMiner, two different approaches for extract-
ing subnetworks that are enriched for active/deregulated
genes have been implemented. For the INES (Individual
Node Exceptions) approach, two parameters are required.
A gene is considered foreground, if it is active, e.g. differen-
tially expressed, in all but L% of the samples (cases, cell lines
or patients). In addition, a parameter K adjusts for the num-
ber of inactive genes (exceptions, background) that are al-
lowed in a solution. Once K and L have been selected, Key-
PathwayMiner then proceeds to extract all maximal sub-
networks containing at most K (exception) nodes with no
more than L% inactive cases. In some instances, exception
nodes may be part of, but are not central to the pathway (e.g.
removing them would maintain the pathway connected) .
Hence, we implemented a new optional post-processing step
to remove Border Exception Nodes (BENs).

The parameter K tends to allow KeyPathwayMiner to se-
lect hub nodes to combine small solutions into large con-
nected ones. Since this behavior is not always desired, Key-
PathwayMiner also implements a second strategy called
GLONE (Global Node Exceptions). Here, the parameter
K is omitted in favor of a global view on the parameter L.
A subnetwork is considered foreground (active), if the to-
tal sum of inactive cases across all genes is smaller than or
equal to L. Here we also aim at extracting all maximal con-
nected sub-networks containing at most L inactive cases in
total. This strategy is less prone to selecting solutions con-
taining hub nodes, but it is computationally more expensive.
For details on the implementation as well es extensive eval-
uations and application examples of the KeyPathwayMiner
methodology we refer to (12–14,16).

Figure 1. The user is guided through the setup of a de novo network enrich-
ment analysis in KeyPathwayMinerWeb in four steps. The only prerequi-
site is the creation of suitable input matrices for the multi-OMICS datasets.
Tutorials, sample data files and a screencast are available at the web site.

INPUT

KeyPathwayMinerWeb offers de novo network enrichment
using the INES and GLONE strategies introduced above.
The user is guided through the setup of an analysis in four
steps (Figure 1):

Step 1: setup datasets

Select datasets. In the first step, the user is expected to se-
lect or upload one or several datasets. For each case/sample,
a particular gene can be reported as deregulated (active or
not). This information is encoded in a data matrix, where
columns correspond to cases (without column names) and
rows correspond to genes (with the gene IDs in the first
column). Each of the table entries encodes a ‘1’ for active
and ‘0’ for inactive case-gene combinations. Columns need
to be separated by a tab delimiter. Instead of such an in-
dicator matrix, users can also upload an arbitrary numeri-
cal matrix of P-values or fold changes, for instance. In the
latter case, the user can select a threshold for each dataset
and an indicator matrix is generated on the fly. Note that
P-values in a typical statistical analyses are derived from
a comparison between a case and a control group. How-
ever, this leads to an aggregated P-value that indicates if
the observed difference was overall significant but it does
not reflect the fact that in biomedical data, nodes (genes,
proteins, metabolites, etc.) of interest are typically deregu-
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lated in many of the cases with a certain number of excep-
tions. The key advantage of KeyPathywayMiner is that it
enables its users to control the number of these case excep-
tions. Consequently, a differential analysis should ideally
not be focused on a group-wise comparison but produce a
P-value for each case. This can be achieved, for instance, by
comparing matched case/control samples or by comparing
each case to a distribution of values derived from a control
group. To demonstrate the makeup of the expected input
data, KeyPathwayMinerWeb includes a number of demo
datasets, such as indicator matrices of gene expression (up-
and downregulated) and DNA methylation in colon cancer
(17) as well as p-values for differential gene expression in
Huntington’s disease (HD) (12).

Logically connect experiments. This field specifies how
KeyPathwayMinerWeb deals with multiple datasets. Select-
ing ‘AND’ results in a gene-case combination to be consid-
ered as active if it is active in all of the selected datasets. In
contrast, selecting ‘OR’ results in a gene-case combination
being considered as active if it is active in any of the selected
datasets.

Positive and negative nodes. Sometimes, users have previ-
ous knowledge that they may want to include in the analy-
sis, for instance, by preferring specific genes of interest in a
solution or by punishing solutions with unfavorable genes.
To facilitate this, users can add genes either to the positive
(always considered active) or the negative (always consid-
ered inactive) list. KeyPathwayMinerWeb will favor subnet-
works with many positive nodes and few negative ones.

Step 2: setup network

In addition to selecting one or more datasets, a network can
either be uploaded or selected from a list of provided de-
fault networks, including HPRD (2), BioGrid (3) or I2D (5),
for instance. User provided network files need to follow the
simple interaction file (SIF) format. The gene IDs need to
match the gene IDs used in the OMICS datasets. Note that
all default data and networks in KeyPathwayMinerWeb use
Entrez gene IDs. We provide template files as well as a de-
tailed description of the data format at the web site.

Step 3: setup parameters

In this step of the setup, the user can optionally enter a cus-
tom name for the analysis or stick to an automatically gen-
erated one. The job name will later be used to select and
analyze the results. Next, one has to choose the parame-
ters needed by KeyPathwayMiner, starting with the enrich-
ment strategy (INES or GLONE) and the corresponding
parameters K (node exceptions) and L (case exceptions in
percent of total cases). The user may compare the results
for different parameters conveniently by defining a range
for K and L. Not all of the genes in a network are neces-
sarily represented in all or any of the datasets. The user can
choose whether these unmapped genes should be added to
the positive list (and thus extend and connect extracted sub-
networks) or to the negative list (where they will be ignored).
Finally, the user can select how many enriched subnetworks
KeyPathwayMiner extracts with an upper limit of 20.

Step 4: setup review

In the final step, the user can review the setup in a sum-
mary before triggering the KeyPathwayMiner analysis with
pressing the start button. The user will then automatically
be directed to the results tab.

OUTPUT

Job overview

The status of all queued, active and completed runs of a
user session is shown in the results tab. For queued jobs,
the current position in the queue is shown. For jobs that
are currently active, a progress bar is shown. Once a job is
completed, a ‘See results’ button appears.

Result view

At the top of the result page (Figure 2A), the user may first
select a specific L (and K, depending on the selected enrich-
ment strategy) in case a parameter range was chosen. Op-
tionally, users can choose to substitute node labels with a
different identifier type (Figure 2B). This is a convenience
feature that allows, for instance, to show familiar gene sym-
bols instead of cryptic gene IDs.

The central element of the result view is an interactive
graph panel (Figure 2D). To avoid cluttering in large so-
lutions, node labels are omitted and only shown when the
mouse cursor is moved over a specific node or for all visible
nodes when zooming in until cluttering is minimal. Click-
ing on a node will open a new tab where additional infor-
mation about a particular gene is shown via the NCBI web-
site. The graph panel is accompanied by the pathways ta-
ble (Figure 2E) that summarizes the extracted subnetworks
and reports the number of nodes and edges, the average ex-
pression, which corresponds to the average number of active
cases, as well as the average information content. Clicking
on an entry of the pathways table will update the graph plot.

Additional options are available through buttons shown
on top of the graph plot (Figure 2C). This includes the pos-
sibility to update the graph, for instance after changing the
node label substitution settings or to export the currently se-
lected solution as a list of nodes or as a SIF file. Finally, the
user can also render a union graph, in which all extracted
subnetworks are merged to build a consensus network. In
the union graph, the node color can be interpreted with the
help of a color legend, which indicates how often a particu-
lar gene is part of a reported solution.

IMPLEMENTATION

Web application framework

We chose a Java web application framework for the devel-
opment of KeyPathwayMinerWeb to exploit the fact that
the KeyPathwayMiner algorithms have been implemented
in Java. Several factors motivated us to choose the Grails
framework as a foundation. First of all, Grails builds on
top of the Spring framework, which is an enterprise stan-
dard for the development of Java web applications. More-
over, Grails embraces concepts that reduce the development
effort and increase maintainability, such as convention over
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Figure 2. Example output of a typical KeyPathwayMinerWeb analysis using differential gene expression data from 38 Huntington disease patients and 32
control subjects. (A) KeyPathwayMinerWeb allows users to explore several parameter combinations. Sliders allow changing the parameters conveniently.
(B) Node labels can be substituted with alternative identifiers, such as gene symbols. (C) Additional options for data export and for interacting with the
results are available, including a union graph feature. (D) An interactive representation of the selected subnetwork or the union graph. (E) A summary
table showing the solutions, i.e. the enriched subnetworks. Clicking on a table row will update the graph shown in (D).

configuration or separation of concerns. Finally, Grails re-
duces the complexity of data persistence with an object rela-
tional modeling technique, which encapsulates all database
interactions and models them through simple Java domain
classes.

User authentication

For each session, KeyPathwayMinerWeb creates a unique
session ID, which enables users to perform analyses anony-
mously. However, in order to manage larger number of anal-
yses and to prevent the results from being deleted, users can
optionally create a user account. Secure user management
and authentication is implemented via the Grails SpringSe-
curity plug-in.

Queuing

One crucial aspect that was not covered by the Grails plug-
ins ecosystem was a queuing system that would allow us to
provide a stable and responsive user experience while han-
dling many user requests in parallel. We thus implemented
a queuing mechanism for KeyPathwayMinerWeb that pro-
vides users with the possibility to monitor for each of the
submitted jobs the position in the queue. When a job is first
in the queue, a KeyPathwayMiner thread is created and its
progress is reported back to the user via asynchronous fron-
tend updates. Consequently, the user will be able to follow
the progress exactly as if the job was executed locally in the
Cytoscape app.

Network visualization

For the visualization of the extracted subnetworks, we used
sigmajs (http://sigmajs.org/, last access 5 April 2016), a state

http://sigmajs.org/
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of the art Javascript library for interactive graph visualiza-
tion.

Identifier conversion

KeyPathwayMinerWeb requires the dataset and the net-
work to use the same identifier. However, it is possi-
ble to convert the IDs of the extracted subnetworks, to
show, for instance, better interpretable gene symbols in-
stead of Entrez gene IDs. This optional mapping step is re-
alized through integrating the web service of the HUGO
Gene Nomenclature Committee (http://www.genenames.
org/help/rest-web-service-help, last access 5 April 2016).

RESTful API

The functionality of KeyPathwayMinerWeb can be inte-
grated into third party applications through a RESTful
API. The API allows jobs to be submitted either in a block-
ing (synchronous) or non-blocking (asynchronous) way,
depending on the needs of the developer. A list of inte-
grated default networks is available, allowing developers
to offer their users to choose one of them. Alternatively,
external applications may submit their own network in
SIF format. All files need to be base64 encoded prior to
submission. In order to optimally support asynchronous
job execution, there are methods available for querying
the status and progress of a job as well as for obtain-
ing the final results after the job is completed. The API
is documented at http://keypathwayminer.compbio.sdu.dk/
documentation/rest and includes various usage examples in
the R scripting language.

BIOLOGICAL USE CASE

We demonstrate the usability of KeyPathwayMinerWeb by
analyzing a whole-genome gene expression dataset on HD
(18) together with the human interactome (19). The expres-
sion dataset comprises samples taken from caudate nucleus
region of the brain of 38 HD patients compared to 32 pa-
tients in a control group. One-tailed P-values were com-
puted for every gene and HD sample compared to a normal
distribution of the corresponding gene in the control group.
Note that HD is a Mendelian disease, i.e. a certain mutation
in the Huntingtin (HTT) gene triggers the disease. How-
ever, in the dataset HTT is not significantly differentially
expressed in ca. 40% of the patients, such that a gene expres-
sion dataset analysis alone would not lead to the identifica-
tion of this gene as significant. Here, we now aim to use Key-
PathwayMinerWeb to identify downregulated pathways. To
ease reproducibility we have integrated both, the HD ex-
pression data (as P-values) and the corresponding protein–
protein network with the web platform already. One would
start a new ‘run’ by selecting the down-regulated Hunting-
ton gene expression dataset as well as a P-value threshold
(here: 0.05). Afterward, one needs to select a matching net-
work resource (here: the Ulitsky homo sapiens interactome
with Entrez IDs) as well as the KeyPathwayMiner parame-
ters (here: INES algorithm, no BENs, k = 4, L = 10%). Key-
PathwayMinerWeb then extracts the five largest connected
pathways where all genes but four are downregulated in all

HD patients but at most 10%. The result is shown in Figure
2D as union graph representation across the five best solu-
tions (33 nodes/genes). The HTT gene is found in the center
as exception node that is highly connected to differentially
expressed genes in all five solutions. Note that 9 of the 33
(27%) genes (incl. HTT) in the reported five best solutions
are known to be related to HD (19).

DISCUSSION AND CONCLUSION

It is widely acknowledged that a narrow view on a single
data type such as gene expression can only offer limited in-
sights into the complex mechanisms of bio-molecular sys-
tems and their perturbation in complex diseases. A current
trend in systems biology is therefore the integration of mul-
tiple OMICS datasets. Molecular interaction networks are
ideally suited to facilitate this integration, since they allow
for the unbiased identification of subnetworks or pathways
affected by an experiment through de novo network enrich-
ment.

However, existing methods are not easily accessible for
biomedical researchers, which motivated us to develop the
first web application that supports this type of analysis. An
emphasis of KeyPathwayMinerWeb is to be user-friendly.
The user is guided step by step through setting up a de novo
network enrichment analysis. An online video screencast
(available at the KeyPathwayMinerWeb front page), as well
as a selection of default datasets and networks allows users
to quickly familiarize themselves with the tool, equipping
them with the necessary knowledge to analyze their own
data successfully.

While the analysis with preprocessed datasets is relatively
straight forward, we observe that the generation of suitable
indicator matrices from experimental data remains quite
challenging. Although this is a direct consequence of the
flexibility of KeyPathwayMiner with regards to the support
of arbitrary data types, we sought a way to overcome this
limitation. To this end, we implemented support for non-
indicator matrix input (e.g. P-values or fold changes), such
that the user can provide a given cutoff for (differential)
activity and produce the indicator matrix on the fly. Fur-
thermore, a RESTful API allows developers of data anal-
ysis software to integrate de novo network enrichment as
part of their downstream analysis. Developers of such an
application can subsequently direct their users to the re-
sult page of KeyPathwayMinerWeb or query the results of
the analysis for further use. One use case of the RESTful
API is found in HiTSeekR, a platform for processing of
high-throughput screening data from raw microtiter plate
readout data down to interpretable systems biology results
(http://hitseekr.compbio.sdu.dk, manuscript under review).

In addition to the non-indicator matrix input support
and RESTFul API, the new KeyPathwayMinerWeb re-
lease now also supports the following new functionalities
not available in KeyPathwayMiner 4.0: (i) a gene ID to
gene name mapping on the resulting pathways, (ii) a union
graph/network as a consensus/summary representation of
the results, (iii) a functionality to remove so-called ‘BENs’
(Boundary Exception Nodes).

KeyPathwayMinerWeb is significantly different from ex-
isting web resources. DAVID (20) and PANTHER (21), for
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instance, are very popular services that essentially perform
functional annotations for a set of input genes using, for
instance, KEGG (22) pathway mapping and GO-term en-
richment. GeneMANIA, in contrast, allows to connect a
given set of input genes (while ignoring the experimental
data itself) by using network information (23). Consensus-
PathDB (24) and NetworkTrail (25) report for a given list
of input genes their enrichments in pathway sets, such as
KEGG pathways. All those platforms, in contrast to Key-
PathwayMinerWeb, feature non-de novo methods for the ex-
traction of functional network modules.

In spite of its potential for delivering valuable biomedi-
cal insights into the results of increasingly complex experi-
mental setups, the practical application of de novo network
enrichment in research is still limited. However, it is quite
telling that the most successful systems biology methods
developed so far (at least in terms of total number of ci-
tations), only became widely used in biomedical research
after user-friendly applications became available. We expect
that the lack of such an intuitive tool for de novo network
enrichment currently still hinders much wider use of this
kind of methodology. Consequently, we expect that Key-
PathwayMinerWeb has the potential to permanently add de
novo network enrichment to the stack of methods routinely
used in systems biology analyses. To date, network enrich-
ment is mainly applied to gene expression datasets, with few
exceptions. With intuitive user interfaces, it will prove use-
ful for other OMICS data types as well, ranging from pro-
teomics (26) to metabolomics (27) and cancer pathway mu-
tation screening (28), to name just a few examples.
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