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Abstract

An increasing number of authors agree in that the maximum entropy principle
(MaxEnt) is essential for the understanding of macroecological patterns. However,
there are subtle but crucial differences among the approaches by several of these
authors. This poses a major obstacle for anyone interested in applying the method-
ology of MaxEnt in this context. In a recent publication, Frank (2011) gives some
arguments why his own approach would represent an improvement as compared to
the earlier paper by Pueyo et al. (2007) and also to the views by Edwin T. Jaynes, who
first formulated MaxEnt in the context of statistical physics. Here I show that his
criticisms are flawed and that there are fundamental reasons to prefer the original
approach.

Introduction
The species abundance distribution (SAD) is the frequency
distribution of the abundances of the species in a commu-
nity. In other words, the SAD expresses how many species
are rare and how many are abundant. Ecologists have of-
ten used simple mathematical expressions to describe the
SADs in nature (review in McGill et al. 2007). Many have
sought simple mechanisms to explain these simple distribu-
tions. However, Pueyo et al. (2007) showed that such sim-
ple patterns can also be the result of extremely complex
dynamics.

Biodiversity is a result of biological evolution. Natural se-
lection is a powerful mechanism to explore complex fitness
landscapes, which comprise many more potential genotypes
than the number of particles in the Universe (Wright 1932).
The landscapes themselves are continuously modified by the
action of coevolution (Kauffman and Johnsen 1991) and
environmental changes (Wright 1932). The abundance of
a species is largely a result of this complex process, to the
extent that niche size and population fluctuations depend on
the biology and interactions of the species. Therefore, it is
unlikely that a simple, fit-for-all mechanistic model can ex-

plain the frequency distribution of the abundances of all the
species in a community. Because irreducible (incompress-
ible) complexity represents randomness (see, e.g., Downey
and Hirschfeldt 2010), it is plausible that the set of abun-
dances of different species is largely a random set, within few
other limits than those imposed by the laws of physics. The
irreducible complexity due to the specificities of each species
was named “idiosyncrasy” by Pueyo et al. (2007), and is the
basis of the idiosyncratic theory of biodiversity.

Once aware of the reasons why the abundances of species
could well be “random” to a large extent, we have to express
this hypothesis in mathematical terms. To this end, Pueyo
et al. (2007) borrowed a tool from statistical physics known
as maximum entropy formalism (MaxEnt) and due to Jaynes
(1957, 1968, 1978). In informal terms, MaxEnt is a method
to find the statistical distribution that is “as random as possi-
ble” under some given constraints. One of the most evident
constraints is that the total number of individuals cannot be
infinite in a finite world. A simple way to introduce this con-
straint is by setting a limit to the mean number of individuals
per species. The result found by Pueyo et al. (2007) from
this single constraint was the log-series distribution, which
is one of the main classical SADs that ecologist find useful to
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describe empirical data, since first introduced by Fisher et al.
(1943).

Following the notation in Frank (2011), let us use the
symbol y for abundance and p for probability density, in a
continuous approximation. (Pueyo et al. 2007 used discrete
abundances.) The log-series reads:

py = ky−1e−λy, (1)

where k and λ are constants. Small deviations from the log-
series are to be expected for several reasons (see section “Devi-
ations from MaxEnt predictions” below). Pueyo et al. (2007)
showed that, by taking such small deviations into account,
all classical SADs are derived straightforward. In particular,
at the limit of very small deviations we obtained a gamma
distribution,

py = kyα−1e−λy, (2)

which generalizes equation (1) because the additional pa-
rameter α can be slightly different from zero.

Surprisingly, at the same time and after the publication
of the paper by Pueyo et al. (2007), several other papers ap-
peared that also apply MaxEnt and also obtain the log-series
or some very similar distribution (Banavar and Maritan 2007;
Dewar and Porté 2008; Harte et al. 2008; Bowler and Kelly
2010; Frank 2011). These papers might seem redundant (ex-
cept for some results other than the SAD that are obtained in
some of them), but they are not, because there are subtle but
important differences in their ways to apply MaxEnt. These
differences are important for two reasons. First, because the
primary aim of these works is to find an explanation for
the observed patterns, and the explanation will be wrong if
MaxEnt is applied incorrectly, even if the same final result is
claimed in all cases. Second, because, if the same methodolo-
gies are ever used without previous knowledge of the results
to be expected, their predictions are unlikely to be correct
unless the methodologies are correct.

Such subtle differences among the methods in different
papers are a jigsaw for anyone attempting to apply MaxEnt
in an ecological context. Further advance will be difficult
unless they are carefully compared. The present paper is a
contribution to this task. In fact, the approaches by Banavar
and Maritan (2007) and by Bowler and Kelly (2010) are very
similar to the approach in Pueyo (2006, Appendix B), which
was already discussed in Pueyo et al. (2007, Appendix A).
Among the rest of papers, I gave priority to Frank (2011)
because he included an appendix with a critique of Pueyo et al.
(2007). He went beyond and also stated that his own way to
apply MaxEnt is better than that of Edwin T. Jaynes, who first
developed this method in the context of statistical physics.
The aim of the present paper is to reply Frank’s criticisms
by showing that there are fundamental reasons to prefer the
original approach rather than his version of MaxEnt, and also

that he does not give an accurate description of the contents
of our paper.

The Maximum Entropy Formalism

As already mentioned, the maximum entropy formalism
(MaxEnt) can be described as a method to find a distribution
of probability {py} that is “as random as possible” within
some explicit constraints. This distribution maximizes (us-
ing, again, Frank’s notation)

ε = −∫ py log( py/my ) dy (3)

subject to the relevant constraints (see details in Pueyo et al.
2007). In this equation, {my} is also a distribution of proba-
bility, known as “non-informative prior distribution.” A cru-
cial but often overlooked feature of MaxEnt is that it cannot
be applied without previously determining this distribution,
which represents full randomness (free of constraints) and
depends on the type of variable. The constraints always in-
clude the trivial one that the sum of probabilities is 1, which
I take for granted hereafter.

For example, take the case in which y represents a coor-
dinate in space (instead of species abundance as in the rest
of the paper). There is broad agreement in that a “random”
position corresponds to a uniform distribution in all of the
axes of coordinates, that is, my is uniform in this case. If we
maximize ? in equation (3) with no extra constraint we obtain
py = my . It is well known that molecules reach their maxi-
mum entropy when they are uniformly distributed in space.
Consider, however, the case of the atmosphere, where the
molecules are subject to the Earth’s gravitation field. Jaynes
(1978) maximized equation (3) under the constraint that the
sum of the potential energies of all the molecules has a given
value, and obtained the well known “barometric formula,”
according to which the density is maximum at the bottom
of the atmosphere and decreases exponentially with height.
This is a good approximation to reality, although some other,
site-specific constraints are needed to reach an even more
realistic distribution.

To predict a frequency distribution using MaxEnt we thus
need (1) to determine the correct prior distribution and
(2) to know the constraints to which the system is subject.
We can add a third point, which is the treatment of the devi-
ations from the result obtained by applying MaxEnt. In each
of these three aspects there are notable differences between
Frank (2011) and Pueyo et al. (2007), summarized in Table 1.
They will be discussed sequentially in each of the following
sections.

The Prior Distribution

The first step to apply MaxEnt is to find the prior distri-
bution my (eq. 3) expressing absence of information. In the
example above, I assume that the prior distribution for the
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Table 1. Differences between two ways to apply MaxEnt to predict the species abundance distribution.

Pueyo et al. (2007) Frank (2011)

Noninformative prior distribution Determined by the invariant groups criterion Assumed uniform
Ecological constraint Mean of the abundance y Mean of y + blog(y), where b is fitted a posteriori
Deviations from maximum entropy Taylor series expansion Not considered

coordinates in space is uniform. There is a widespread belief
that the uniform also expresses absence of information in all
other contexts. Frank’s (2011) paper is an instance (and so
is Harte et al. 2008; Harte 2011), as he assumes a uniform
prior distribution my ∝ 1, because, he claims, the uniform is
“the most random pattern with the highest entropy, and the
pattern that lacks any information.” However, there is con-
sensus in the statistical literature in that this is not the case,
even though there is no such consensus in the most correct
alternative (Kass and Wasserman 1996).

The problem is most evident for continuous variables, be-
cause every continuous variable y is equivalent to an infinite
number of other variables, for example, x = log(y), z = ey ,
v = √y. If y contains no information, none of these three
other variables contains any information either, but at most,
only one of them can be uniform, so we find a contradiction.

In the context of MaxEnt, this problem was already men-
tioned in the first paper about this method (Jaynes 1957), but
only a partial solution was given at that point. A complete so-
lution was presented in Jaynes (1968). Neither Frank (2011)
nor Frank and Smith (2010) give any reason why the prob-
lem and the solution found by Jaynes should be ignored, only
stating without proof that Jaynes’ method “does not always
give the correct answer” (in Frank and Smith, 2010, p. 301).

The solution found by Jaynes (1968) is named “invariant
groups” method and is based on the symmetries of each prob-
lem (see also Jaynes 1973; Pueyo 2011). For example, when
we are seeking a noninformative prior for SADs in general,
we are not specifying whether these SADs correspond to a
whole continent or to one’s backyard. If my were different
in each of these cases, the prior distribution would include
information that was not specified in the enunciate of the
problem. Therefore, it would not be a noninformative distri-
bution. The noninformative prior distribution of SADs has
to be scale invariant, that is,

mydy = mky d(ky).

The solution of this equation is

my ∝ 1/y (4)

(see also Shipley 2009). This distribution is named log-
uniform because, among all the possible parameterizations of

y, the one with a uniform distribution is x = log(y). As noted,
we have been assuming a continuous set, but, in fact, species
abundances constitute an infinite discrete set. Pueyo et al.
(2007) sought the result of applying the same symmetry to
discrete abundances n, and also found a prior proportional to
1/n. Besides scale invariance, we could think of other symme-
tries implied in a situation of absence of information about
the SAD (e.g., location invariance), but I am aware of none
contradicting this result.

Pueyo et al. (2007) abided by the criterion of invariance
to derive the noninformative prior distribution of the SAD
unambiguously, from a noninformative spatial arrangement
of individual organisms. Therefore, there is no justification
for Frank’s (2011) claim that our derivation of the prior
was based on “particular ecological assumptions.” Further-
more, we showed that strong deviations away from the non-
informative spatial arrangement did not alter the result. Of
course these deviations involved relatively specific ecological
assumptions, but were not needed for the main result. Even if
they had been needed, this approach would have been more
reliable than the unjustified choice of a uniform my .

In a more recent paper, Frank and Smith (2011) accept that
the uniform distribution is not conserved under a change of
variable. They state that the prior should be uniform at the
“scale” at which the information “dissipates.” However, this
choice does imply assumptions about particular mechanisms.
Furthermore, these authors give no reason why the informa-
tion should dissipate on a linear “scale” in the case of species
abundance.

In this context, a correct choice of prior is extremely im-
portant. Figure 1 compares the results of using a uniform or
a log-uniform prior when the only constraint is the mean
abundance. The predicted frequency distributions are com-
pletely different: exponential in the first case and log-series in
the second. For example, the expected number of singletons
(species with one single individual) differs by two orders of
magnitude in this instance.

Among the two plots in Figure 1, only the one that re-
sults from the prior used by Pueyo et al. (2007) is realistic
(Pueyo 2006; see also McGill et al. 2007). However, this ob-
servation, in itself, says little about which prior is correct.
The determination of the noninformative prior can never be
based on empirical data: it is based on logics (discussed in
Pueyo 2011). In this section, I have summarized the logics
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Figure 1. Illustration of the importance of using the correct non-
informative prior distribution when applying the maximum entropy for-
malism (MaxEnt). The two curves are predicted species abundance distri-
butions (SADs) obtained by applying MaxEnt, with the only assumptions
that there are 107 species and no more than 112,352 individuals, as
is the case for a dataset of Mediterranean diatoms analyzed by Pueyo
(2006). The expected number of species with n individuals is s(n). The
black plot assumes that the noninformative prior is log-uniform, and
the gray one assumes that it is uniform. According to the logical criteria
in Pueyo et al. (2007), the correct prior is log-uniform. Pueyo (2006)
shows that the resulting SAD agrees with the empirical observations. If,
instead, the logical arguments proved that the correct prior is uniform,
the difference between the unrealistic gray plot and the realistic black
plot would indicate that we are ignoring some important constraint.

behind the assertion that the prior can only be log-uniform
(eq. 4) in this context (more details in Pueyo et al. 2007)
and I have shown that there is no logical basis for the uni-
form prior, which Frank suggests as an alternative to our
choice. If the opposite were true, the large difference between
the gray curve in Figure 1 (which follows from the uniform
prior) and empirical SADs would not affect the determi-
nation of the prior but would mean that we have ignored
some important constraint. Frank (2011) introduces a con-
straint ad hoc to obtain a realistic result, as treated in the next
section.

Constraints

In spite of the diverse features of the species in a community,
they do not cover the whole space of possibilities that could
be imaginable a priori, either because some of these possibil-
ities are incompatible with the laws of physics, because they
are systematically disfavored by natural selection, or because
of historical reasons. From the idiosyncratic theory, we ex-
pect SADs to display maximum entropy, but subject to some
minimum constraints.

As mentioned, a constraint on the mean species abundance
(which has to be finite for physical reasons) is enough to
give quite a realistic SAD. This is true when the prior has
been obtained by applying the standard method of invariant
groups, but not when assuming a uniform prior as Frank
(2011) does, as is evident from Figure 1. In order to fill the
gap from the nonrealistic SAD shown in gray in Figure 1 to
the realistic SAD shown in black in the same figure, Frank
(2011) constrains the mean value of the function:

T(y) = y + b log(y), (5)

where b is a parameter that is fitted a posteriori. He calls this
constraint “log-linear scale.”

The constraint on T belongs to a class of constraints put
forward by Frank and Smith (2010), which they name “con-
straints on measurement scale.” In their approach, the diver-
sity of these constraints is intended to replace the diversity of
the prior distributions used by Jaynes (1968). However, while
Jaynes’ choice of prior distribution follows a strict logic (the
invariant groups method), which warrants that it will not be
affected by the desired result, Frank and Smith’s choice of
constraint is ad hoc. More importantly, these constraints do
not solve the problem for which Jaynes’ method was designed.
Whether or not these constraints are used, the assumption
that a uniform m is universally valid leads to contradictions.
Among the different parameterizations of y mentioned in the
previous section, a uniform m combined with a “log-linear
scale” gives equivalent results when applied to x, y, and v, but
not when applied to z, as is the case for an infinite number
of other parameterizations. As discussed in the previous sec-
tion, this limitation was recognized in a later paper by Frank
and Smith (2011) but no satisfactory solution was given.

The “log-linear scale” constraint chosen by Frank (2011)
in the case of SADs is a clear instance of the ad hoc character
of the choice of “measurement scale” constraints in Frank
and Smith’s (2010) method. Frank (2011) recognizes that he
ignores the reason why this constraint should hold. As an ex-
ample of possible cause, he puts forward a specific population
dynamics model, in spite of his stated goal of using “recent
advances in maximum entropy to strengthen the argument
that many different mechanistic hypotheses lead to the same
common SAD pattern,” and accusing Pueyo et al. (2007) of
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relying on “particular ecological assumptions,” which was
not the case.

Deviations from MaxEnt Predictions

Biological species are not completely idiosyncratic, and, be-
sides mean abundance, there might be many other con-
straints, if less important and more difficult to anticipate. Fur-
thermore, communities will often display fluctuations away
from their state of reference (analogous to fluctuations away
from thermodynamic equilibrium in isolated physical sys-
tems). Pueyo et al. (2007) used a standard technique known
as Taylor series expansion to perturb the maximum entropy
distribution in equation (1) (details in Pueyo 2006). This
treatment uncovered a direct link between the log-series and
the other classical SADs. The minimum perturbation leads
to a gamma distribution (eq. 2), which generalizes equa-
tion (1) because the additional parameter α can differ from
zero. Pueyo et al. (2007) also mentioned that equation (2)
is equivalent to the maximum entropy distribution when, in
addition to the arithmetic mean of y, the geometric mean is
constrained.

Frank (2011) states that, “to get the gamma from the log
series,” Pueyo et al. (2007) “realize that the geometric mean
has to be allowed to vary independently of the arithmetic
mean, so, ad hoc, they allow the geometric mean to vary in-
dependently.” This is not a faithful description of the content
of our paper. Finding a gamma was not our goal and we did
not reach it by introducing constraints ad hoc. It was the
result of introducing small perturbations in the log series by
using Taylor series. We mentioned that this was equivalent to
constraining the geometric mean, but this was not its justifi-
cation. We stated (Pueyo et al. 2007, p. 1022): “The equations
of MaxEnt allow us to concisely describe the terms in the
Taylor series as constraints on the distribution. Nevertheless,
as we have not established these constraints a priori, our ulti-
mate reason to expect these modifications is the Taylor series
and not MaxEnt.”

Frank (2011) coincide with Pueyo et al. (2007) in that the
gamma distribution gives a good description of SADs, but
instead of attributing this distribution to small deviations
from the state of maximum entropy, he claims to have ob-
tained it by maximizing entropy. Since his “log-linear scale”
constraint (eq. 5) combines the arithmetic mean and the ge-
ometric mean, it gives rise to a gamma distribution (eq. 2)
with arbitrary α. This constraint was chosen ad hoc, so his
criticism of our paper in fact applies to his own choices. Fur-
thermore, his approach does not explain the reason why, in
empirical observations, deviations from α = 0 (in eq. 2) are
typically small. In contrast, this is the natural expectation if
empirical SADs result from small perturbations of the log-
series (where α = 0) as suggested by Pueyo (2006) and Pueyo
et al. (2007).

Final Remarks

In a recent paper, Frank and Smith (2011) propose a gen-
eral classification of probability distributions. Acting as a
reviewer of the present paper, Frank’s main claim is that
my comments about his SADs’ paper (Frank 2011) are not
valid unless I propose another classification of distribu-
tions. However, I do not think that this is necessary or even
appropriate.

In logical terms, the contribution by Frank and Smith can
be classified into three parts: the basic premises (the general
approach, first introduced in Frank and Smith 2010), some
conclusions for ecology (the reinterpretation of the SADs,
in Frank 2011), and some conclusions for general statistics
(the classification of probability distributions, in Frank and
Smith 2011). The object of the present paper is to discuss the
basic premises and the ecological conclusions. The fact that
some other conclusions have also been drawn from the same
premises tells nothing about whether or not these premises
are correct. (Note that Frank and Smith 2011 is a deduc-
tive paper, with no empirical test involved.) Therefore, my
proposing a classification of probability distributions would
shed no light on the problem treated in this paper. Further-
more, this would belong to a journal of statistics rather than
ecology and evolution. An aspect in which Frank and Smith
(2011) depart from the premises in Frank and Smith (2010)
has been discussed in the section “The Prior Distribution”
above.

In addition, it should be clear that the first object of the
present paper is to reply Frank’s criticisms of Pueyo et al.
(2007) and of Edwin T. Jaynes, the father of the maximum
entropy formalism. Frank states that this paper is not valid
unless I address his “full published work,” but Frank and
Smith never addressed the whole contribution by Edwin T.
Jaynes and, as mentioned, did not even give any argument
for their claim that Jaynes’ method “does not always give the
correct answer.”

In this paper I have shown that Frank’s (2011) description
of Pueyo et al.’s (2007) paper was not accurate, and, more
importantly, that there are strong reasons to prefer the ap-
proach by Jaynes and by Pueyo et al. over Frank’s attempt
to replace it. In coming papers I will extend the compari-
son to other published versions of MaxEnt in community
ecology.
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Dewar, R. C., and A. Porté. 2008. Statistical mechanics unifies

different ecological patterns. J. Theor. Biol. 251:389–

403.

992 c© 2012 The Authors. Published by Blackwell Publishing Ltd.



S. Pueyo Maximum Entropy in Biodiversity

Downey, R. G., and D. R. Hirschfeldt. 2010. Algorithmic

randomness and complexity. Springer-Verlag, New York.

Fisher, R. A., A. S. Corbet, and C. B. Williams. 1943. The relation

between the number of species and the number of individuals

in a random sample of an animal population. J. Anim. Ecol.

12:42–58.

Frank, S. A. 2011. Measurement scale in maximum entropy

models of species abundance. J. Evol. Biol. 24:485–496.

Frank, S. A., and D. E. Smith. 2010. Measurement invariance,

entropy, and probability. Entropy 12:289–303.

Frank, S. A., and E. Smith. 2011. A simple derivation and

classification of common probability distributions based on

information symmetry and measurement scale. J. Evol. Biol.

24:469–484.

Harte, J. 2011. Maximum entropy and ecology. Oxford Univ.

Press, Oxford U.K.

Harte, J., T. Zillio, E. Conlisk, and A. B. Smith. 2008. Maximum

entropy and the state-variable approach to macroecology.

Ecology 89:2700–2711.

Jaynes, E. T. 1957. Information theory and statistical mechanics.

Phys. Rev. 106:620–630.

Jaynes, E. T. 1968. Prior probabilities. IEEE T. Syst. Sci. Cyb.

4:227–241.

Jaynes, E. T. 1973. The well-posed problem. Found. Phys.

3:477–493.

Jaynes, E. T. 1978. Where do we stand on maximum entropy?

in R. D. Levine and M. Tribus, eds. The maximum entropy

formalism. MIT Press, Cambridge, MA.

Kass, R. E., and L. Wasserman. 1996. The selection of prior

distributions by formal rules. J. Am. Stat. Assoc. 91:1343–1370

(Correction in J. Am. Stat. Assoc. 93:412).

Kauffman, S. A., and S. Johnsen. 1991. Coevolution to the edge of

chaos: coupled fitness landscapes, poised states, and

coevolutionary avalanches. J. Theor. Biol. 149:467–505.

McGill, B. J., R. S. Etienne, J. S. Gray, D. Alonso, M. J. Anderson,

H. K. Benecha, M. Dornelas, B. J. Enquist, J. L. Green, F. He,

et al. 2007. Species abundance distributions: moving beyond

single prediction theories to integration within an ecological

framework. Ecol. Lett. 10:995–1015.

Pueyo, S. 2006. Diversity: between neutrality and structure.

Oikos 112:392–405.

Pueyo, S. 2011. Solution to the paradox of climate sensitivity.

Clim. Change. doi: 10.1007/s10584-011-0328-x

Pueyo, S., F. He, and T. Zillio. 2007. The maximum entropy

formalism and the idiosyncratic theory of biodiversity. Ecol.

Lett. 10:1017–1028.

Shipley, B. 2009. Entropy maximization and species abundance.

Pp. 2903–2918 in R. A. Meyers, ed. Encyclopedia of complexity

and systems science. Part 5, Springer, New York.

Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding

and selection in evolution. Proc. 6th Int. Congr. Genet.

1:356–366.

c© 2012 The Authors. Published by Blackwell Publishing Ltd. 993


