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Abstract The method for nuclei segmentation in fluores-
cence in-situ hybridization (FISH) images, based on the in-
verse multifractal analysis (IMFA) is proposed. From the blue
channel of the FISH image in RGB format, the matrix of
Holder exponents, with one-by-one correspondence with the
image pixels, is determined first. The following semi-
automatic procedure is proposed: initial nuclei segmentation
is performed automatically from the matrix of Holder expo-
nents by applying predefined hard thresholding; then the user
evaluates the result and is able to refine the segmentation by
changing the threshold, if necessary. After successful nuclei

segmentation, the HER2 (human epidermal growth factor re-
ceptor 2) scoring can be determined in usual way: by counting
red and green dots within segmented nuclei, and finding their
ratio. The IMFA segmentation method is tested over 100 clin-
ical cases, evaluated by skilled pathologist. Testing results
show that the new method has advantages compared to al-
ready reported methods.

Keywords Breast cancer . Fluorescence in-situ
hybridization . HER2 . Image processing . Nuclei
segmentation . Fractal andmultifractal analyses . Holder
exponents

1 Introduction

In developed countries the second cause of mortality is that of
the cancer, just after the cardiovascular diseases as noted in
World Health Organization (WHO) reports ( 2014). For wom-
en, the most common cause of death is the breast cancer,
which makes about 23% of all cancers, with high mortality
rate of around 14%. Very often (in 20% to 25% cases), this
cancer is followed by the over-expression of the glycoprotein
HER2 (human epidermal growth factor receptor 2, also called
HER2/neu, or c-erb-B2) (Akiyama et al. 1986) which is locat-
ed on the surface of breast cells and is responsible for the cell
growth, differentiation and division. The HER2 receptor is
controlled by HER2 gene located at the cell’s nucleus, at chro-
mosome 17 near to its centromere (CEP-17). In normal cases
cell has two copies of HER2 gene, growth signals are relative-
ly weak and controllable, and cell’s membrane contains
20,000 to 50,000 HER2 molecules (Arnold et al. 2008). In
some cases HER2 gene is amplified, having more than two
copies. This leads to increased synthesis of HER2 protein -
protein level may be even 100 times or more of those in
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normal cells, as noted in Venter et al. (1987). This state,
known as HER2 protein over-expression, can drive the uncon-
trolled cell’s division, producing thus an aggressive tumor
growth. Such breast cancers, referred as HER2 positive, are
followed by high metastatic activity and a poor clinical prog-
nosis: higher rate of recurrence and mortality (Slamon et al.
1987; Andrulis et al. 1998).

Fortunately, HER2 positive tumors are promising target for
the therapy with the humanized monoclonal antibody known
as Herceptin (chemical name trastuzumab, Genentech, San
Francisco, CA). The Herceptin induces rapid removal of
HER2 from the cell surface, thereby dramatically reducing
the risk of recurrence and mortality, even in advanced cancer
cases (Ross et al. 2009). This drug is effective against HER2-
positive invasive cancers, but in addition to therapy being
expensive, it can be useless if is applied for HER2 negative
cases. Moreover, wrong therapy may even produce serious
side effects and survival problems. Therefore, it is of great
importance to accurately determine the HER2 positivity be-
fore applying Herceptin therapy (Slamon et al. 2011).

According to the guidelines and recommendations stated
from the American Society of Clinical Oncology (ASCO) and
the College of American Pathologists (CAP) (2013), the two
FDA-approved methods for testing HER2 positivity are used
in clinical praxis: the Immunohistochemistry (IHC) and In-situ
hybridization (ISH). Bothmethods analyze the histopathology
samples of the breast tissue, stained on an appropriate way.
The IHC is of the qualitative nature, estimating the amount of
HER2 protein on the cancer cell surface. The ISH method
permits quantitative scoring of the HER2 status by measuring
the number of HER2 genes copies on the chromosome within
the cell’s nucleus.

The IHC method is routinely used in laboratories due to its
simplicity, relatively low cost and the use of standard light
microscope. The method is based on the staining reaction
between HER2 proteins and an antibody on slides of breast
tissue. After reaction, from the amount of perceptible mem-
brane staining it is relatively easy to classify observed samples
as HER2 negative or HER2 positive. Cases characterized by
no or barely membrane staining observed in less than 10% of
tumor cells are scored 0 or 1+ and are HER2 negative.
Conversely, when strong complete membrane staining is ob-
served in more than 30% of tumor cells, this case is scored 3+
and assumed HER2 positive. Unfortunately, many of ob-
served samples are on the borderline, scored as 2+ (meaning
as weakly positive), and need additional evaluation. The main
difficulty in scoring borderline cases is that the IHC method is
subjective, and different pathologists may use slightly differ-
ent criteria to decide whether the results are positive or nega-
tive, although some automated procedures for HER2 scoring
from IHC are reported, for instance in Hall et al. (2008).

With the ISH method, selective staining of particular DNA
sequences is obtained allowing the detection, analysis, and

quantification of specific abnormalities within interphase nu-
clei. Historically, the first of ISH methods use fluorescent
markers: specific fluorescent probes that bind to particular
parts of the chromosome (Arnold et al. 2008). Such method,
known as the FISH (fluorescent ISH), enables the precise
scoring of HER2 status without the need of cell culturing
(which is necessary step in IHC), thus it can be applied to
the analysis of any cytological or histological samples.
Typical FISH employ two fluorescent dyes: Spectrum
Orange (or Texas Red) for staining HER2 genes, and FITC
(fluorescein-5-isothiocyanate) for staining CEP-17 centro-
mere. After exciting the stained sample by light source, the
fluorescent probe emits particular color. Under the fluores-
cence microscope HER2 genes will be visible as red and
CEP-17 centromeres as green dots.

Standard procedure of evaluating HER2 status from FISH
images is based on manual counting the red and green dots
inside well defined and non-overlapping interphase nuclei (20
nuclei per tissue specimen is recommended) and calculating
accurately the HER2 status from the average ratio of red-green
dots (meaning, scoring the ratio HER2/CEP-17). For better
recognizing cell nuclei (where red/green dots should be count-
ed), the slides are treated also with the third fluorochrome
known as the DAPI (4′,6-diamidino-2-phenylindole). The
DAPI is bound to the cell nuclei and emits blue color after
activating by light source. Since the fluorescence effect fades
relatively quickly, the fluorescence microscope usually is
equipped with digital camera, for recording obtained image
enabling further (off-line) examination (Arnold et al. 2008).

Precise and detailed recommendations and guidelines for
HER2 testing and scoring are given by ASCO/CAP (2013)
and embedded in commercially available probe kits, for in-
stance in HER2 FISH pharmDx™ Assay Kit, Dako (2010)
and PathVysion HER-2 DNA Probe Kit (Abbott Molecular)
(2013). In short, we can stress out that if HER2/CEP-17 ratio
is greater than 2.2 the case is assumed as HER2 positive, while
the case is HER2 negative if this ratio is less than 1.8. Cases
between these values are suspicious and need special attention
and additional examinations (Skaland et al. 2008).

Relatively recently, another two ISH-based methods are
also accepted from the FDA as diagnostic tools for determin-
ing HER2 status (Jacquemier et al. 2013). These methods are
the chromogenic ISH (CISH), which is the dual-probe method
(using two colors: red for HER2 genes and blue for CEP-17
centromeres), and silver ISH (SISH), which is single-probe
method (only HER2 genes are colored as black dots).
Methods for staining and hybridization are simpler than in
case of FISH. Also, specimens are stable providing permanent
glass slide and the use of standard light microscope for visu-
alization of HER2 gene copies. From these reasons CISH and
SISH techniques are very promising for HER2 positivity test-
ing. Note also that very recently the new micrometer-scale
interphase FISH (so called μFISH) is described in Huber
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et al. (2016). This method is compatible with the standard
FISH, but the procedure is significantly faster and enables
spatially multiplexed FISH. However, even today, the dual-
color FISH technique is still assumed as a Bgolden standard^
for HER2 status scoring (Dybdal et al. 2005; Tapia et al. 2007;
Perez et al. 2014).

The paper is organized as follows. In Section 2 the problem
statement and brief review of known techniques for cell nuclei
segmentation are presented. Section 3 introduces the concept
of fractal and multifractal (MF) analyses as a powerful ways
for describing, analyzing and evaluating complex structures,
phenomena and signals in general, and their application in
image processing as well. One of the main benefits of using
MF analysis is that it permits to describe observed structure in
local and global sense mutually. Section 4 considers the pos-
sibility of the use of MF analysis (MFA) for cell nuclei seg-
mentation, and the new method based on the so called IMFA
(inverse multifractal analysis) algorithm is proposed. It is
shown that the IMFA method is less sensitive to inhomoge-
neous slide illumination compared to known segmentation
methods. Moreover, the method is fast enough and permits
user relevance feedback, meaning, it enables the physician to
correct and refine segmentation result in an interactive and
easy manner. Section 5 describes briefly the experimental sys-
tem for testing and comparing the new segmentation method
with methods known from the literature. The new segmenta-
tionmethod is tested over 100 cases of FISH images collected,
prepared and evaluated from the Institute of Pathology,
University of Bern, Switzerland. Results presented in
Section 6 demonstrate the efficiency of the IMFA algorithm
and its advantages compared to known methods. Some con-
cluding remarks are presented in Section 7.

2 Problem statement and related work

Segmentation, in general, is a challenging task in image pro-
cessing. This process is typically used to locate particular ob-
jects in images, that is, to assign a label to every image pixel in
such way that pixels with the same label share certain com-
mon characteristics. Particular attention is devoted to segmen-
tation in medical images. Characteristic parts within a medical
image, which are detected and extracted from the background,
enable the identification of abnormalities and help physicians
to perform the diagnosis. Depending on imaging technology
and particular problem under analysis, different segmentation
methods and techniques are derived and reported (Gonzales
andWoods 2008; Suri et al. 2002). Regarding the HER2 scor-
ing in FISH images, the first and most significant step is the
cell nuclei segmentation, because only within well segmented
nuclei the HER2 scoring has to be determined as recommend-
ed by ASCO/CAP (2013).

An example illustrating typical procedure for cell nuclei
segmentation in FISH images is presented in Fig. 1. Initial
FISH image (image stored as 312,292.jpg in our database) in
RGB color space is depicted in Fig. 1(a). Within its blue chan-
nel, Fig. 1(b), nuclei are presented as well defined and well
recognized oval regions brighter than surrounding. In this case
the nuclei segmentation is relatively easy task: by applying
simple thresholding the binary image (black and white) con-
taining white regions (possible nuclei) and black background
is obtained, as depicted in Fig. 1(c). By applying some mor-
phology operations (hole filling and opening) on thresholded
image, refined binary image as in Fig. 1(d) is produced: holes
within nuclei regions (not existing in this case) are filled and
small objects (artifacts) are removed.

An additional image processing tools, for instance, the
distance- and watershed transform (Gonzales and Woods
2008), enable the separation of touched adjacent regions, as
presented in Fig. 1(e). Some postprocessing steps for rejecting
small, non-oval, and border nuclei are applied as well, and the
final result is presented in Fig. 1(f). However, note that this
case is very simple and needs not complex processing.
Unfortunately, in everyday medical praxis, even after strictly
and carefully applying the procedures recommended by
ASCO/CAP (2013) obtained FISH images can be of degraded
quality. For instance, due to finite thickness of histopathology
samples within the microscopy field of view (FOV) obtained
images may be blurred with no clear distinction of nuclei.
Furthermore, the tissue staining is complex and sensitive pro-
cedure and images can be with unbalanced intensities, hetero-
geneous contrast, non-uniform color within the same tissue
part, and with artifacts. As a consequence, cell nuclei segmen-
tation may be difficult and incorrect. Additionally, manual dot
scoring is fatiguing and time consuming process. For resolv-
ing such real-life problems and helping physicians in HER2
scoring, several automated or semiautomated methods have
been proposed (Netten et al. 1997; de Solorzano et al. 1998;
Kozubek et al. 1999; Lerner 2004; Raimondo et al. 2005), as
will be briefly reviewed.

In their work Netten et al. (1997) considered automatic dots
counting in lymphocytes from cultured blood. They used the
ISODATA thresholding, introduced by Ridler and Calvard
(1978), for separating nuclei from background. Dot detection
within nuclei is performed by using the top-hat transform and
a nonlinear Laplacian filter. De Solorzano et al. (1998) devel-
oped a method to segment nuclei in leukocytes in blood sam-
ples also using the ISODATA thresholding algorithm. After
initial segmentation they used the watershed algorithm and the
distance transform to isolate nuclei, and top-hat transform for
dots detection. Similarly, Kozubek et al. (1999) described a
system for analyzing FISH images in which the nuclei are
segmented using bimodal histogram thresholding and a
watershed-based algorithm. The use of Bayesian classifier
for a FISH image classification system was considered by
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Lerner (2004). An efficient multistage algorithm for automat-
ed classification of FISH images from breast carcinomas bi-
opsy specimens is described by Raimondo et al. (2005). Initial
segmentation is based on non-linear processing with square
root function, morphological opening, top-hat transform and
Otsu algorithm (Otsu 1979) for global thresholding. Very in-
teresting post-processing step based on geometric rule is ap-
plied to distinguish holes which appear within a nucleus from
those between nuclei. The last step of nuclei segmentation in
the algorithm proposed by Raimondo et al. (2005) involves
the distance transform and watershed algorithm, to detect bor-
ders in overlapping nuclei clusters.

In all of these methods after initial binarization and seg-
mentation an additional decision based on the cell’s

morphology (considering shape, roundness, eccentricity, ob-
ject area, etc.) may be applied for rejecting parts which belong
to artifacts, as considered in papers by Malka and Lerner
(2004); Lerner and Malka (2011).

In case as in Fig. 1 the cell nuclei segmentation is
not difficult task. Unfortunately, as noted above, in
medical praxis FISH images can be of degraded quality.
One such example, FISH image 1,869,659.jpg from our
database, is presented in Fig. 2(a). This image is char-
acterized by low contrast on the left side and inhomo-
geneous brightness from left to right. From its blue
channel, Fig. 2(b), it is obvious that nuclei zones are
not well defined. Standard and advanced methods for
nuclei segmentation, for instance, as proposed by
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Fig. 1 (a) FISH image
312,292.jpg. (b) Blue channel of
an image. (c) Initial binarization
after simple thresholding. (d)
Refined binary image after
morphology processing: hole
filling (if necessary) and opening
(small artifacts removal). (e)
Separation of cell nuclei after
applying distance- and watershed
transform on Fig. 1(d). (f) Final
result after postprocessing: rejec-
tion of small, non-oval and border
regions, and nuclei enumeration
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Raimondo et al. (2005), and additional morphology
postprocessing, are not efficient in this case – nuclei
on the left side are not segmented, as depicted in Figs
2(c) to 2(f). Details within the left side region can be
enhanced by lowering the threshold level, enabling in
this way better nuclei recognizing on this side but the
rest of image will be degraded: extremely large connect-
ed white areas appear on the right, as depicted in Fig.
3(a), and nuclei segmentation becomes difficult.
Additional postprocessing does not improve the segmen-
tation. The final result will be as depicted in Fig. 3(b).

Now the region on the right, labeled by numeral 28,
covers several nuclei.

Automated segmentation of FISH images seems very
promising, but it suffers from at least two hard draw-
backs as follows. First, it is difficult to automatically
find an appropriate FOV within the biopsy slide.
Furthermore, according to ASCO/CAP recommendations
(2013) only the invasive component of a carcinoma
should be assumed for HER2 scoring, without necrotic
areas and cells with ambiguous border. Consequently,
automated nuclei segmentation and machine cell
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Fig. 2 (a) FISH image
1,869,659.jpg. (b) Blue channel
of an image. (c) Initial
binarization after simple
thresholding. (d) Refined binary
image after morphology
processing: hole filling (if
necessary) and opening (small
artifacts removal). (e) Separation
of cell nuclei after applying
distance- and watershed trans-
form on Fig. 2(d). (f) Final result
after postprocessing: rejection of
small, non-oval and border re-
gions, and nuclei enumeration
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distinguishing still are very difficult tasks as noted by
Pajor et al. (2012). From these reasons, as an alternative
way, it was suggested by Kozubek et al. (2001) to com-
bine automated segmentation with human supervising
and manual correction yielding more useful results.

3 Fractals and multifractals

In his seminal paper Polish mathematician Benoit Mandelbrot
(1967) coined the term fractal, for describing natural shapes
(such as the coastline) which are characterized by a non-
integer (i.e., fractional, or fractal) dimension. Introducing the
concept of fractal dimension (FD) different complex phenom-
ena, objects, and signals can be evaluated quantitatively, per-
mitting thus their objective description, characterization and
comparison. Fractal dimension numerically describes the
property known as a self-similarity: the topological or geomet-
rical properties of an object remain (almost) invariant at dif-
ferent scales. For a number of artificially generated structures
by following some strict rules (as for instance, the Cantor set,
the VonKoch curve, the Sierpinski gasket and/or blanket, etc.)
the FD is exactly the same at all scales (in these cases the FD is
called also a similarity dimension) – see Peitgen et al. (2004).
Such objects are known as monofractals, since they are char-
acterized by a single number – the FD. Conversely, a number
of phenomena, shapes, or objects (particularly natural ob-
jects), are not strictly self-similar and are characterized by
different FDs under different scales. Then, instead of single
FD, a distribution of FDs over different scales can be ob-
served, which is a concept of multifractals, as Mandelbrot
noticed (Mandelbrot 1983, Mandelbrot 1989). Over last

several decades fractal geometry and multifractal analysis
have been accepted and applied as powerful methods for de-
scribing, evaluating, and comparing complex objects and phe-
nomena. Among different applications these techniques have
been found significant place in signal and image processing
(Vehel 1996, 1998; Turner et al. 1998; Reljin et al. 2000).

Fractal dimension can be derived in different ways.
Very popular algorithm for estimating the FD is the box-
counting method described in Peitgen et al. (2004). In this
method the observed structure is covered by a regular grid
of boxes, Bi, with a side length ε (assuming normalized
space, i.e., ε ≤ 1). By counting the number of non-empty
boxes N(ε), that means, counting boxes containing at least
a part of observed structure, the box-counting dimension
Db can be estimated as

Db ¼ − lim
ε→0

ln

 
N εð Þ

!

lnε
ð1Þ

Serious limitation of box-counting dimension is that
it relates only to the existence of the structure within
boxes irrespective of the structure strength inside boxes.
Regarding to image processing, it means that the box-
counting method is applicable only to binary images
characterized by two values of pixel intensities: 0
(black) and 1 (white). For gray scale images (with pixel
intensities ranged from 0 to 1) the normalized measure
μ characterizing in some way the signal intensity within
the box is introduced (Vehel 1996, 1998). By consider-
ing the measure within the box, the coarse Holder ex-
ponent is derived as
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Fig. 3 (a) Initial binarization of
blue channel of FISH image
1,869,659.jpg after lowering the
threshold level. (b) Final
segmentation result after applying
the procedure as in previous cases
in Figs 1 and 2
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αi ¼ ln μ Bið Þð Þ
lnε

ð2Þ

which can be assumed as the fractal dimension of the
measure μ within the box Bi. When ε tends to zero the
coarse Holder exponent approaches to limiting value α,
known as the Holder exponent at observed point

α ¼ lim
ε→0

αi: ð3Þ

The Holder exponent depends on the actual position within
the image and describes local regularity (or singularity) at this
point. In the whole image there usually are many points hav-
ing the same value of Holder exponent. The regularity of the
whole image structure can be described from the distribution
of Holder exponent, i.e., by counting the number of boxes
Nε(αi) containing particular value of αi

f ε αið Þ ¼ �In N ε αið Þð Þ=In εð Þ ð4Þ

When ε → 0 the distribution fε(αi) approaches to its limit-
ing value f(α)

f αð Þ ¼ lim
ε→0

f ε αð Þ ð5Þ

which is known as themultifractal spectrum (or singularity
spectrum). The MF spectrum describes the observed structure
in a global sense. The function f(α) typically is parabola-
shaped with limited values of α and f(α): αmin, αmax;
f(α)min, f(α)max, as depicted in Fig. 4.

The MF quantities α and f(α), described by relations
(2)–(5), are in connection with the generalized dimen-
sion Dq considered by Hentschel and Procaccia (1983)
and Grassberger (1983), and can be used as signal
(image) descriptors. For instance, in the paper of
Theiler (1990) was stated that the value of αmin corre-
sponds to the generalized dimension at q = +∞ (mean-
ing that this value is related to the most dense points of
observed object), while the value of αmax, corresponds

to its opposite. Similar conclusion was derived by Levy
Vehel (1996, 1998) and he stated that:

1. The Holder exponent α describes local characteristics of
observed signal:

& locally non-regular points (locally quite different from sur-
rounding points) are characterized by high value of Holder
exponent α,

& points within the smooth region (locally similar to sur-
rounding) have small value of α.

2. The quantity f(α) relates to the distribution of exponent α
and describes the signal globally:

& small value of f(α) relates to rare events (singularities
within the signal) characterized by this value of α,

& points with high value of f(α) correspond to larger regions
having similar local behavior described by α.

From these points it follows that by the pair (α,f(α)) both
local and global regularity/singularity of the signal can be
described simultaneously (Vehel 1996, 1998).

Several techniques for estimating the multifractal
spectrum of observed structure are reported. From the
practical point of view the determination of f(α) directly
from experimental data, as introduced by Chhabra and
Jensen (1989), is very useful and convenient. Based on
their work, custom developed software is realized by
Reljin et al. (2000), from which the inverse multifractal
analysis (IMFA) is possible. The IMFA permits the bi-
directional mapping from original signal space to
multifractal space. Regarding to images, the IMFA
means that from given intensity image I = {I(m,n)},
m = 1,2,…,M; n = 1,2,…,N, each pixel at position
(m,n) can be characterized by appropriate values of α
and f(α): α(m,n), f(m,n). In this way the two matrices:
A = {α(m,n)} and F = {f(m,n)} can be created, with
one-by-one correspondence with the image matrix
I = {I(m,n)}. By choosing particular values of α or
f(α) (say, αp, or fp) within matrices A or F, we can
extract image pixels characterized just by these values
αp or fp, as shown in Reljin et al. (2000), i.e., we can
extract image details having these particular local or
global MF values. Throughout the further text the ma-
trix A of Holder exponents will be denoted as an alpha-
image.

4 Multifractal-based cell nuclei segmentation

TheMF concept was applied successfully in image analysis in
general (Vehel 1996, 1998; Turner et al. 1998; Reljin et al.

0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
f()


0.6 1.0 1.2 1.4 1.6 1.8 2.0 2.2

fmax()

fmin()

maxmin

Fig. 4 Typical shape of the multifractal spectrum
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2000), as well as in medical image segmentation and classifi-
cation (Stojic et al. 2006; Huang and Lee 2009; Vasiljevic
et al. 2012; Baravalle et al. 2015) and in texture description
(Xia et al. 2006). Our research is addressed to possible appli-
cation of MF analysis to nuclei segmentation in FISH images,
particularly for degraded quality images, such as the case in
Fig. 2. By analyzing the blue channel of FISH images from
our database we are faced with interesting result. Namely,
although subjectively this is not so obvious (due to the non-
linearity of the human visual system (Gonzales and Woods
2008)), we found that nuclei zones are characterized by rela-
tively low local contrast not exceeding 2:1 (assuming maxi-
mum vs. minimum pixel intensities within these regions),
while the local contrast within the background always was
higher – of order 3:1 or more. Since nuclei regions are
small-sized regarding to the whole image, these regions are
characterized by small local changes (i.e., these regions are
with dense pixels with similar intensities) and thus, from the
multifractal point of view (Theiler 1990; Vehel (1996, 1998)),
is expected that these regions have small values of Holder
exponent α.

For approving this assumption let us consider again the
image 1,869,659.jpg as in Fig. 2. From its blue channel we
calculated Holder exponents by custom developed software
(Reljin et al. 2000) and found that the whole image is charac-
terized by Holder exponents ranged from αmin = 0.89404 to
αmax = 1.5382. Corresponding alpha-image, with rescaled
values of Holder exponents from αmin-αmax to the range 0–1
prior to visualization, is depicted in Fig. 5(a). In this image all
nuclei regions (irrespective of their actual intensity level in the
blue channel) are presented with quite similar dark-gray
levels. Note that in this example several pixels are highly
singular, having highest value of α, α = αmax (i.e., having
maximal intensity of 1 in rescaled alpha-image), and are pre-
sented as white dots (labeled by an arrow in upper right).
These isolated pixels produce the rest of image becomes dark
gray. By changing the value of these pixels to half tone (value
of 0.5) and creating the new alpha-image in the full range 0–1,

the result as in Fig. 5(b) is obtained, with better visualization
of nuclei regions.

For given example as in Fig. 5(a) the non-rescaled
values of Holder exponent within nuclei regions are
ranged from αmin = 0.89404 to α = 0.98865, which is
approximately 1.1·αmin, while for the rest of image
Holder exponents take greater values. From that point
we found that successful initial binarization (initial nu-
clei selection) can be obtained by simple threshold:
parts in alpha-image having α > αT = 1.1·αmin should
be black (background) otherwise are white (representing
possible nuclei). Holes which can arise within several
nuclei and small artifacts in the background can be eas-
ily removed by applying some morphology operators
(hole filling and opening). The whole procedure is illus-
trated in Figs 6(a) to 6(d). It is obvious that despite the
low contrast on the left side of original image
1,869,659.jpg and inhomogeneous brightness from left
to right side, the MF-based segmentation is quite effi-
cient, enabling successful nuclei extraction within the
whole image.

After intensive simulations we found similar result
for all FISH images from our database: nuclei regions
in alpha-images are characterized by low values of
Holder exponent. By hard thresholding with the thresh-
old αT close to αmin initial nuclei segmentation was
quite successful in all cases. For our dataset by using
αT within the range 1.05·αmin ≤ αT ≤ 1.14·αmin (de-
pending on particular image) an efficient initial segmen-
tation was obtained. Note that from once determined
alpha-image we can correct easily the sensitivity of ini-
tial segmentation by changing only the threshold value
αT in an interactive manner. By using higher threshold
more details will be selected as white (possible nuclei)
and vice versa. The user observes the initial segmenta-
tion and can refine segmentation. If the user is satisfied
with initial (or refined) segmentation the image can be
further processed – red/green dots detection and

(b)(a)

Fig. 5 (a) Image of Holder
exponents (alpha-image) of the
blue channel of image
1,869,659.jpg, rescaled to the full
range (0–1). Two isolated singu-
larities on the upper right (having
maximal value of 1, i.e., visible as
white dots) produce the rest of
image as dark gray. (b) The new
rescaled alpha-image after chang-
ing the value of these two isolated
singularities to 0.5
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calculation of HER2 positivity. From our research we
suggest the new method for cell nuclei segmentation
based on the IMFA as summarized in Table 1.

5 Experimental system

In order to test and evaluate proposed algorithm the experi-
mental system as in Fig. 7, is realized. The whole procedure is
semiautomatic and is performed in two basic steps: (i) initial
segmentation is automatic while (ii) the user feedback is ap-
plied for refining the segmentation. The FISH images in RGB
format are manually selected from database and uploaded to
the system. Segmentation is derived from the blue (B) channel
of an image by applying the new IMFA method briefly de-
scribed in Table 1. Initial segmentation (image binarization) is
realized according to step 5 in Table 1 and the result is
inspected by the user. If initial segmentation is not appropriate,
the user can correct the threshold αT: by using higher value of
αT more details will be selected, and vice versa with lower
value of αT. When a user is satisfied with initial segmentation,
the binary image is postprocessed, according to step 7 in
Table 1: artifacts (small details) are rejected and holes are
filled. Segmentation within connected regions (step 8 in
Table 1) is performed by using distance transform and water-
shed transform. Small, boundary, and non-oval shaped regions

are rejected automatically, as well. Additionally, user can re-
ject parts not satisfying ASCO/CAP recommendations
(step 9). Then, remaining parts (nuclei) are labeled and
their contour lines are superimposed over initial RGB
image. Within segmented nuclei the HER2 status can
be derived by counting red and green dots and finding
their ratio.

For comparison purposes the same images are proc-
essed by following some other, already reported proce-
dures and methods, for instance the procedure proposed
by Raimondo et al. (2005), and similar. In future text
we will denotes our method as BIMFA algorithm^ and
other known procedures as BOTHER algorithm^.
Obtained segmentation results, after applying both
methods, are presented to skilled pathologist for
evaluation.

6 Testing results and discussion

The new segmentation method based on the IMFA is tested
and evaluated over FISH images prepared and collected from
the Institute of Pathology, University of Bern, Switzerland.
The assessment of the HER2 gene status was performed using
a FDA approved commercially available kit including a dual-
color FISH probe (PathVysion®; Abbott /Vysis, Downers
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Fig. 6 Illustration of nuclei
segmentation by using
multifractal approach. (a) Input
image 1,869,659.jpg. (b) Initial
binarization of original image
after hard thresholding with
αT = 1.1·αmin applied to alpha-
image as in Fig. 5(a). (c) Refined
image after some processing steps
(hole filling and opening). (d)
Final result after nuclei separa-
tion, rejecting small and boundary
regions, and nuclei labeling
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Grove IL, USA). The HER2 gene DNA is stained in orange
(Spectrum Orange) and the centromeric probe 17 in green
(Spectrum Green). Five μm sections were cut from a paraffin
embedded tumor tissue block. Afterwards, the slides were
deparaffinized, air dried, and rehydrated followed by a pre-
treatment step (with pretreatment solution Vysis®) for 30 min
at 80 °C. The slides were incubated with protease (Vysis®) for
25 min at 37 °C, and afterwards washed and dehydrated
through graded alcohols and air dried. Then, the slides were
denatured for 2 min at 85 °C. The hybridization with the FISH
probes was performed in a humid chamber at 37 °C for 14 h.

After hybridization the slides were washed, air dried, counter-
stained with DAPI and covered with a cover slip.

The slides were analyzed with a Zeiss Axioskop 2 (Carl
Zeiss, Jena, Germany) equipped with a filter set for DAPI,
Spectrum Orange and Spectrum Green (Vysis®).
Representative images were digitized and taken with a mag-
nification of 630× (10× (electronic) x 63× (optical - objective
NEOFLUAR 63X)) using an AxioCam MRm camera (Zeiss,
Jena, Germany) and the Isis FISH imaging system software
(V5.1.5.). Digitized images were stored in RGB format with
resolution of 1016 × 896 pixels.

Fig. 7 Block scheme of the
experimental system for nuclei
segmentation based on the IMFA
algorithm. Segmentation results
are compared with those obtained
by other known methods denoted
here as the OTHER algorithm

Table 1 Algorithm for nuclei
segmentation based on the
multifractal approach

Step Procedure

1. Extract the blue (B) image from initial RGB FISH image

2. Find multifractal spectrum of the B image

3. Create an alpha-image

4. Define the threshold in alpha-image. Default value is αT = 1.1·αmin

5. Apply the inverse MF analysis with hard thresholding:

Image pixels with α > αT should be black (background), otherwise are white (possible nuclei)

6. Inspection and decision by the user:

If initial segmentation is satisfactory, continue to step 7

Otherwise correct the threshold value αT and return to step 4

7. Postprocessing: rejecting small, non-oval, and border regions

8. Segmentation of adjacent and overlapped nuclei

9. Final inspection by user. Additional rejecting regions which are not nuclei or not belonging to the
invasive component of a carcinoma, according to ASCO/CAP recommendations
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From the whole image dataset physicians selected 100
samples satisfying the ASCO/CAP recommendations
(2013). These images were processed and analyzed by using
the system as in Fig. 7. Segmentation results after the IMFA
and OTHER algorithm are evaluated by skilled pathologist
assuming their manual segmentation as a true (T) value.
After evaluation, the segmentation accuracy for each image
from our database is calculated as a ratio of the number of
segmented nuclei by using the IMFA (I) and OTHER (O)
algorithm vs. the number of manually segmented nuclei (T):

Accuracy ¼
I
T
; for IMFA algorithm

O
T
; for OTHER algorithm

8><
>: ð6Þ

Segmentation accuracies (in percents) for particular images
(samples) denoted by numerals 1–100 are plotted in Fig. 8,
while in Fig. 9 the plots of relative errors, calculated as the
deviation of accuracies from their means, are depicted.

Obtained results indicate to efficiency of proposed algo-
rithm based on the inverse multifractal analysis, denoted here
as the IMFA algorithm. For the whole dataset of 100 FISH
images from our database the mean accuracy of the

segmentation was 90.86% with the standard deviation of
0.0541. Relative error was within limits +9% to −13%.
These results are quite better than those obtained by simulat-
ing already reported procedures (mainly inspired by
Raimondo et al. (2005)) denoted here as the OTHER algo-
rithm. By applying the OTHER algorithm on the same dataset
the mean and standard deviation are 79.10% and 0.1062,
while relative error was within the limits +21 to −33%.
From these results the new IMFA algorithm seems to be a
promising tool for nuclei segmentation in FISH images.

7 Conclusion

In this paper the new method for nuclei segmentation in FISH
images is proposed. The method is based on the inverse
multifractal analysis applied within the blue channel of FISH
images stored in RGB format. The method is semi-automatic
with the user’s feedback. Initial image binarization is automat-
ic: from the blue channel of FISH image regions characterized
by low values of Holder exponent (lover than initially defined
threshold αT) are remapped to white (possible nuclei regions),
otherwise are black (background), and obtained binary image

(a) (b)
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Image number

Error OTHER (%)

0 20 40 60 80 100
-40

-20
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20

Image number

Error IMFA (%)Fig. 9 Relative errors (in
percents) for the two algorithms:
(a) IMFA and (b) OTHER,
calculated as deviations of
accuracies from their means
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100

Image number

Accuracy IMFA (%)Fig. 8 Segmentation accuracies
(in percents) for the two
algorithms: (a) IMFA and (b)
OTHER. The means and standard
deviations respectively are:
90.86% and 0.0541 for the IMFA
algorithm, and 79.10% and
0.1062 for the OTHER algorithm
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is displayed on the screen. The user (skilled pathologist) ob-
serves the result and makes the correction of initial segmenta-
tion, if necessary, by changing the threshold level. Except the
correction of initial segmentation, the user’s feedback can be
applied for additional fine tuning as well. Since automatic (or
corrected) segmentation may extracts regions not belonging to
nuclei or not belonging to the invasive component of a carci-
noma, the user can remove these regions manually, enabling
more accurate segmentation.

The new IMFA algorithm was tested over FISH images
from clinically prepared and collected cases in the Institute
of Pathology, University of Bern, Switzerland. Obtained re-
sults are very promising: for the dataset of 100 FISH images
the mean accuracy of the segmentation was 90.86% with the
standard deviation of 0.0541. These results are better than
those obtained on the same dataset by applying already report-
ed methods denoted here as OTHER algorithm: the mean
accuracy and standard deviation are 79.10% and 0.1062 by
using the same dataset.
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