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ABSTRACT

Long noncoding RNAs (IncRNAs) have multiple regulatory roles and are involved in many human diseases. A
potential therapeutic strategy based on targeting IncRNAs was recently developed. To gain insight into the
global relationship between small molecule drugs and their affected IncRNAs, we constructed a small
molecule IncRNA network consisting of 1206 nodes (1033 drugs and 173 IncRNAs) and 4770 drug-IncRNA
associations using LNCmap, which reannotated the microarray data from the Connectivity Map (CMap)
database. Based on network biology, we found that the connected drug pairs tended to share the same
targets, indications, and side effects. In addition, the connected drug pairs tended to have a similar
structure. By inferring the functions of IncRNAs through their co-expressing mRNAs, we found that IncRNA
functions related to the modular interface were associated with the mode of action or side effects of the
corresponding connected drugs, suggesting that IncRNAs may directly/indirectly participate in specific
biological processes after drug administration. Finally, we investigated the tissue-specificity of drug-affected
IncRNAs and found that some kinds of drugs tended to have a broader influence (e.g. antineoplastic and
immunomodulating drugs), whereas some tissue-specific IncRNAs (nervous system) tended to be affected
by multiple types of drugs.

INTRODUCTION
dramatic therapeutic potential on diseases, making it a

Increasing research has shown that long noncoding
RNAs (IncRNAs) are pivotal regulators in many
biological processes, as well as in the generation and
progression of various diseases [1-3]. Many IncRNAs
are aberrantly expressed in different pathological states
[4], and the restoration of IncRNA expression has

novel therapeutic strategy [5].

Currently, pharmacotherapy is the most effective
strategy in the treatment of some diseases. Small
molecules are widely used due to their simple
structure. In recent years, small molecules are found
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to either have therapeutic effects or induce side-
effects/toxicity through the regulation of INcRNAs [6,
7]. Meanwhile, the differently expressed INcCRNAs are
also indicators of predicting drug sensitivity and
resistance, especially in treatment of cancer [8, 9].
Therefore, a IncRNA-based therapeutic strategy
hopefully could make personalized medicine become
more realistic. However, structure-based approach
such as molecular docking has been difficult to
achieve as predicting the exact structure of IncRNAs
remains a challenge. Another approach based on the
transcriptional response might be appropriate to
investigate the global relationships between small
molecules (drugs) and INcRNAs.

Enormous array-based expression profile resources
have promoted the development of research on small
molecules. For example, Connectivity Map (CMap),
which is a genome-wide transcriptional expression
dataset of selected human cells treated with bioactive
small molecules, pioneered the systemic transcriptional
response-based approach [10]. Compared to the array-
based expression profiles, there are not enough
publicly available RNA-seq datasets of drug
treatments yet, and this has been a limitation to the
IncRNA-targeting therapy [11]. This limitation could
be alleviated by a novel method called probe re-
annotation in  which microarray probes are
reannotated for investigating INCRNA expression [12].
This approach has been successfully used for the
functional annotation of IncRNAs in various studies
[11]. We have reannotated the microarray data from
the CMap database in our previous work named
LNCmap, which successfully characterized the
connections among diseases, IncRNAs and small
molecules [13].

To investigate the global relationships between small
molecules (drugs) and IncRNAs, we obtained the
INcRNA expression profiles affected by small
molecules from the LNCmap. We constructed a global
small molecule IncRNA network (SMLN) in which
nodes represented drugs or IncRNAs. Starting from
the bipartite SMLN, we generated two biologically
relevant network projections: the small molecule-
small molecule network (SSN), in which nodes
represented drugs, and two drugs were connected if
they shared at least one INCRNA; and the IncRNA-
INcRNA network (LLN), in which nodes were
InNcRNAs and two IncRNAs were connected if they
significantly shared small molecules. Then we (i)
investigated the pharmacological similarities of linked
small molecule pairs in the SSN, (ii) explored the
function of modules of the LLN in the responses to
drug treatment, and (iii) analyzed the tissue specificity
of IncRNAs after drug treatment.

RESULTS

Construction of a small molecule IncRNA network
(SMLN)

To construct the global SMLN, we retrieved INCRNA
expression profiles affected by small molecules from
LNCmap [13]. LNCmap reannotated the genome-wide
transcriptional expression data from the CMap database,
which contains 1,309 bioactive small molecules
corresponding to 6100 instances (experiments). Among
them, 5,916 microarray profiles were reannotated in
LNCmap, including 237 IncRNA signatures and 1,262
small molecule drugs. We then used fold-change
analysis to identify differentially expressed IncRNAs
(DEL) for every instance with |log2fold change[>1 from
the corresponding treatment and control microarray
profiles. The DELs were merged if the corresponding
experiments belonged to the same small molecules, and
these INncRNAs were considered the affected IncRNAs
for this small molecule (Figure 1). Then, we obtained a
bipartite SMLN consisting of 1,005 small molecules
and 173 IncRNAs (Figure 2 and Supplementary Dataset
1). We generated two biologically relevant network
projections: the SSN and the LLN. If most small
molecules specifically affected a single INCRNA, the
LLN would consist of isolated nodes with few or no
edges between them. Instead, the LLN displayed close
connections between different INcRNAs. One reason for
this phenomenon might be that there were over 1,000
small molecules compared with only 173 IncRNAs in
the SMLN. The number of shared small molecules
between different INCRNA pairs spanned a wide range.
To improve the specificity of INCRNA pairs, we adopted
a hypergeometric test to generate a more specific LLN
(see Materials and Methods).

The basic properties of the SMLN

The SMLN was composed of 1,206 nodes (1,033 small
molecules and 173 IncRNAs) and 4,770 edges (2,628
downregulated and 2,142 upregulated) (Figure 2). All
nodes were in one giant component, suggesting that the
small molecules and IncRNAs were closely connected
in the SMLN. The degree of distribution of the small
molecule and IncRNA nodes followed power law
distributions with a slope of -0.947 and -0.850,
respectively, and R?=0.874 and 0.532, respectively
(Supplementary Figure 1A , 1B and Supplementary
Dataset 2). Thus, the SMLN was scale-free [14].

The degree of small molecule nodes spanned a wide
range from 1 to 87. The highest degree node was
trichostatin A (TSA), an organic compound that serves
as an antifungal antibiotic and selectively inhibits class |
and Il mammalian histone deacetylases (HDACs) [15].
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TSA can broadly alter gene expression by interfering
with the removal of acetyl groups from histones [16,
17]. It is also a member of a larger class of histone
deacetylase inhibitors that have a broad spectrum of
epigenetic activities [16, 17]. The second highest degree
small molecule node (degree=46) was emetine, an anti-
malaria drug that was recently found to have broad
anticancer activity in many types of malignancies
including breast, colon, prostate, skin, and lymphoid
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tumors by inhibiting NF-«kB signaling or regulating the
RNA splicing of members of the Bcl-2 family [18, 19].
Although there are no specific reports about emetine
and IncRNAs, it was linked to many IncRNAs, partly
because of its broad anticancer effects. Interestingly, we
found that other highly connected nodes, namely
anisomycin and idoxuridine (degree: 39 and 38,
respectively) could inhibit protein/DNA synthesis.
Anisomycin is a potent apoptosis inducer that functions
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Figure 1. Schematic data flowchart of SMLN.
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by activating JNK/SAPK and inhibiting protein/DNA
synthesis during translation [20, 21]. Idoxuridine, which is
used as an antiviral agent, is an analog of deoxyuridine, an
inhibitor of viral DNA synthesis [22]. The high
connectivity may have been due to their activity related to
apoptosis and the inhibition of protein/DNA synthesis.

Similar to the small molecule nodes, the INCRNA nodes
also displayed evident differences in connection (range,
1-366). The IncRNA node with the highest degree was
RP11-1148L6.5.1. There are no functional studies about
this IncRNA. To date, few IncRNAs have been
functionally annotated. Of seven IncRNAs with a
degree >100, only DLEU2 (Deleted in Lymphocytic
leukemia 2) is well studied. It encodes a pair of critical
pro-apoptotic microRNAs, miR-15a/16-1, which are
critical for the increased survival exhibited by chronic
lymphocytic leukemia cells [23]. Chen et al. indicated

that the HDAC inhibitor TSA, the most-connected small
molecule in the SMLN, could upregulate the expression
of miR-15a/16-1, residing in the host tumor suppressor
DLEU2 gene [24]. Furthermore, in our SMLN, TSA
could also upregulate DLEU2 (log2 fold change = 1.4),
suggesting that our SMLN could identify a promising
cancer therapy via targeting IncRNAs [23]. In addition,
we showed that the fold change value varied within a
wide range (Figure 3A). All fold-change values of
LINCO0667 were positive, indicating that the
expression of this INncRNA is always upregulated in
response to drug treatment (Figure 3B). The function of
this IncRNA has not been well-studied. Thus, pathway
enrichment analysis was used to examine the function
of LINC00667. The results showed that it was related to
purine metabolism, which shows clear relevance to
various cancers such as bladder cancer, kidney cancer
and prostate cancer (Figure 3C) [25].
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Pharmacological similarity of small molecule pairs

In our SMLN, the connections between small molecules
and IncRNAs revealed the non-coding transcriptional
responses after drug treatment. Studies have indicated
that drugs leading to similar transcriptional responses
tend to have similar pharmacological properties [10,
26]. Thus, we first constructed a SSN in which nodes
represent drugs, and two small molecules are connected
if they share at least one IncRNA (Supplementary
Figure 2 and Supplementary Dataset 3). Then, we
investigated whether the connected small molecules
(drugs) tend to have similar pharmacological properties.

We examined a total of four properties of connected
drug pairs in SSN: indications, targets, side effects, and
2-D structural similarity (Figure 4). Firstly, we
investigated whether connected drug pairs tend to share
the same indications (treat the same disease). For this
purpose, we first downloaded the dataset of drug—
indication association from the report published by
Yildirim et al. (see Materials and Methods) [27]. Of
these connected drug pairs, 417 shared the same
indications. We then generated randomized drug pairs
1,000 times. We found that in the 1,000 random times,
the number of randomized drug pairs sharing the same
indications were <417, suggesting that connected pairs
tended to share the same indications (P = 0) (Figure 4A,
left). Some drugs such as acetohexamide and gliclazide
were connected to the same INcRNAs, and they were all
used for the treatment of diabetes (Figure 4A, right).
Based on this result, we questioned whether connected
drug pairs tend to share the same targets. We found that
some connected drugs such as minaprine and
thioridazine both target serotonin receptor 2A
(HTR2A), a protein associated with the susceptibility to
schizophrenia and obsessive-compulsive  disorder
(Figure 4B, right) [28]. To further test this, we
downloaded the drug-target association from the
DrugBank database [29]. In the SMLN, 1,066 unique
connected drug pairs targeted the same proteins. Similar
to the aforementioned indications, we generated
randomized drug pairs 1,000 times and there were no
instances in which the number of randomized drug pairs
sharing the same targets were more than 1,066,
suggesting that connected drug pairs tended to share the
same targets (Figure 4B, left). Then, we downloaded the
public and accurate side-effect records from the side
effect resource (SIDER), including 997 drugs
corresponding to 4,492 side effects [30]. In the SMLN,
there were 303 drugs recorded in the SIDER database.
In the SIDER database, however, some side effects,
such as dizziness and nausea, were caused by most
drugs. To improve the specificity of similarity, we
calculated the number of side effects shared by drug
pairs rather than the number of drug pairs sharing the

same side effects [26]. We found that the ratio of side
effects shared by connected drug pairs was significantly
higher than the number of side effects shared by other
drug pairs in the SIDER database (P = 2.2e%,
Wilcoxon rank-sum test; Figure 4C, left), suggesting
that two drugs connected by the same IncRNAs tended
to cause the same side effects. Unlike the indications
and targets, some connected drug pairs (atovaquone and
galantamine), despite belonging to different categories,
could cause the same side effects (Figure 4C, right),
indicating that the non-coding transcriptional response
might also capture such "heterogeneous" similarity.

Previously, a study indicated that pharmacologically
similar drugs tend to have a similar structure [27]. Thus,
we tested whether IncRNA-connected drugs tend to
have a similar structure. For this purpose, we
downloaded the SMILES files of small molecules in
SSN and calculated the Tanimoto Coefficients (TC) of
connected drug pairs and other small molecule pairs.
We found that the TC scores of connected drug pairs
were significantly higher than those of other small
molecule pairs (P = 6.2e7), Wilcoxon rank-sum test;
Figure 4D, left), suggesting that the connected drugs
tend to have a similar structure. Some connected small
molecules pairs showing high structural similarity are
shown in the right part of Figure 4D.

Functional interface of drug-induced IncRNA
modules

Similar to the SSN, we generated another biologically
relevant network projection, namely the LLN, in which
two IncRNAs are connected if they share significant
numbers of small molecules (Supplementary Figure 3 and
Supplementary Dataset 4). The connected INCRNA pairs
affected by the same small molecules in the LLN might
tend to have similar functions. Thus, the INCRNAs in one
community of the LLN were considered to function
"synergistically” because they were affected by the same
or similar small molecules. We further proposed that
IncRNAs, as members of more than one community, were
more important and may be involved in key pathways
related to therapeutic effects or the indication of
corresponding drugs, because IncRNAs in multiple
communities could be considered to be at the "interface™
of different biological processes. Here, we investigated
the functions of such interface IncRNAs and the relations
to their connected drugs.

First, we inferred the functions of IncRNAs through
their co-expressing mRNAs across all the re-annotated
microarrays in the CMap according to the "Guilt By
Association” principle [12]. We then defined a IncRNA-
InNcRNA module as a clique, which is a maximal
complete subgraph using Cfinder [31]. Each module
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Figure 4. Pharmacological properties of connected drug pairs in the SSN. (A, left) 417 drug pairs with the same IncRNAs shared the
same indications, compared with 1000 permutations. (A, right) Acetohexamide and gliclazide were connected to the same IncRNAs and they
were all used for the treatment of diabetes. (B, left) 1066 drug pairs with the same IncRNAs shared the same drug targets, compared with
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had a unique composition of IncRNAs, allowing the same
IncRNAs or the same pairs to occur in more than one
module. Here, we adopted K=8, 9, and 10, because a low
k-value generated numbers of extensive and less tightly
connected IncRNA modules, leading to a high degree of
overlap [14]. We displayed the modules of the LLN and
the interface between them when the k-value was 8, 9, and
10 (the left part of Figure 5). The IncRNAs are colored
according to the majority of their connected drug ATC
classes. The right part of Figure 5 shows the significantly
enriched pathways of co-expressing mRNAs of the
"interface” IncRNAs. When the k-value was 8, there were
two communities and 5 IncRNAs located at the interface
of two modules (Figure 5A). The interface InNcRNAs were
mainly affected by drugs of "Alimentary tract and
metabolism”, and these IncRNAs were involved in key
pathways such as the calcium signaling pathway, the
PI3K-Akt signaling pathway, and the GABAergic
synapse. We found that these pathways (such as “Gastric
acid secretion™ and "Pancreatic secretion™) were not only
related to "Alimentary tract and metabolism" drugs, but
also related to the other two kinds of drugs ("Respiratory
system” and "Cardiovascular system™). For example,
cardiovascular disease pathways such as "Dilated
cardiomyopathy" and "Hypertrophic cardiomyopathy"
were identified. Furthermore, some key pathways such as
the "PI3K-Akt signaling pathway" have comprehensive
biological roles and are involved in the indications of
these kinds of drugs [32, 33].

When the k-value was 9, two communities had three
interface IncRNAs. We also found that these interface
IncRNAs were involved in key pathways related to the
drugs of "Alimentary tract and metabolism", "Systemic
hormonal preparations”, and "Nervous system"(Figure
5B). For example, the pathway "Cytokine-cytokine
receptor interaction" plays a crucial role as intercellular
regulator and mobilizer of cells engaged in innate as
well as adaptive inflammatory host defenses, cell
growth, differentiation, cell death, angiogenesis, and
development and repair processes [34], and it is also
related to many indications of the above three kinds of
drugs. Another pathway, "Drug metabolism-other
enzymes”, was also detected. We found that this
pathway was not only related to drug metabolism, but
also contained enzymes encoded by genes related to
metabolic diseases (i.e. xanthinuria and
hyperbilirubinemia). When the k-value was 10, there
were five interface IncRNAs that were all affected by
the drug TSA. We found that the functions of these
IncRNAs focused on the nervous system, and TSA had
some side effects affecting the nervous system (Figure
5C). These results indicated that these interface
InNcRNAs may be directly/indirectly affected by drugs
and broadly participated in the process of drug
therapeutics, side effects, and metabolism.

Tissue-specificity of drug-affected INCRNAs

Previous studies indicated that INCRNA expression may
be limited to selected tissues or subpopulations of cells
[35, 36]. The exclusively tissue-specific expression
pattern of IncRNAs provides a unique opportunity for
specific regulation by IncRNA-targeting therapeutics
[35, 36]. In our study, IncRNAs in the SMLN were
induced by different drugs, which were classified
according to ATC (Anatomical Therapeutic Chemical
Classification System) categories. This raises the issue
of whether drugs tend to affect the IncRNAs expressed
in their corresponding target tissues.

To obtain a global overview of the anatomical distribution
of the IncRNAs affected by different drug classes, we first
reannotated the microarray dataset of GSE1133 obtained
for 176 IncRNAs across 79 healthy tissues, and identified
tissue-specific INCRNAs for each tissue (Supplementary
Table 1) [37]. Then, we classified these 79 tissues into 11
anatomical classes according to ATC categories. We
calculated the Jaccard coefficient of numbers of
overlapped IncRNAs between 13 drug classes and tissues
of 11 anatomical classes (Figure 6A). We found that drugs
from all drug classes do not affect INcRNAs expressed in
the corresponding anatomical classifications. Instead,
some drugs tended to affect broadly tissue-specific
IncRNAs. For example, anti-infectives (J) and
antineoplastic and immunomodulating (L) drugs were
more spread than other kinds of drugs. This might be due
to the systemic therapeutic use or side effects of these two
kinds of drugs. Certain types of drugs and tissues had
obviously higher Jaccard coefficients [for example, (L)
drugs and nervous system; (C) drugs (cardiovascular
system) and nervous system]. On the other hand, we
found that some tissue-specific INCRNAs (for example,
nervous system specific InCcRNAs) were prone to be
affected by many kinds of drugs. The highest Jaccard
coefficient was found between alimentary tract and
metabolism drugs and the nervous system, suggesting that
this kind of drug might predominantly affect nervous
system-specific INcRNAs. To ensure the robustness of our
results, we also calculated the Jaccard coefficients of
overlapped IncRNAs between 13 drug classes and 16
tissues by processing the RNA-seq data of 16 normal
human individual tissues from the ArrayExpress database
(ERP000546) [38] (see Materials and Methods). Although
the tissues were different from those of GSE1133, some
similar results were observed (Figure 6B). For example,
drugs of (J) and (L) codes were more spread; furthermore,
higher Jaccard coefficients were also observed in (L)
drugs and the nervous system (brain).

To better investigate the mechanism of tissue-specificity
of IncRNAs induced by drugs, we extracted the sub-
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network from the SMLN of drugs belonging to the
(L) code and their affected IncRNAs (Figure 6C).
Many IncRNAs were expressed in the nervous system
of GSE1133 or in the brain of ERP000546. Some of

in the brain. For example, DLEU2 (black dotted
circle), a potential therapeutic target of chronic
lymphocytic leukemia [23], was expressed in the
brain and associated with axon degeneration in the

the LncRNAs were related to cancers and expressed brain [39].
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DISCUSSION

LncRNAs have multiple biological function and are
considered as potential therapeutic targets for diseases
[40-42]. LncRNA-targeting therapeutics can modulate
disease pathways that have previously been considered
to be intractable [43]. However, the global relationships
between drugs and their affected IncRNAs and the
therapeutic potential of IncRNAs are not well-
characterized. Currently, a common way to analyze
INcRNA expression is RNA-seq. However, publicly
available RNA-seq datasets of drug treatments are
relatively limited compared with array-based expression
profiles. Therefore, we extracted INCRNA expression
profiles of drug treatments from LNCmap, which adopts
a strict threshold in the reannotation process, and
obtained similar expression values than those of RNA-
seq data.

Then, we constructed a global SMLN consisting of
1206 nodes (1033 small molecules and 173 IncRNAS),
and 4770 edges (2628 downregulated and 2142
upregulated). Based on the SMLN, we found that
connected drug pairs (two drugs sharing the same
IncRNAs) tended to have similar pharmacological
properties. Especially, these connected drug pairs
tended to have similar structure, indicating the
possibility of structure-based combinations between
drugs and IncRNAs in our SMLN. Because two drugs
may bind to the same “structural motifs” in the
corresponding INcRNA, future investigation of IncRNA
structures may reveal critical functional RNA motifs of
IncRNAs susceptible to small molecule targeting [44].
Furthermore, we investigated the functional interface
between drugs and IncRNA modules. By inferring the
functions of IncRNAs through their co-expressing
mRNAs, we found that the functions of INcCRNAs in the
modular interface were related to the mode of action or
side effects of the corresponding connected drugs,
suggesting that IncRNAs may directly/indirectly
participate in  biological processes after drug
administration. Finally, we investigated whether drugs
tend to affect the IncRNAs expressed in their
corresponding target-tissue. By integrating the tissue-
specific IncRNAs and drug-affected IncRNAs, we
found that drugs from all drug classes did not affect the
InNcRNAs expressed in the corresponding anatomical
tissues. Some kinds of drugs tended to have a broader
influence (e.g. antineoplastic and immunomodulating
drugs), whereas some tissue-specific INcRNAs tended to
be affected by multiple kinds of drugs. This might be
due to the broad effects of some systemic drugs. For
example, (L) drugs were wused for systemic
antineoplastic and immunomodulating therapy. Another
reason might be that there were only 173 IncRNAs that
were reannotated, leading to an insufficient drug-

INcRNA map. Nevertheless, we obtained some
interesting findings.

To confirm the validity of our results, we also
constructed the SMLN with fold change = 1.5 and fold
change = 3 respectively and repeated some of the
analyses for the network. We found that the SMLN
networks with different fold changes were robust
(Supplementary Table 2). This result indicated that our
method was robust. There were some limitations in our
study. First, there were only 173 IncRNAs in the
SMLN. This was due to the strict threshold in the
reannotation process and the limited data on drug
effects. The SMLN can be improved by integrating
additional drug-affected expression profiles and RNA-
seq data from different resources. Another limitation of
our study was the incompleteness of the functional
annotation of IncRNAs. This limitation will be
alleviated, to a great extent, by the development of
functional genome and RNAI research, as well as the
integration of bioinformatics databases.

In summary, we have constructed and analyzed the
SMLN that provided a comprehensive picture of global
associations between drugs and their affected INCRNAs.
A better understanding of the relation between small
molecule agents and INcRNAs would not only promote
the repositioning and rational clinical use of these
agents but also provides new insights into INCRNA-
targeting therapeutics.

MATERIALS AND METHODS
Construction of the SMLN

Drugs and affected IncRNAs were obtained from the
LNCmap (http://bio-bigdata.hrbmu.edu.cn/LncMAP/).
The LNCmap extracted drug-affected IncRNA
expression profiles by reannotating the microarray data
from the CMap database. According to the pipeline of
ncFANs [12], the LNCmap developed a similar
computational method to reannotate IncRNAs from
expression microarray of coding genes. LNCmap
reannotated 5,916 microarray profiles, with 674
instances from the Human Genome U133 Set (HG-
U133A) platform and 5242 instances from the
GeneChip HT Human Genome U133 Array Plate Set
(HT_HG-U133A) platform. We then used the R
package affy to compute expression values for all
IncRNA expression profiles and obtained log2-fold
change values to identify differentially expressed
IncRNAs (DEL). The DELs were merged if the
corresponding experiments belonged to the same drug.
After the above steps, we obtained 4,770 small
molecule-IncRNA relationships, including 1,005 small
molecules and 173 IncRNAS, and constructed a bipartite
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small molecule INcRNA network (SMLN). SMLN can
be visualized by Cytoscape 3.0 [45] (Figure 2).

Generating the LLN

We generated the LLN in which IncRNAs represented
nodes and two IncRNAs were connected if they shared
significant numbers of small molecules. Because of the
marked differences between the number of InNcRNAs (173)
and small molecules (1005), IncRNAs were connected to
each other closely. To improve the specificity and identify
the more significant IncRNA pairs, we adopted a
hypergeometric test to generate the LLN.

s

Here, we collected m total small molecules in the
SMLN, for each two IncRNAs i and j, t was the number
of small molecules affected by IncRNA i, and n was the
number of small molecules affected by IncRNA j, of
which r was overlapped small molecules of the two
small molecule sets. After calculating the P-value, we
adopted the FDR-corrected g-values to reduce the false
positive discovery rate. Significant IncRNA pairs
(P<0.01, g-values<0.01) were obtained to construct the
LLN.

p=1-

Datasets of pharmacological properties

Indications

We collected the drug-indication associations from the
study of Yildirim et al [27]. We also downloaded the
drug-indication associations from Therapeutic Target
Database (TTD) [46], then integrated the two datasets
manually.

Drug targets

We downloaded the drug-target associations from
the DrugBank database [29], which is a unique
bioinformatics and cheminformatics resource that
combines detailed drug data with comprehensive drug
target information. We obtained 399 small molecules in
our SMLN.

Side effects

We downloaded the drug side effect dataset from a
public computer-readable resource, SIDER, which is a
freely available database that contains information on
marketed medicines and their recorded adverse drug
reactions [30]. We collected 997 drugs corresponding to
4492 side effects, including 303 small molecules in the
SMLN.

Drug chemical similarity

We downloaded the SMILES files of small molecules in
the SSN from the DrugBank database and Kyoto
Encyclopedia of Genes and Genomes (KEGG,
http://www.kegg.jp/kegg/drug/). We computed the TC
scores of drug pairs using the Chemical Development
Kit with default parameters [47].

Pathway enrichment

Pathway enrichment analysis was implemented based
on co-expressed protein-coding genes of INcCRNAs by
using SubpathwayMiner tools [48]. We calculated the
Pearson’s correlation coefficient (PCC) between all
reannotated INcCRNA expression files and mRNA
expression profiles of CMap. Using the setting
[PCC|>0.5 and p < 0.01, we obtained the correlating
mRNAs for pathway enrichment. The pathway
enrichment was implemented by SubpathwayMiner
with default parameters.

Tissue-specificity

We used the GSE1133 dataset and the ArrayExpress
database (ERP000546) to study the tissue-specificity of
drug-affected IncRNAs. We first reannotated the
microarray dataset of GSE1133 and obtained 176
IncRNAs across 79 healthy tissues; then, we calculated
tissue specificity scores for IncRNAs and identified
tissue-specific INcRNAs (score >0.8) for each tissue
[49]. According to the ATC classification of tissues and
drugs, tissue-specific IncRNAs and drug-affected
IncRNAs were allocated to the ATC classification
separately, and we calculated the Jaccard coefficient
between the tissue ATC classification and drug ATC
classification to measure the similarity between
IncRNAs related to different classifications of tissue
and drug. We used the ArrayExpress database
(ERP000546) to calculate the Jaccard coefficients of
INcRNAs between 13 drug classes and 16 tissues by
processing the RNA-seq data of 16 normal human
individual tissues.
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SUPPLEMENTARY MATERIALS
MATERIALS AND METHODS

Construction of the SMLN

Drugs and affected IncRNAs were obtained from the
LNCmap. The LNCmap extracted drug-affected
INcRNA expression profiles by reannotating the
microarray data from the CMap database. According
to the pipeline of ncFANs [1], the LNCmap
developed a similar computational method to
reannotate INCRNAs from expression microarray of
coding genes. LNCmap reannotated 5916 microarray
profiles, with 674 instances from the Human Genome
U133 Set (HG-U133A) platform and 5242 instances
from the GeneChip HT Human Genome U133 Array
Plate Set (HT_HG-U133A) platform. We then used
the R package affy to compute expression values for
all IncRNA expression profiles and obtained log2-
fold change values to identify differentially
expressed INcRNAs (DEL). The DELs were merged
if the corresponding experiments belonged to the
same drug. After the above steps, we obtained 4770
small molecule-IncRNA relationships, including
1005 small molecules and 173 IncRNAs, and
constructed a bipartite small-molecule IncRNA
network (SMLN).

Generating the LLN

We generated the LLN in which IncRNAs
represented nodes and two IncRNAs were connected
if they shared significant numbers of small
molecules. Because of the marked differences
between the number of IncRNAs (173) and small
molecules (1005), IncRNAs were connected to each
other closely. To improve the specificity and identify
the more significant INCRNA pairs, we adopted a
hypergeometric test to generate the LLN.

~ Z (]G

=

Here, we collected m total small molecules in the
SMLN, for each two IncRNAs i and j, t was the
number of small molecules affected by IncRNA i, and
n was the number of small molecules affected by
INcRNA j, of which r was overlapped small
molecules of the two small-molecule sets. After
calculating the P-value, we adopted the FDR-
corrected -values to reduce the false positive
discovery rate. Significant INcRNA pairs (P<0.01, g-
values<0.01) were obtained to construct the LLN.

=1

Datasets of pharmacological properties

Indications

We collected the drug-indication associations from the
study of Yildirim et al [2]. We also downloaded the
drug-indication associations from Therapeutic Target
Database (TTD) [3], then integrated the two datasets
manually.

Drug targets

We downloaded the drug-target associations from the
DrugBank database [4], which is a unique bioinformatics
and cheminformatics resource that combines detailed drug
data with comprehensive drug target information. We
obtained 399 small molecules in our SMLN.

Side effects

We downloaded the drug side effect dataset from a
public computer-readable resource, SIDER, which is a
freely available database that contains information on
marketed medicines and their recorded adverse drug
reactions [5]. We collected 997 drugs corresponding to
4492 side effects, including 303 small molecules in the
SMLN.

Drug chemical similarity

We downloaded the SMILES files of small molecules in
the SSN from the DrugBank database and Kyoto
Encyclopedia of Genes and Genomes (KEGG,
http://www.kegq.jp/kega/drug/). We computed the TC
scores of drug pairs using the Chemical Development
Kit with default parameters [6].

Pathway enrichment

Pathway enrichment analysis was implemented based
on co-expressed protein-coding genes of INCRNAs by
using SubpathwayMiner tools [7]. We calculated the
Pearson correlation coefficient (PCC) between all
reannotated INCRNA expression files and mRNA
expression profiles of CMap. Using the setting
|PCC|>0.5 and p < 0.01, we obtained the correlating
MRNAs for pathway enrichment. The pathway
enrichment was implemented by SubpathwayMiner
with default parameters.

Tissue-specificity

We used the GSE1133 dataset and the ArrayExpress
database (ERP000546) to study the tissue-specificity of
drug-affected IncRNAs. We firstly re-annotated the
microarray dataset of GSE1133 and obtained 176
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IncRNAs across 79 healthy tissues; then, we calculated
tissue specificity scores for IncRNAs and identified
tissue-specific InNcRNAs (score >0.8) for each tissue [8].
According to the ATC classification of tissues and
drugs, tissue-specific IncRNAs and drug-affected
InNcRNAs were allocated to the ATC classification
separately, and we calculated the Jaccard coefficient
between the tissue ATC classification and drug ATC
classification to measure the similarity between
IncRNAs related to different classifications of tissue
and drug. We wused the ArrayExpress database
(ERP000546) to calculate the Jaccard coefficients of
INcRNAs between 13 drug classes and 16 tissues by
processing the RNA-seq data of 16 normal human
individual tissues.

The basic properties of the SMLN

The degree of small-molecule nodes spanned a wide
range from 1 to 87. The highest degree node was
trichostatin A (TSA), an organic compound that serves
as an antifungal antibiotic and selectively inhibits class |
and Il mammalian histone deacetylases (HDACS) [9].
TSA can broadly alter gene expression by interfering
with the removal of acetyl groups from histones [10,
11]. It is also a member of a larger class of histone
deacetylase inhibitors that have a broad spectrum of
epigenetic activities [10, 11]. The second highest degree
small molecule node (degree=46) was emetine, an anti-
malaria drug that was recently found to have broad
anticancer activity in many types of malignancies
including breast, colon, prostate, skin, and lymphoid
tumors by inhibiting NF-xB signaling or regulating the
RNA splicing of members of the Bcl-2 family [12, 13].
Although there are no specific reports about emetine
and IncRNAs, it was linked to many IncRNAs, partly
because of its broad anticancer effects. Interestingly, we
found that other highly-connected nodes, namely
anisomycin and idoxuridine (degree: 39 and 38,
respectively) could inhibit protein/DNA synthesis.
Anisomycin is a potent apoptosis inducer that functions
by activating JNK/SAPK and inhibiting protein/DNA
synthesis during translation [14, 15]. Idoxuridine, which
is used as an antiviral agent, is an analog of
deoxyuridine, an inhibitor of viral DNA synthesis [16].
The high connectivity may have been due to their
activity related to apoptosis and the inhibition of
protein/DNA synthesis.

Similar to the small molecule nodes, the InNcRNA nodes
also displayed evident differences in connection (range,
1-366). The IncRNA node with the highest degree was
RP11-1148L6.5.1. There are no functional studies about
this IncRNA. To date, few IncRNAs have been
functionally annotated. Of seven IncRNAs with a
degree >100, only DLEU2 (Deleted in Lymphocytic

IEUkemia 2) is well studied. It encodes a pair of critical
pro-apoptotic microRNAs, miR-15a/16-1, which are
critical for the increased survival exhibited by chronic
lymphocytic leukemia cells [17]. Chen et Al. indicated
that the HDAC inhibitor TSA, the most-connected small
molecule in the SMLN, could upregulate the expression
of miR-15a/16-1, residing in the host tumor suppressor
DLEU2 gene [18]. Furthermore, in our SMLN, TSA
could also upregulate DLEU2 (log2 fold change = 1.4),
suggesting that our SMLN could identify a promising
cancer therapy via targeting IncRNAs [17].

REFERENCES

1. Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G,
Luo H, Bu D, Zhao H, Skogerbg G, Wu Z, Zhao Y. Large-
scale prediction of long non-coding RNA functions in a
coding-non-coding gene co-expression network.
Nucleic Acids Res. 2011; 39:3864—78.
https://doi.org/10.1093/nar/gkq1348 PMID:21247874

2. Yildirim MA, Goh Kl, Cusick ME, Barabasi AL, Vidal M.
Drug-target network. Nat Biotechnol. 2007; 25:1119—-
26. https://doi.org/10.1038/nbt1338 PMID:17921997

3. LiYH, YuCY, Li XX, Zhang P, Tang J, Yang Q, Fu T, Zhang
X, Cui X, Tu G, Zhang Y, Li S, Yang F, et al. Therapeutic
target database update 2018: enriched resource for
facilitating  bench-to-clinic research of targeted
therapeutics. Nucleic Acids Res. 2018; 46:D1121-
D1127. https://doi.org/10.1093/nar/gkx1076
PMID:29140520

4. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y,
Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A,
Gabriel G, Ly C, et al. DrugBank 4.0: shedding new light
on drug metabolism. Nucleic Acids Res. 2014;
42:D1091-97.  https://doi.org/10.1093/nar/gkt1068
PMID:24203711

5.  Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P. A
side effect resource to capture phenotypic effects of
drugs. Mol Syst Biol. 2010; 6:343.
https://doi.org/10.1038/msb.2009.98 PMID:20087340

6. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R,
Willighagen EL. Recent developments of the chemistry
development kit (CDK) - an open-source java library for
chemo- and bioinformatics. Curr Pharm Des. 2006;
12:2111-20.
https://doi.org/10.2174/138161206777585274
PMID:16796559

7. LiC, HanJ, YaoQ, Zou C, Xu Y, Zhang C, Shang D, Zhou
L, Zou C,Sun Z, LiJ, Zhang Y, Yang H, et al. Subpathway-
GM: identification of metabolic subpathways via joint
power of interesting genes and metabolites and their
topologies within pathways. Nucleic Acids Res. 2013;
41:e101. https://doi.org/10.1093/nar/gkt161

Www.aging-us.com 12444

AGING


https://doi.org/10.1093/nar/gkq1348
https://doi.org/10.1093/nar/gkq1348
https://www.ncbi.nlm.nih.gov/pubmed/21247874
https://www.ncbi.nlm.nih.gov/pubmed/21247874
https://doi.org/10.1038/nbt1338
https://doi.org/10.1038/nbt1338
https://www.ncbi.nlm.nih.gov/pubmed/17921997
https://www.ncbi.nlm.nih.gov/pubmed/17921997
https://doi.org/10.1093/nar/gkx1076
https://doi.org/10.1093/nar/gkx1076
https://www.ncbi.nlm.nih.gov/pubmed/29140520
https://www.ncbi.nlm.nih.gov/pubmed/29140520
https://doi.org/10.1093/nar/gkt1068
https://doi.org/10.1093/nar/gkt1068
https://www.ncbi.nlm.nih.gov/pubmed/24203711
https://www.ncbi.nlm.nih.gov/pubmed/24203711
https://doi.org/10.1038/msb.2009.98
https://doi.org/10.1038/msb.2009.98
https://www.ncbi.nlm.nih.gov/pubmed/20087340
https://www.ncbi.nlm.nih.gov/pubmed/20087340
https://doi.org/10.2174/138161206777585274
https://doi.org/10.2174/138161206777585274
https://www.ncbi.nlm.nih.gov/pubmed/16796559
https://www.ncbi.nlm.nih.gov/pubmed/16796559
https://doi.org/10.1093/nar/gkt161
https://doi.org/10.1093/nar/gkt161

10.

11.

12.

13.

PMID:23482392

Liu MX, Chen X, Chen G, Cui QH, Yan GY. A
computational framework to infer human disease-
associated long noncoding RNAs. PLoS One. 2014;
9:e84408.
https://doi.org/10.1371/journal.pone.0084408
PMID:24392133

Vanhaecke T, Papeleu P, Elaut G, Rogiers V.
Trichostatin A-like hydroxamate histone deacetylase
inhibitors as therapeutic agents: toxicological point of
view. Curr Med Chem. 2004; 11:1629-43.
https://doi.org/10.2174/0929867043365099
PMID:15180568

Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott
GK, Benz CC. Clinical development of histone
deacetylase inhibitors as anticancer agents. Annu Rev
Pharmacol Toxicol. 2005; 45:495-528.
https://doi.org/10.1146/annurev.pharmtox.45.120403
.095825 PMID:15822187

Shankar S, Srivastava RK. Histone deacetylase
inhibitors: mechanisms and clinical significance in
cancer: HDAC inhibitor-induced apoptosis. Adv Exp
Med Biol. 2008; 615:261-98.
https://doi.org/10.1007/978-1-4020-6554-5 13
PMID:18437899

Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-
Ramos MS, Shinn P, Van Leer D, Leister W, Austin CP,
Xia M. ldentification of known drugs that act as
inhibitors of NF-kappaB signaling and their mechanism
of action. Biochem Pharmacol. 2010; 79:1272-80.
https://doi.org/10.1016/j.bcp.2009.12.021
PMID:20067776

Boon-Unge K, Yu Q, Zou T, Zhou A, Govitrapong P,
Zhou J. Emetine regulates the alternative splicing of
Bcl-x through a protein phosphatase 1-dependent
mechanism. Chem Biol. 2007; 14:1386-92.

14.

15.

16.

17.

18.

https://doi.org/10.1016/j.chembiol.2007.11.004
PMID:18096507

Grollman AP. Inhibitors of protein biosynthesis. Il.
Mode of action of anisomycin. J Biol Chem. 1967
242:3226-33. PMID:6027796

Hori T, Kondo T, Tabuchi Y, Takasaki I, Zhao QL,
Kanamori M, Yasuda T, Kimura T. Molecular
mechanism of apoptosis and gene expressions in
human lymphoma U937 cells treated with anisomycin.
Chem Biol Interact. 2008; 172:125-40.
https://doi.org/10.1016/j.cbi.2007.12.003
PMID:18241849

Seth AK, Misra A, Umrigar D. Topical liposomal gel of
idoxuridine for the treatment of herpes simplex:
pharmaceutical and clinical implications. Pharm Dev
Technol. 2004; 9:277-89.
https://doi.org/10.1081/PDT-200031432
PMID:15458233

Kasar S, Underbayev C, Yuan Y, Hanlon M, Aly S, Khan
H, Chang V, Batish M, Gavrilova T, Badiane F, Degheidy
H, Marti G, Raveche E. Therapeutic implications of
activation of the host gene (Dleu2) promoter for miR-
15a/16-1 in chronic lymphocytic leukemia. Oncogene.
2014; 33:3307-15.
https://doi.org/10.1038/0nc.2013.291

PMID:23995789

Chen CQ, Chen CS, Chen JJ, Zhou LP, Xu HL, Jin WW,
Wu JB, Gao SM. Histone deacetylases inhibitor
trichostatin A increases the expression of Dleu2/miR-
15a/16-1 via HDAC3 in non-small cell lung cancer. Mol
Cell Biochem. 2013; 383:137-48.
https://doi.org/10.1007/s11010-013-1762-z
PMID:23867991

www.aging-us.com

12445

AGING


https://www.ncbi.nlm.nih.gov/pubmed/23482392
https://www.ncbi.nlm.nih.gov/pubmed/23482392
https://doi.org/10.1371/journal.pone.0084408
https://doi.org/10.1371/journal.pone.0084408
https://www.ncbi.nlm.nih.gov/pubmed/24392133
https://www.ncbi.nlm.nih.gov/pubmed/24392133
https://doi.org/10.2174/0929867043365099
https://doi.org/10.2174/0929867043365099
https://www.ncbi.nlm.nih.gov/pubmed/15180568
https://www.ncbi.nlm.nih.gov/pubmed/15180568
https://doi.org/10.1146/annurev.pharmtox.45.120403.095825
https://doi.org/10.1146/annurev.pharmtox.45.120403.095825
https://doi.org/10.1146/annurev.pharmtox.45.120403.095825
https://doi.org/10.1146/annurev.pharmtox.45.120403.095825
https://www.ncbi.nlm.nih.gov/pubmed/15822187
https://www.ncbi.nlm.nih.gov/pubmed/15822187
https://doi.org/10.1007/978-1-4020-6554-5_13
https://doi.org/10.1007/978-1-4020-6554-5_13
https://www.ncbi.nlm.nih.gov/pubmed/18437899
https://www.ncbi.nlm.nih.gov/pubmed/18437899
https://doi.org/10.1016/j.bcp.2009.12.021
https://doi.org/10.1016/j.bcp.2009.12.021
https://www.ncbi.nlm.nih.gov/pubmed/20067776
https://www.ncbi.nlm.nih.gov/pubmed/20067776
https://doi.org/10.1016/j.chembiol.2007.11.004
https://doi.org/10.1016/j.chembiol.2007.11.004
https://www.ncbi.nlm.nih.gov/pubmed/18096507
https://www.ncbi.nlm.nih.gov/pubmed/18096507
https://www.ncbi.nlm.nih.gov/pubmed/6027796
https://www.ncbi.nlm.nih.gov/pubmed/6027796
https://doi.org/10.1016/j.cbi.2007.12.003
https://doi.org/10.1016/j.cbi.2007.12.003
https://www.ncbi.nlm.nih.gov/pubmed/18241849
https://www.ncbi.nlm.nih.gov/pubmed/18241849
https://doi.org/10.1081/PDT-200031432
https://doi.org/10.1081/PDT-200031432
https://www.ncbi.nlm.nih.gov/pubmed/15458233
https://www.ncbi.nlm.nih.gov/pubmed/15458233
https://doi.org/10.1038/onc.2013.291
https://doi.org/10.1038/onc.2013.291
https://www.ncbi.nlm.nih.gov/pubmed/23995789
https://www.ncbi.nlm.nih.gov/pubmed/23995789
https://doi.org/10.1007/s11010-013-1762-z
https://doi.org/10.1007/s11010-013-1762-z
https://www.ncbi.nlm.nih.gov/pubmed/23867991
https://www.ncbi.nlm.nih.gov/pubmed/23867991

Supplementary Figures

p ]

400
J

300
1

Number of drugs

100
1

T T T 1
20 40 60 80

Mapped IncRNA per drug

o

10 15 20 25 30 35
1

Number of IncRNAs

5
1

panlmins o
I 1 1 1
100 200 300

Mapped drug per IncRNA

0
L
E

o

Supplementary Figure 1. The degree distribution of (A) IncRNAs and (B) drugs of the SMLN.
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Supplementary Figure 2. The small molecule-small molecule network (SSN).

www.aging-us.com 12447 AGING



LA16c-391G6.1.1

cag@rs1
RP11QTAS 4 RP11-44§H223.1
RP11-G97K143
Acoaf@sz.1.1 ¥
RN?MO.'
RPS-11F451 ACO04@40.9.1
RP11-489614.4.1 cTo-23820.1.1
KCN@NDN c B%%m ACOEES i3 11.4@C10.2.1 MIRGIOHG
IGABAS
RP11888NS.7 csif2:
L 3 RP11-88C10.2.1 RP11-39§87.2.1
S HLA®AS?
Km‘:‘H@m.t RP11-4E9P17.4.1 ceap’-»m
. codieos
RP1-288E54.1 SROSA2
RPi3-sfE23 11
MMP12
R"'Wﬁbnu CASBEAP2
AC00§N26.1 7
RP11-18J6P16.2 ) ZNFlBAst
RP11-19822.2.1 \ Acoofa i1 ﬂF"ﬂ“ RP11-44G11.23ROECP2
SEC228 RP11-4BNG S RP},I&J.I
Re11-gR 182 8P 114121 »“ 2 xo0f75. AL92GB8 3.1
. 2 3 2 Re11iBite 0 L
RP11-@B771  ZBTHEASHERT § A f g ; RP11-384A14.4
ua. RPH1-EE26.11 RP4-72E162.1 DS
RET IR A e 13,1
cugiFit
CTC-4285203.1 ; NPTz s
RP11-SE13S - > A cigu7
2 PHEEP N Actsgg 1.1
ACOBN47.2 coiipr ; DS‘G.I RP11-568E16.31
RH pLI21 ’ b A aieay KB-43gC1.4.1
RP11-688A18.7 HEss AC004§93.11.1
@osi
. aRast f i ol THi¥1s CTD3088U169.1
LiN@342 g/ 193 G g IS X ‘5. s RP11-1@N13.16
RP11-4@8P2021  RP11 PN‘!% 51‘ g
1-20014.6/
arrrioass DA reriesis i
LNai312 Am.’ﬂui-t.)nm
RP11-6F23.1.1 RP11-6@M20.14
1
LiNCBo9sS b RP11-20889.4.1
MCF@-AS1 SNEE14 ACO1Z74.2.1

RP11-1BM3.3.1

RP11-WBF7.5.1

Supplementary Figure 3. The IncRNA-IncRNA network (LLN).
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Supplementary Tables

Supplementary Table 1. Tissue-specific IncRNAs affected by drugs.

Tissue IncRNAs

Brain Amygdala ENSG00000269614, ENSG00000225465
subthalamic_nucleus ENSG00000267670

Testilntersitial ENSG00000267163

DRG
ciliary_ganglion

fetal liver

Pons
TemporalLobe
Uterus_Corpus

Skeletal_Muscle_Psoas

PB_CD19BCells
cerebellum

atrioventricular_node

Superior_Cervical_Gangli
on

Uterus
Testi_SeminiferousTubule
lymph node

Appendix
BM_CD71EarlyErythroid
HEART
WHOLEBLOOD(JJV)

Trigeminal_Ganglion

ENSG00000267161, ENSG00000104725, ENSG00000179935, ENSG00000235280
ENSG00000266897, ENSG00000240291, ENSG00000232860, ENSG00000196696,
ENSG00000230223, ENSG00000242125, ENSG00000237941, ENSG00000263072
ENSG00000261613

ENSG00000261496

ENSG00000261087

ENSG00000260339

ENSG00000254488, ENSG00000236772, ENSG00000263214, ENSG00000260588,
ENSG00000259539, ENSG00000246777, ENSG00000249717, ENSG00000273032,
ENSG00000235994, ENSG00000267934, ENSG00000232416, ENSG00000265242,
ENSG00000241881, ENSG00000231690, ENSG00000197670, ENSG00000215765,
ENSG00000176728

ENSG00000253701

ENSG00000253230

ENSG00000249790, ENSG00000229645, ENSG00000218510, ENSG00000235947,
ENSG00000227719, ENSG00000260532, ENSG00000005206, ENSG00000261071,
ENSG00000266171, ENSG00000236234, ENSG00000249673

ENSG00000246863, ENSG00000236901, ENSG00000270742, ENSG00000257310,
ENSG00000241954, ENSG00000245532, ENSG00000182165, ENSG00000182873,
ENSG00000269176, ENSG00000258442, ENSG00000255224, ENSG00000232710,
ENSG00000236268, ENSG00000235725, ENSG00000225733, ENSG00000234912,
ENSG00000225930, ENSG00000049319, ENSG00000259417, ENSG00000236673,
ENSG00000237517, ENSG00000152268, ENSG00000251023, ENSG00000261460,
ENSG00000260396, ENSG00000237697, ENSG00000231074, ENSG00000229921,
ENSG00000272579, ENSG00000235072, ENSG00000224945, ENSG00000259291,
ENSG00000226674, ENSG00000255443, ENSG00000233237, ENSG00000233864,
ENSG00000228389, ENSG00000248175, ENSG00000249532, ENSG00000229589,
ENSG00000227372, ENSG00000262179, ENSG00000186526, ENSG00000261097,
ENSG00000204054, ENSG00000226803, ENSG00000248161, ENSG00000229582,
ENSG00000110347, ENSG00000266830, ENSG00000233718, ENSG00000204623,
ENSG00000260804, ENSG00000204625, ENSG00000031544, ENSG00000125804,
ENSG00000260735, ENSG00000224063, ENSG00000272599, ENSG00000232274,
ENSG00000164621, ENSG00000136315, ENSG00000006062, ENSG00000259322,
ENSG00000187621, ENSG00000176075, ENSG00000260400, ENSG00000272216,
ENSG00000186842, ENSG00000260743, ENSG00000215117, ENSG00000233791,
ENSG00000231607, ENSG00000196756, ENSG00000249859, ENSG00000249267,
ENSG00000234350, ENSG00000242687, ENSG00000259849, ENSG00000253116,
ENSG00000232931, ENSG00000267659, ENSG00000241295, ENSG00000225670,
ENSG00000272201, ENSG00000255318, ENSG00000183242, ENSG00000132832,
ENSG00000241345, ENSG00000235733, ENSG00000176734, ENSG00000177853,
ENSG00000204148, ENSG00000260619, ENSG00000144596, ENSG00000236256,
ENSG00000228343, ENSG00000261646, ENSG00000273311, ENSG00000257303,
ENSG00000215424, ENSG00000263753, ENSG00000235437, ENSG00000259758,
ENSG00000131007, ENSG00000246263, ENSG00000266904, ENSG00000256185,
ENSG00000260917, ENSG00000228463, ENSG00000237775, ENSG00000237438,
ENSG00000263050, ENSG00000228350, ENSG00000249604, ENSG00000264727,
ENSG00000259577

ENSG00000237125

ENSG00000235824, ENSG00000088970

ENSG00000228315

ENSG00000226334

ENSG00000215908

ENSG00000213994, ENSG00000269653

ENSG00000206337

ENSG00000198221, ENSG00000270589, ENSG00000175873, ENSG00000266968,
ENSG00000262420, ENSG00000225092, ENSG00000269318, ENSG00000251632,
ENSG00000259644, ENSG00000227403, ENSG00000254389, ENSG00000237250,
ENSG00000263198, ENSG00000259073, ENSG00000273487, ENSG00000258517,
ENSG00000270074, ENSG00000231160, ENSG00000272711, ENSG00000167117,
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Testi_GermCell
Liver

fetal brain
AdrenalCortex
spinal cord
PLACENTA

ENSG00000235865
ENSG00000197210
ENSG00000188338
ENSG00000188070
ENSG00000186594, ENSG00000214548
ENSG00000099869
ENSG00000012171

Supplementary Table 2. Robustness of SMLN with Fold Change=2 and Fold Change=1.5.

Degree rank Drug IncRNA

FC=2 FC=15 FC=2 FC=15
1 trichostatin A trichostatin A RP11-1148L6.5.1 LL22NC03-2H8.5
2 emetine trichlormethiazide LL22NC03-2H8.5 RP11-1148L6.5.1
3 pepstatin probenecid RP11-612B6.2.1 RP11-667K14.3
4 anisomycin 0175029-0000 RP11-667K14.3 RP11-395B7.2.1
5 idoxuridine trimethylcolchicinicacid ~ FGD5-AS1 RP11-612B6.2.1
6 lumicolchicine emetine MIR22HG AC005546.2
7 probenecid galantamine DLEU2 FAM182A
8 reserpine mestranol FAM182A AC159540.1.1
9 mestranol pyrimethamine RP11-403P17.4.1 AC012074.2.1
10 sulfathiazole pepstatin CTD-2562J17.7.1  DLEU2
11 molindone quinisocaine RP11-148B6.1.1 RP11-148G20.1.1
12 galantamine benperidol RP11-395B7.2.1 RP11-148B6.1.1
13 H-7 idoxuridine AD000090.2.1 CTD-2562J17.7.1
14 pyrimethamine reserpine AC005546.2 RP11-403P17.4.1
15 trimethylcolchicinic acid  lumicolchicine RP11-394A14.4 RP11-203B9.4.1
16 trichlormethiazide metronidazole RP3-522P13.3.1 RP11-394A14.4
17 lanatoside C epitiostanol RP11-203B9.4.1 FGD5-AS1
18 mebhydrolin canavanine CASP8AP2 RP11-1376P16.2
19 canavanine sulfathiazole LINC00483 BX004987.5.1
20 vorinostat molindone ZNRD1-AS1 AC012065.7.1
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Supplementary Dataset

Please browse Full Text version to see the data of Supplementary Datasets 1 to 4.

Supplementary Dataset 1. The edges of the SMLN
Supplementary Dataset 2. The degree distribution of SMLN
Supplementary Dataset 3. The edges of the drug-drug network

Supplementary Dataset 4. The edges of the Inc-Inc network
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