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Abstract: Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in 

metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single 

catabolic enzyme, causing accumulation of the enzyme’s substrate within the lysosome. Over time, 

tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary 

by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small 

percentage of the appropriate target cells may be sufficient to impact the clinical course of the dis-

ease. Recently, there have been several significant advancements in the potential for gene therapy 

of these disorders, including the first human trials. Future clinical trials will build upon these initial 

attempts, with an improved understanding of immune system responses to gene therapy, the obstacle 

that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when 

overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent 

innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, 

with the goal of fostering an understanding and further development of this important field.

Keywords: human trials, clinical trials, gene therapy, lysosomal storage disease, blood-brain 

barrier, adeno-associated virus, lentivirus, adenovirus

Introduction
Lysosomal storage disorders (LSDs) are a group of over 40 distinct inherited diseases 

that result in metabolic derangements of the lysosome.1 Clinical features of LSDs vary 

from disease to disease, but can include cardiomegaly, hepatosplenomegaly, skeletal 

deformity, cognitive disability, and premature death.2 Most LSDs result from a loss-

of-function mutation in a single gene responsible for producing a catalytic lysosomal 

enzyme.3 As a result of insufficient enzymatic activity, the enzyme’s substrate accu-

mulates over variable amounts of time within the lysosomes of specific tissues, causing 

the pathophysiology of the respective LSD.1,4

Compared to many other genetic diseases, LSDs are practical targets for gene 

therapy because of a unique physiologic trait referred to as “cross-correction”. 

 Cross-correction allows specific extracellular LSD enzymes to be taken up and targeted 

to the lysosomes of otherwise enzyme-deficient cells.5 This phenomenon was exploited 

to develop the first United States Food and Drug Administration-approved therapies 

for these diseases, known as enzyme replacement therapies (ERT).6,7 These therapies 

typically involve repeated (life-long) intravenous administrations of a recombinant LSD 

enzyme into affected patients. From the bloodstream, the recombinant LSD enzyme 

can travel to affected tissues throughout the body, enter enzyme-deficient cells, and 

partially restore deficient lysosomal enzymatic functions. Unfortunately, recombinant 
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enzymes administered intravenously do not easily cross the 

blood–brain barrier (BBB), so they are unable to resolve 

the severe neurological manifestations of many LSDs.8,9 

 Additionally, in some patients, repeated administration of 

recombinant LSD enzymes can trigger immune reactions to 

the enzyme that limit the effectiveness of the therapy.10,11

Despite these limitations, the success of ERTs for LSDs 

demonstrates that improved treatment of LSDs may be 

achieved by development of gene therapy approaches. This 

article will focus on recent developments in the field of gene 

therapy for the treatment of LSDs, including recent successes, 

as well limitations that remain to be overcome.

Suitability of LSDs as targets for 
gene therapy
Gene therapy is based upon a simple concept – namely, a 

working copy of an appropriate gene is provided to a patient 

to either stabilize or reverse a clinical disease state. There are 

several caveats that must be considered when evaluating a 

gene therapy for a LSD, including: 1) can the existing pathol-

ogy be reversed or merely slowed in its rate of progression?; 

2) can the appropriate tissues or cells affected by the respective 

LSD be targeted by the respective gene therapy approach?; 

and 3) will the patient’s immune system perceive the protein 

produced by the gene therapy treatment as foreign? Despite 

these caveats, LSDs provide three advantages that allow them 

to be practical targets for gene therapy. Firstly, each LSD is 

a single-gene recessive disorder and the pathophysiology of 

the diseases is relatively well understood. The development 

of several animal models that mimic the pathophysiology 

of various LSDs furthers accurate preclinical evaluations of 

various forms of gene therapy.12,13 Secondly, clinical studies 

of residual LSD enzyme activities in more mildly affected 

LSD patients have shown that even small improvements in 

enzyme activity can be associated with significant impacts 

on the clinical course of the disease. Studies in both Pompe 

disease (glycogen storage disease type II [GSDII] knockout 

[KO])14 and metachromatic leukodystrophy (MLD)15,16 have 

demonstrated that the most severe infantile-onset forms of 

the disease correlate with ,1% enzyme activity, and that 

adult onset forms correlate with ,10%–15% of normal 

enzyme activity. A similar pattern has been observed in Fabry 

disease, Niemann–Pick disease, and Gaucher’s disease.17,18 

These results suggest that if gene therapy is able to produce 

even a relatively small amount of a respective LSD enzyme, 

it may have a large clinical impact upon the course of the 

disease. Finally, the most promising feature of LSDs as 

targets for the successful implementation of gene therapy is 

the  “cross-correction” phenomenon. Lysosomal enzymes are 

secreted in small amounts to the extracellular space where 

they can be taken up and targeted to lysosomes of neighbor-

ing cells.5 If supraphysiologic amounts of a respective LSD 

enzyme can be provided via gene therapy, secreted enzymes 

may enter the bloodstream and be taken up by distant organs, 

providing clinical benefits analogous or superior to ERT 

approaches. The most successful gene therapy approaches 

can exploit this pathway by expressing high concentrations 

of enzyme from the liver or other target organs and allowing 

that organ to secrete enzyme for “systemic cross-correction” 

(Figure 1).

Gene therapy vectors
There have been many different gene transfer “vectors” 

produced for the purpose of gene therapy; however, the vast 

majority of animal studies focus on the use of recombinant, 

virus-based vectors due to their high probability for allowing 

robust gene transfer and expression into a variety of cells 

and tissue types (Figure 2). Under the right circumstances, 

each of these vectors have demonstrated long-term efficacy 

in animal models of LSDs, and each are viable candidates 

for human gene therapy of various LSDs.19–24,31

Adenovirus
Generally speaking, adenovirus-based gene therapy vectors 

have been the most widely used vector in human clinical 

trials to date, with 23.3% of all gene therapy clinical trials 

utilizing adenoviruses.25 Adenoviruses are double-stranded 

DNA viruses that do not integrate into the host genome, can 

infect nonreplicating cells, and can transfer up to 37 kb of 

genetic information.

Early generation vectors based on adenoviruses were 

potent activators of the innate immune system, activat-

ing TLR9,26 TLR2,26 complement,27 and the NLRP3 

 inflammasome.28 New strategies have been developed to 

limit immunity with adenoviruses, including the preemptive 

administration of medications to prevent innate immune 

responses to the vector,29 the use of liver targeting veno-

occlusive systems diminishing systemic exposure to high 

doses of recombinant adenovirus vectors,30,31 and the devel-

opment of advanced generation viruses that lack viral genes, 

such as helper-dependent adenoviruses (HD-Ads) that lack 

all viral genes.30–33 HD-Ads have decreased immunity and 

sustained expression of transgenes in mice and nonhuman 

primates. Although HD-Ads are still capable of activating 

innate immunity, as would any virus-based vector,34 the 

mechanism and degree of innate immune activation can be 
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comparable to nonviral methods for gene therapy.35 Recently, 

HD-Ads have been demonstrated to persist in nonhuman 

primates for up to 7 years, demonstrating their capacity for 

durable expression in immune-tolerant animals.31

Additional advances in adenovirus-based gene transfer 

vectors include the development of a variety of alternative 

serotype-based vectors that evade pre-existing immunity, and 

have other interesting properties. For instance, canine adeno-

virus serotype 2 has been observed to be less immunogenic 

than classic adenoviral vectors,36 and to have high tropism for 

neurons,37 allowing it to be used for the improved treatment 

of neonatal mucopolysaccharisosis mice.38

Retroviruses and lentivirus
Retroviruses (RVs) and lentiviruses (LVs) are enveloped 

single-stranded RNA viruses. RVs and LVs integrate directly 

into the host’s genome. This ability to integrate into the 

host’s DNA is both a great advantage and a liability. On the 

one hand, integration allows the genes delivered by such 

vectors to potentially be permanent, persisting indefinitely 

within the host cell despite repeated cell division, such as in 

hematopoietic stem cells (HSCs).39 On the other hand, multi-

ple integrations can also promote insertional  mutagenesis. For 

instance, in gene therapy trials using γ-RVs to treat SCID-X1 

immunodeficiency, multiple patients developed T-cell acute 

lymphoblastic leukemia that was directly attributable to the 

RV randomly integrating next to, and activating the LMO-2 

oncogene.40,41 Recent work has been aimed at improving the 

safety profile of RVs and LVs by targeting or limiting their 

ability to randomly integrate, or to include, “transcriptional 

insulators” that decrease the chance to transcriptionally 

activate bystander genes.42,43 In gene therapy for LSDs, RVs 
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Figure 1 Systemic cross-correction.
Notes: LSDs are practical targets for gene therapy because cells that are corrected by gene therapy can secrete the transfected lysosomal enzyme, which can then be taken 
up by neighboring cells. Gene therapy can express superphysiologic amounts of enzyme in a target organ, such as the liver, that can then be excreted and travel to effected 
tissues through the blood. (A) The liver is infected with the viral vector. (B) The virus introduces its genetic cargo into the nucleus of hepatocytes. The hepatocytes produce 
superphysiologic amounts of enzyme, some of which are secreted. (C) enzyme (green) enters the bloodstream and travels throughout the circulation, reaching the affected 
tissues. (D) Within these tissues, the enzyme binds receptors (black bar) and is trafficked to the lysosome.
Abbreviation: LSDs, lysosomal storage disorders.
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and LVs are frequently used to transfect cells ex vivo. These 

cells can then be reinfused into the same patient that they 

were harvested from, and theoretically supply enzyme to 

neighboring cells in the body through cross-correction.

Adeno-associated virus
Adeno-associated virus (AAV) is a 4.7 kb nonenveloped 

single-stranded DNA parvovirus. AAVs infect cells by inter-

acting with specific receptors that differ between serotypes. 

For this reason, AAV tropism is serotype-dependent.44 Gene 

transfer vectors based on AAVs are capable of attaining 

sustained transgene expression in a wide variety of cells. 

Like adenoviruses and LVs, AAVs can also trigger innate 

or adaptive immune responses against the vector and the 

transgenes they express in a variety of settings.45–52 Because 

they are capable of integration, another risk of AAV-based 

vectors is insertional mutagenesis and genotoxicity.53,54  

A unique feature of AAV vectors is the potential ability of 

certain serotypes to cross the BBB and enter the central 

nervous system (CNS), making them attractive vectors for 

the therapy of neuropathic LSDs.55 For this reason, AAV9 has 

been used in a variety of attempts to achieve CNS-detected 

gene therapy for neuropathic LSDs.56,57 The greatest limita-

tion of AAV-based gene transfer vectors may be their poten-

tial for scalable production. Recently, a practical alternative 

method using a cell suspension system for AAV production 

has been  developed.58 This system has allowed for AAV to 

be produced cost effectively in current good manufactur-

ing practices-compliance and has translated into the first 

approved gene therapy drug available in Europe, Glybera® 

(alipogene tiparvovec).59

Advances in gene therapy for LSDs
Over the past few years, many advances have been made in 

the construction and administration of gene therapy vectors. 

These advances either improved the safety or increased the 

potential efficacy of the vectors by overcoming limitations 

that were experienced in earlier gene therapy attempts.62,66 

Overcoming adaptive immune 
responses
Overcoming the adaptive immune responses (cellular or 

humoral) to gene transfer is a critical issue for the successful 

treatment of LSDs in humans. Adaptive immune responses 

are a major limitation in ERT,10,11 and adaptive immune 

responses can develop against the viral vector or against the 

transgene, and they have been reported with adenovirus,60 

AAV,45,47,48,50 and LV.61,62 Bypassing adaptive immunity was 

the main limitation in early attempts to treat LSDs with 

gene therapy; however, recent advances have allowed for 

the evasion of immune responses, and even the induction of 

tolerance, demonstrating an interesting potential advantage 

of gene therapy for the treatment of LSDs.66,69

These concepts are illustrated well in Pompe disease 

(GSDII). Pompe disease is caused by mutations in the GAA 

gene that result in insufficient acid α-glucosidase (GAA) 

production and the accumulation of glycogen within the 

lysosomes of affected tissues.1 Infantile-onset Pompe disease 

presents at ,1 year of age with musculoskeletal weakness, 

cardiomegaly, and progressive respiratory insufficiency. 

Without treatment, patients can succumb to cardiac or respi-

ratory complications by 9–24 months of age. The  current 
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Figure 2 Commonly used viral vectors.
Notes: (A) Adenovirus is a nonenveloped double-stranded DNA virus. it enters 
the cell by binding adenovirus receptors (black bar) such as the coxsackievirus 
and adenovirus receptor and translocates its genome into the nuclease of the cell. 
viral DNA (red helix) does not integrate into the host genome and persists as an 
episome. (B) Adeno-associated virus is a nonenveloped single-stranded DNA virus. it 
enters the cell using a variety of receptors, which vary by serotype (represented by 
the black bar). inside the cell, it translocates its genome (red helix) into the nucleus 
where it is made into double-stranded DNA. This DNA may persist as an episome or 
sporadically be integrated into the host genome (blue helix). (C) Lentivirus (purple 
hexagon) is an enveloped single-stranded RNA virus. it enters the cell using a variety 
of receptors, which are different for each virus (represented by the black bar). within 
the cell, it reverse transcribes its genome. The single strand of viral RNA (dashed red 
line) is made into a double-stranded DNA (red helix) before entering the nucleus. 
Retroviral DNA enters the nucleus during mitosis, while lentiviral DNA can enter 
the nucleus of nondividing cells via nuclear pores. within the nuclease, the DNA 
integrates into the host genome (blue helix) at a random site.
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treatment for GSDII is ERT, in which recombinant GAA 

is administered intravenously once every 2 weeks. For 

most patients, this therapy is quite efficacious; however, 

some patients develop potent immune reactions against the 

enzyme that can significantly limit the long-term efficacy 

of the therapy.10,11

A similar problem was encountered in the first attempts 

to treat GSDII with gene therapy in animal models. Early 

attempts to introduce a functional GAA gene into GSDII 

KO mice63 and GSDII KO quails64 confirmed that robust 

levels of enzyme expression could be achieved in vivo, but 

these levels of expression gradually tapered over time. This 

problem was ameliorated when similar attempts were made 

in immune-deficient GSDII KO animals, demonstrating that 

adaptive immunity was leading to the loss of GAA activi-

ties over time.65 Two potentially synergistic strategies have 

been developed for reducing immunity induced by gene 

therapy for Pompe disease: one is the development of liver-

targeted therapies; and the other is immunosuppression/

immunomodulation.

Liver-directed gene therapy
One strategy to avoid both innate and adaptive immune 

responses is liver-directed gene therapy. To target trans-

gene expression to the liver, and to avoid expression in 

immune cells, liver-specific promoters have been employed. 

This has proved effective at minimizing adaptive immunity in 

GSDII KO mice. Specifically, GSDII KO mice were injected 

with AAV2/8 vectors expressing GAA driven by either a 

liver-specific promoter or a ubiquitously expressed promoter 

derived from the cytomegalovirus early region enhancer and 

promoter elements.66 GSDII KO mice receiving the vector 

with the ubiquitously expressed promoter developed anti-

body and T-cell responses against the transgene that limited 

the expression of GAA, and ultimately failed to correct the 

phenotype. In contrast, use of the liver-specific promoter pre-

vented the formation of neutralizing antibodies and cytotoxic 

T-cells against the GAA transgene in the same animals, and 

it allowed for sustained plasma secretion of GAA, ultimately 

correcting glycogen storage and supplying GAA to muscle 

via systemic cross-correction.66 Some have suggested that 

liver-specific promoters avoid immunity by preventing trans-

gene expression within antigen-presenting cells.67 While this 

may be the case, it appears that liver-directed gene therapy 

is capable of actively inducing tolerance as well.68 This was 

demonstrated in the same murine model of Pompe disease. 

In GSDII KO mice, AAV2/8 expressing GAA with a liver-

specific promoter avoided anti-GAA immunity when injected 

on its own; it also allowed for protection from the immune 

responses induced by the ubiquitously expressed vector, sug-

gesting the induction of tolerance.69 As immune responses 

are the major limiting factor for ERT, induction of tolerance 

suggests a role for gene therapy in patients where immune 

responses to the transgene are predicted to be limiting.8,9 

Similarly, liver-directed gene therapy approaches have been 

successfully employed to treat mucopolysaccharidosis (MPS) 

type I (MPSI) cats,70 MPSIIA mice,71 GSDII KO mice,72 Von 

Gierke disease mice,73 and Fabry mice.74,75

Early attempts at liver-directed gene therapy introduced 

the vector into the hepatic bloodstream, but they required 

high doses of virus to achieve significant levels of hepato-

cyte transduction.76 Unfortunately, the doses required also 

induced dose-related toxicity.77,78 To address these issues, 

a procedure was developed that utilized minimally inva-

sive, hydrodynamic occlusion of the liver and allowed for 

substantially higher levels of hepatocyte transduction with 

substantially lower viral doses to be utilized.79 For LSDs that 

can be treated with liver-directed therapy, this technique is 

a major breakthrough and will likely benefit future trials in 

large animals and humans.

Transient immunosuppression/
immunomodulation
A second method for avoiding immunity is the use of tran-

sient immunosuppression. This method has been explored in 

a GSDII KO mouse model.80 In that model, AAV expressing 

GAA with a ubiquitous promoter generated potent humoral 

immunity that limited the efficacy of the gene therapy.80 How-

ever, pretreatment of the animals with nondepleting anti-CD4 

antibodies transiently inhibited the function of CD4+ T-cells 

and prevented the formation of anti-GAA antibodies. This 

greatly improved the efficacy of the gene therapy attempt, 

resulting in decreased glycogen storage in the heart and 

skeletal muscles of the treated animals.80

The importance of transient immunosuppression has also 

been observed in the gene therapy of MPSI cats. MPSI is a 

neuropathic LSD that presents with musculoskeletal malfor-

mation, severe cognitive declines, joint pain, and hepatosple-

nomegaly. When a retroviral vector was used in a feline model 

of MPSI, potent cytotoxic T-lymphocyte (CTL) responses 

eliminated transfected cells and prevented long-term efficacy 

of the therapy.62 In this same model, CTL responses could be 

avoided by transiently suppressing the animal’s immune sys-

tem by treatments with the use of the T-cell coreceptor- binding 

drug, CTLA4-Ig. This resulted in the sustained efficacy and 

subsequent  normalization of substrate  accumulations within 
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the liver.62  Transient  immunosuppression has also been shown 

to block downstream antibody responses to adenoviral vec-

tors, allowing for their repeated administration.81,82 This 

approach has also shown success in a nonhuman primate 

model with AAV.83 Importantly, transient immunosuppression 

has been demonstrated to be safe in a human clinical trial 

for MPSIIIA, suggesting a future for this practice in human 

gene therapy approaches for many LSDs.84

Gene therapy for neuropathic LSDs
There is mounting evidence for the potential use of gene 

therapy to treat neuropathic LSDs. Over 50% of LSDs have 

neurologic involvement,1 and gene therapy is particularly 

important for this class of LSDs, as currently no therapies 

exist for many of these diseases. The principal obstacle in 

treating these diseases is the BBB. ERT is ineffective at 

crossing the BBB, and most viral vectors (adenoviruses, LVs, 

and most AAVs) will not cross the fully matured BBB after 

intravenous administration.8,9,85,86 This obstacle has led to a 

number of promising innovations that are each at different 

stages of translation.

intracranial injections
Several strategies have been developed to bypass the BBB 

for the treatment of LSDs (Figure 3). The most direct and 

developed strategy has been to anatomically bypass the BBB 

with intracranial injections of the respective gene transfer 

vector. This approach has been utilized extensively in mod-

els of infantile neuronal ceroid lipofuscinoses (INCL) and 

MPSIIIA.84,92 Both are fatal neuropathic LSDs that develop 

in early childhood. INCL is caused by mutations in the 

PPT1 (also called CLN2) gene, resulting in deficiency of 

palmitoyl protein thioesterase-1 (PPT1). INCL presents at 

around 18 months with symptoms of visual defects, cognitive 

defects, seizures, and results in premature death.87 MPSIIIA 

is caused by mutations in the SGSH gene that result in the 

deficiency of N-sulfoglucosamine sulfohydrolase (SGSH) 

and the accumulation of heparin sulfate glycosaminoglycans 

within the CNS. MSP IIIA patients present with cognitive 

delay at age 3 years, lose the ability to walk independently by 

age 10 years, and die by age 15 years.88 There are currently 

no therapies approved for either of these fatal disorders.

Preclinical studies for INCL suggested that intracranial 

injections of AAV2 expressing PPT1 cleared accumulated 

storage material from PPT1 KO mice.89 The same vector 

was shown to broadly transduce the brain of nonhuman 

 primates.91 The vector successfully produced tripetidyl 

 peptidase (TTP)-1 within the neurons of the injected regions, 
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Figure 3 Strategies for CNS-directed gene therapy.
Notes: (A) (a) The BBB prevents most viruses and enzymes from entry into the 
CNS. (b) intracranial injections anatomically bypass the BBB and have been used in 
human trials for infantile neuronal ceroid lipofuscinoses92 and MPSiiiA.84 (c) Certain 
serotypes of AAv have been reported to cross the BBB and have been used in 
MPSiiiB mice,56 MPSvii mice,99 and nonhuman primates.96 (d) The enzyme can be 
modified to have affinity for receptors that traffic proteins across the BBB and has 
been used in MPSiiiA mice.71 (e) Hematopoietic stem cells can be transfected ex vivo, 
then reintroduced to the patient. They can cross the BBB, smuggling the transfected 
gene into the CNS. This approach has been used in human trials for metachromatic 
leukodystrophy.103 (f) intranasal delivery of adenovirus112 and AAv113 has also been 
shown to bypass the BBB in rats. (B) There is limited spread of virus within the CNS. 
(a) Multiple injections allow for multiple areas of the brain to be targeted even with 
limited diffusion.84 (b) Certain studies have tried to target the CSF to distribute the 
virus throughout the CNS.132,133 (c) Certain studies have tried to target areas of the 
brain that have axons extending widely to allow axonal transport of the virus or 
enzyme throughout the brain.134

Abbreviations: BBB, blood–brain barrier; HSCTs, hematopoietic stem cell 
transplantation; CNS, central nervous system; MPS, mucopolysaccharidosis; AAv, 
adeno-associated virus; CSF, cerebrospinal fluid.

and although the injections themselves caused minor physi-

cal damage, no histological damage could be attributed to 

the vector.90,91 This work was translated into the first gene 

therapy trial for a LSD.92 Ten children with INCL received 12 

intracranial injections of an AAV2 vector expressing TTP-1. 

A modified Hamburg neurologic rating scale demonstrated 

that the subjects that received gene therapy exhibited a 

slower cognitive decline compared to untreated controls 

and historical data. Unfortunately, it was also demonstrated 

that humoral immune responses developed in four of the ten 

subjects, which may have limited the overall effectiveness 
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of the therapy. Similar humoral immunity developed in a 

clinical study of Canavan disease following intracranial 

administration of AAV2 vectors expressing aspartoacylase.51 

These early studies demonstrated that gene therapy could 

be potentially effective for neurological disorders, and they 

also highlighted the importance of the immune system, even 

within immune-privileged sites like the CNS.

Lessons learned from this trial were incorporated into 

a clinical trial in MPSIIIA that employed transient immu-

nosuppression alongside intracranial injections.84 Four 

MPSIIIA patients aged 2–6 years were injected intracranially 

with an AAV2/10 vector expressing SGSH and sulfatase 

modifying factor 1. They received 12 simultaneous intrac-

ranial injections into the white matter of the basal ganglia. 

Importantly, patients in this study received immunosup-

pressive agents  (mycophenolate, mofetil, and tacrolimus) 

beginning 15 days prior to surgery and extending for 8 weeks 

after the  procedure. No adverse outcomes were associated 

with immunosuppression or administration of the viral vec-

tor, demonstrating a markedly improved safety profile over 

the INCL trial.92 Though the study design limits conclusions 

about efficacy, the patients may have had a decreased decline 

in cognitive abilities, and the youngest patient showed 

improvement in several cognitive scores, including motor 

skills and independent thought. The behavioral data cor-

related with magnetic resonance imaging data that showed 

decreased brain atrophy in two patients and no atrophy in 

the other two patients. These promising results suggest that 

intracranial gene therapy may be a viable option for certain 

neuropathic LSDs.

Trans-BBB vectors for neuropathic LSDs
Another strategy to bypass the BBB is to use alternative 

serotypes of viruses that may be capable of enhanced entry 

into the CNS directly from the bloodstream. Early work 

demonstrated that AAV955 and other AAV serotypes93 crossed 

the BBB, as performed in neonatal mice. However, the large 

injection volumes that were used in these studies potentially 

could have mechanically disrupted the delicate intracerebral 

vasculature of the neonatal mice, complicating interpreta-

tion of these results.94 Subsequent work demonstrated that 

AAV9 was capable of crossing the BBB in adult nonhuman 

primates,95 and this approach has been explored as an alterna-

tive to intracranial injections in models of MPS. In MPSIIIB 

mice, intravenous administration of AAV9 was able to correct 

the pathology in the CNS and the periphery.56 As a preclinical 

study, the same vector was administered intravenously into 

adult cynomolgus monkeys; the use of AAV9 was able to 

drive the expression of α-N-acetylglucosaminidase in both 

the CNS and the periphery, demonstrating that this approach 

may be viable for a clinical trial.96

In addition to AAV9, other AAV vectors have been inves-

tigated for their ability to cross the BBB. Serotypes AAVrh8 

and AAVrh10 were shown to cross the BBB in adult mice, 

with AAVrh10 also shown to cross the BBB in adult mar-

mosets, although with variable results.97 Another approach 

has involved identifying new xenobiotic AAVs that may be 

capable of crossing the BBB. Two recently isolated porcine 

AAVs were demonstrated to have some tropism for the CNS.98 

A third approach has been to artificially manipulate the AAV 

capsid to produce novel AAV vectors that cross the BBB more 

efficiently than AAV9.99 This approach was demonstrated 

in a murine model of MPSVII. Importantly, MPSVII is a 

difficult target for AAV9-based gene therapy because the 

disease results in an accumulation of sialic acid within the 

CNS; sialic acid generally inhibits the AAV9 transduction of 

cells. In this model, the capsid-modified AAV9 vectors were 

able to overcome these issues, enter the CNS, and correct the 

cognitive deficits and storage lesions.99

ex vivo gene therapy for neuropathic LSDs
Another strategy to bypass the BBB is the use of HSCs or 

other cells naturally capable of crossing the BBB on their 

own. These cells can be harvested from the patient, modified 

with RV or LV ex vivo, and then returned to the patient, where 

they can theoretically cross the BBB and provide enzymes to 

neighboring cells within the CNS via cross-correction. This 

approach has been explored in MLD models.103 MLD is a 

neuropathic LSD caused by a deficiency in arylsulfatase A  

(ARSA). Patients with ,1% ARSA activity present at 

1–2 years of age with progressive muscle weakness, vision 

loss, convulsions, and dementia, and they typically die by the 

age of 5 years.15,16 There is currently no therapy approved for 

this fatal disorder.

Experiments in a MLD mouse model have demonstrated 

that HSC gene therapy can succeed in correcting lyso-

somal storage and neurologic damage in affected mice.100 

 Interestingly, this model also highlighted the importance 

of gene therapy for LSDs, as only HSCs that received gene 

therapy were able to prevent neurologic deficits.101 This 

is likely because genetically modified HSCs produce up 

15 times the normal amount of the required LSD protein, and 

therefore were able to secrete more enzyme per cell for cross-

 correction.102 This work has been translated into a Phase I/II 

clinical trial for MLD where three presymptomatic MLD 

patients were treated with HSC gene therapy.103  Autologous 
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HSCs were harvested from the patients, transduced ex 

vivo with a LV expressing ARSA, and the transduced cells 

were infused into the patients that had also undergone pre-

conditioning of their bone marrow via myeloablation with 

busulfan. The reinfused cells engrafted within the patients, 

maintaining a high-level of detectable ARSA activity within 

a wide variety of cells and the cerebrospinal fluid. The 

therapy forestalled the onset of cognitive deficits and less-

ened the motor deficits in all three patients, as compared to 

untreated older siblings with MLD and historical controls.103 

Importantly, no adverse outcomes were associated with the 

administration of the vector, and no antibodies developed 

against the vector or the transgene. The safety and efficacy 

of this trial demonstrated the potential of ex vivo LV gene 

therapy for the treatment of LSDs.

In addition to LVs, nonviral methods for modifying cells 

ex vivo are in development, and the use of these methods for 

the treatment of LSDs has recently been patented.104 These 

methods include the potential use of zinc-finger nucleases,105 

transcriptional activator-like effector nucleases,106 and sys-

tems using clustered regularly interspaced short palindromic 

repeat-CRISPR-associated protein 9 (CRISPR-Cas9)107 in 

attempts to insert potentially therapeutic transgenes into a 

locus of choice. These can also potentially be used in com-

bination with integrase-deficient LVs to allow LVs to achieve 

targeted transgene insertion.108 Their potential applications 

in LSDs has been recently reviewed, and readers are directed 

there for more details.109

Trans-BBB enzyme for neuropathic LSDs
Another approach to supply the brain with the deficient 

enzyme is to modify the gene coding the enzyme so that the 

enzyme produced by gene therapy in the periphery is able 

to cross the BBB itself. For example the lysosomal enzyme 

ARSA was fused to several of these targeting motifs, including 

the Tat domain from HIV, the angiopep peptide, and the recep-

tor-binding domains from human apolipoproteins B and E. 

The biodistribution of these fusion proteins was altered by 

the presence of the additional ligand motifs, demonstrating 

the potential for trans-BBB enzyme therapy.110 Recent work 

has also shown that lysosomal enzymes modified with ligand 

motifs that allow them to bind the human insulin receptor 

are better able to cross the BBB and distribute throughout 

the brain in rhesus monkeys.111 This approach has also been 

utilized in gene therapy for MPSIIIA mice.71 A liver-directed 

AAV8-based gene therapy vector produced a LSD protein 

that had been modified to include the secretion signal from 

iduronate-2-sulfatase to enhance secretion and the BBB-

binding domain (BBBBD) from apolipoprotein B to cross 

the BBB. The BBBBD from apolipoprotein B is recognized 

by low-density lipoprotein receptors and it allows the enzyme 

to be trafficked into the brain. A single intravenous injection 

of the AAV2/8 carrying the modified SGSH gene was better 

able to foster the detection of SGSH activity throughout the 

periphery and the CNS of the animals treated with this version 

of the SGSH gene.71 MPSIIIA mice that received this treatment 

also showed decreased brain pathology and recovered normal 

behavior. This novel approach combines the advantages of 

liver-directed gene therapy with the ability to improve target-

ing of LSD enzymes into the CNS.

intranasal delivery
There have also been attempts to introduce viral vectors to 

the brain via intranasal delivery. Early work in rats demon-

strated that adenovirus could enter the CNS and transduce the 

β-galactosidase gene into the rat brain following intranasal 

delivery.112 This delivery system was also used with AAV8 to 

introduce a physiologically relevant levels of α-l-iduronidase 

(IDUA) into a mouse model of MPSI (IDUA–/– mice).113 Due 

to the substantial anatomical differences between the nasal 

cavity of rodents and humans,114,115 this approach likely needs 

to be evaluated in primates to confirm its potential for high 

levels of efficacy in human populations.

Current limitations  
in gene therapy for LSDs
Despite the many recent achievements in the gene therapy for 

LSDs, there remain several obstacles to overcome. A major 

obstacle that many gene therapy vectors face is pre-existing 

immunity against the vector itself, which can be a major 

limitation when translating these approaches to the actual 

human population, especially with use of AAV.116,117 Although 

great promise exists for the use of AAV-based therapies, most 

of the human population also have pre-existing humoral 

immunity to AAV serotypes, with 72% of the population 

having antibodies against AAV2, 67% against AAV1, 47% 

against AAV9, 46% against AAV6, 40% against AAV5, and 

38% against AAV8.116 Furthermore, under certain conditions, 

even low titers of anti-AAV antibodies have been shown 

to completely block AAV gene therapy attempts.42,118,119 

Additionally, anti-AAV capsid antibodies have been shown 

to cross-react unpredictably across AAV serotypes, so anti-

bodies against one AAV serotype may prevent any other 

AAV from functioning as a vector.116,120 Finally, in certain 

circumstances, preformed neutralizing AAV antibodies 

have been shown to partially decrease transgene expression, 
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even when injected into immune-privileged sites, such as 

the brain121 or eye.122 Current clinical trials circumvent this 

issue by carefully excluding research participants harboring 

pre-existing anti-AAV antibodies; however, this can exclude 

72%–33% of the patient population from treatment.116,123 

Groups have proposed using empty capsids as decoys for 

antibodies (thereby decreasing the ratio of antibody to target) 

with variable success.124,125

Another limitation in the development and translation 

of gene therapy for LSDs is the animal models. While the 

animal models for LSDs are among some of the best for any 

disease (being true homologues), interspecies differences 

have still proven relevant when translating from one species 

to another. In addition to the limitations mentioned earlier, 

differences in the immune responses between animal mod-

els have demonstrated that immune responses to gene ther-

apy vectors can vary between  species. For instance, when 

neonatal MPSI dogs received retroviral gene therapy, they 

did not mount an immune response to the protein expressed 

by the transduced transgene (α-l-iduronidase),126 despite 

the ability of adult MPSI dogs to develop a potent antibody 

response to the same protein directly.127,128 However, when 

a very similar vector was administered to neonatal MPSI 

cats, the cats developed a very strong T-cell-mediated 

response against the protein encoded by the vector that 

rapidly eliminated transfected cells.62 The critical impor-

tance of these differences was illustrated by the clinical 

Phase I/II study of an  AAV2-based vector expressing fac-

tor IX. In preclinical trials, hemophilia B dogs showed no 

evidence of potent immune responses to the vector;129,130 

however, human trial participants experienced potent T-cell 

responses that eliminated AAV-transfected cells.45,50 The 

differences in the immune responses between species are 

an inherent limitation as to the use of animal models; this 

is a caveat that must be remembered when translating any 

therapy from an animal model to human subjects.

Expert opinion
Of the numerous human genetic diseases, LSDs likely 

provide the highest chance for the clinical success of gene 

therapy strategies given contemporary understandings of the 

limitations of gene therapy approaches. Currently, gene ther-

apy clinical trials are underway for Fabry disease,  Gaucher 

disease, MLD, MPSII, MPSIIIA, MPSIIIB, INCL, and 

Pompe disease.131 In addition,  preclinical research has dem-

onstrated special advantages that gene therapy might have 

for use in the treatment of LSDs. The ability of liver-directed 

gene therapy to produce robust amounts of LSD enzymes 

systemically, as well as to potentially induce  tolerance, is 

highly promising, especially for the subset of patients who 

develop potent immune responses to ERT.8 In addition, many 

of the neuropathic LSDs currently have no treatments, and 

the recent clinical trials demonstrate that gene therapy may 

provide a safe and potentially therapeutic option for these 

diseases. Taken together, these exciting advances show that 

gene therapy for LSDs is overcoming previous limitations 

and moving forward on several fronts. As these therapies 

are translated into clinical practice, the role of administering 

clinical gene therapy may reside firmly in the venue of the 

metabolic geneticist or other clinician that specializes in the 

treatment of LSDs.
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