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Abstract: Endophytic bacterial communities are beneficial communities for host plants that exist
inside the surfaces of plant tissues, and their application improves plant growth. They benefit directly
from the host plant by enhancing the nutrient amount of the plant’s intake and influencing the
phytohormones, which are responsible for growth promotion and stress. Endophytic bacteria play an
important role in plant-growth promotion (PGP) by regulating the indirect mechanism targeting pest
and pathogens through hydrolytic enzymes, antibiotics, biocontrol potential, and nutrient restriction
for pathogens. To attain these benefits, firstly bacterial communities must be colonized by plant
tissues. The nature of colonization can be achieved by using a set of traits, including attachment
behavior and motility speed, degradation of plant polymers, and plant defense evasion. The diversity
of bacterial endophytes colonization depends on various factors, such as plants’ relationship with
environmental factors. Generally, each endophytic bacteria has a wide host range, and they are used
as bio-inoculants in the form of synthetic applications for sustainable agriculture systems and to
protect the environment from chemical hazards. This review discusses and explores the taxonomic
distribution of endophytic bacteria associated with different genotypes of rice plants and their origin,
movement, and mechanism of PGP. In addition, this review accentuates compressive meta data of
endophytic bacteria communities associated with different genotypes of rice plants, retrieves their
plant-growth-promoting properties and their antagonism against plant pathogens, and discusses
the indication of endophytic bacterial flora in rice plant tissues using various methods. The future
direction deepens the study of novel endophytic bacterial communities and their identification from
rice plants through innovative techniques and their application for sustainable agriculture systems.

Keywords: rice; plant–microbe interaction; endophytic bacteria; taxonomic afflictions; plant-growth
promotion (PGP) traits; biocontrol
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1. Introduction

Plants can build a relationship with their ecosystem members to enhance growth
and development in natural environments, as well as maintaining an ecological niche for
thriving microbes. Numerous kinds of microorganisms, including bacterial and fungal
communities, are harboring plant compartments that have been isolated and identified
by using plant tissues and are nominated as endophytes. A majority of endophytes col-
onize with different parts of the plant apoplast, proliferating among the cellular spaces,
including xylem vessels. Endophytes can also colonize plant reproductive organs, such
as flower buds, flower petals, fruits, and seeds [1]. For the first time, the isolation of the
endophytic bacteria was carried out by Samish and Mund [2] after surface sterilization
of the plant tissues. Afterward, many researchers successfully categorized and reported
more than 200 genera of endophytic bacteria from different plant tissues. These genera
belong to the 16 phyla that are culturable and unculturable endophytes: Acidobacteria,
Aquificae, Actinobacteria, Bacteroidetes, Chloroflexi, Chlorobi, Cyanobacteria, Proteobacte-
ria, Firmicutes, Deinococcus-thermus, Fusobacteria, Planctomycetes, Gemmatimonates,
Nitrospira, Spirochaetes, and Verrucomicrobia [1,3]. However, there is no such compres-
sive report on phylum numbers identified from rice plant tissues. The previous literature
revealed that several endophytes represent the three main phyla, namely Proteobacteria,
Firmicutes, and Actinobacteria, comprising members of Azoarcus [4], Bacillus [5], Enterobac-
ter [6], Gluconobacter, Stentrophomonas [7], Herbaspirillum [8], Pseudomonas, Serratia [9], and
Streptomyces [10].

Rice (Oryza sativa L.) is the most widely important grown cereal crop and is consumed
by more than 50% of the world’s population [11]. The ever-increasing world population
demands sustainable agriculture production to feed 7.3 billion people; that population may
become 9.7 billion up to 2064 (estimated by the United Nations (UN) [12,13]). An increasing
population needs a high yield of rice to compete for this competition, but it must be
achieved without, or by minimizing, the application of synthetic products due to high
concern about environmental protection. Still, the main source of crop improvement in
the agriculture sector is the practice of applying synthetic products, such as commercial
fertilizers, nutrient supplements, insecticides, and pesticides. This action has hazardous
effects on the environment and human and livestock health. The farmer communities
are convinced to change their old practices by using alternative products that could be
environmentally friendly [14]. The bio-fertilizers and pesticides consist of non-pathogenic
microorganisms; this uniqueness in nature facilitates attaining sustainable agriculture
and environmental protection from chemical hazards. Additionally, bio-formulations
might be the best alternative option to reduce environmental degradation and the threat to
human health.

In the European Union Pesticides Database [15], several registered bio-fertilizers
and pesticides containing bacterial products are mainly synthesized by using Bacillus
species and Pseudomonas species. In China, Fang [16] reported the sources of registered bio-
fertilizer products; these can be the single and combination of the bacterial strains of Bacillus
species (B. licheniformis, B. amyloliguefaciens, B. megaterium, and B. subtilis) and Lactobacillus
plantarum, Paemibacillus mucilaginosus, and other species. These abovementioned members
of genera are dominated among plants, soil, and under other environments, due to salient
features, such as rapid proliferation and simple diet requirements, which can assist in easy
propagation of bacteria in the environment. The above-highlighted bacteria are famous
as beneficial organisms for plant growth, as well as for producing many metabolites to
improve plant health. Therefore, these genera could be the best choice for preparing
potential inoculants by mixing bacterial strains due to their diversified adaption to multiple
environmental factors, such as pH, low and high temperature, salinity, and high metals, as
well as the ability of their cells to remain alive in diverse environments for a long time [17].
Importantly, the endophytic bacterial strains that are beneficial for growth promotion and
disease suppression will be a better choice for making bio-preparations and minimize the
risk of drawbacks and promote environmental protection. Endophytic bacteria can invade
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and colonize within plants in such a way that they are specific and remain intact. Moreover,
strains of endophytic bacteria can enhance plant protection from phytopathogens and
improve plant immunity.

The prominent abilities of endophytic bacteria to improve plant growth and minimize
pathogen infestation via direct and indirect mechanisms [18,19] are attracting scientists
globally. Direct mechanisms are set up to apply to those bacterial traits that directly promote
plant growth. They include the production of Indole-acetic-acid (IAA), 1-aminocyclopane-
1 carboxylic acid (ACC), and Gibberellic acids (GA), and also facilitate the uptake of
fixed nitrogen, siderophore, phosphorus, and zinc production. Under indirect mechanisms,
endophytic bacteria improve plant growth by acting as biocontrol agents. In addition, many
endophytic bacteria have been reported to produce compounds classified as secondary
metabolites for inhibition of pathogens, and they also adopt different mechanisms in order
to produce cell wall degrading enzymes, antibiotics, competition and induced systemic
resistance (ISR) [20].

Herein, we describe the comparative information of endophytic bacteria inhibit the
rice plant, as well as their plant-growth-promoting traits and their biocontrol activity
against pathogens; we also describe the innovative techniques and bioinformatics tools
that may help to identify the key endophytes communities and plant growth-promoting
genera. In addition, we discuss their phyla, classes, orders, families, genus, and species
abundances in the different genotypes of rice plants.

2. Endophytic Bacterial Diversity in the Rice Plant

To study the endophytic bacteria taxonomic flora in the rice plant, we collected the
prehistoric taxonomic data until 2020, with their plant-growth-promoting traits and their
antagonism against phytopathogens, using the National Centre of biotechnology informa-
tion (NCBI) PubMed (https://pubmed.ncbi.nlm.nih.gov/, accessed on 25 September 2020),
Google Scholar (https://scholar.google.com/, accessed on 25 September 2020), and Sci-
encDirect (https://www.sciencedirect.com/, accessed on 25 September 2020) web portals;
after that, we plotted the taxonomic tree by writing a self-script in Python 2.7 [21] to convert
the excel file into Newick format; the further Newick-format file was visualized and edited
in iTOL version 5 [22]. Our data analysis showed 4 phyla, 6 classes, 22 orders, 46 families,
and 74 genera of endophytic bacterial communities that have been mined from rice parts
based on a culture-dependent method; complete details of taxonomic distribution are
visualized in Figure 1. Moreover, our data analysis showed that the phylum Proteobacteria
has a high abundance among rice tissues, while Bacteroidetes has a lower abundance
(Figure 2A). To seek more details at the class level, we plotted the 3D-chord diagram to
visualize the overlapping and diversity of classes within rice tissues. As a result, Gamma
proteobacteria and Bacilli were more diversified and overlapped among rice tissues in
contrast to Betaproteobacteria, Flavobacteria, and Sphingobacteria (Figure 2B).

The majority of the endophytic bacterial diversity was isolated from root portions that
displayed more diverse communities. Many researchers isolated Bacillus, Pantoea, Methy-
lobacterium and Sphingomonas genera, they are in high abundance with diverse species from
the seed [23,24], root [25,26], and leaf part [27,28] of the rice plant (Supplementary Materials
Data 1, Figure S1). Most species of Rhizobium, Azospirillum, Burkholderia, and Herbaspirillum
were isolated from root tissues with distinct species [29–32], and Xanthomonas, Flavobac-
terium, and Knoellia genera were isolated from seeds (Supplementary Materials Data 1,
Figure S1) [33,34]. These endophytes genera also have been identified after isolation from
different plants, such as ben tree, (Moringa peregrina) [35], maize (Zea mays) [36,37], Datura
metel (local name Devil’s Trumpet) [38], Kudouzi (Sophora alopecuroides) [39], Scots pine (Pi-
nus sylvestris) [40], strawberry (Fragaria ananassa) [41,42], wheat (Triticum aestivum L.) [43],
rose gum (Eucalyptus grandis) [44], sugarcane (Saccharum officinarum) [45], grapevine (Vitis
vinifera) [46,47], poplar (Populus deltoides) [48], pepper (Capsicum annuum) [49], Huang-
Qin (Scutellaria baicalensis Georgi) [50], cotton (Gossypium hirsutum) [51], potato (Solanum
tuberosum) [52], cucumber (Cucumis sativus) [53], tobacco (Nicotiana tabacum L.) [54], peanut

https://pubmed.ncbi.nlm.nih.gov/
https://scholar.google.com/
https://www.sciencedirect.com/
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(Echinopsis chamaecereus “Lutea”) [55], tulasi (Ocimum sanctum) [56], and pea (Pisum sativum
L.) [57]. Few studies have reported that bacterial genera are specific for seed colonization;
for example, the Pseudomonas putida mutant during the secretion-system investigations dis-
played the reduction in their potential to colonize with maize seeds [58]. On the other hand,
rice root endophytic bacteria are more diverse [25,59] compared to seed endophytes [60,61];
complete details can be visualized in Figure 1.
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Seeds can also be colonized by bacteria existing on the surfaces of flower petals, fruits,
and stems [62,63], and by additional pollen grains’ bacteria [64] that may be associated
with ovules after pollination processes [65]. Root endophytic bacteria can be explored
by using the soil surrounding plant roots or plant litter [36,66]. Moreover, endophytic
bacterial diversity variation is associated with physicochemical properties of soil, as well
as atmospheric conditions, cropping history, geographic location, and other agricultural
practices [36,67,68]. In certain studies, it is suggested that root endophytic bacteria can
mainly exist among the rhizosphere parts, and some of them can migrate through the
xylem track to colonize the aerial parts [69,70].

Seed-borne pathogens can be persistent among new generations of plants. In the
same way, seeds can also be harbored by endophytic bacteria that might be hereditary to
new generations. Non-pathogenic bacteria have been categorized, from seeds and roots,
parts of rice [25,29], maize [37], wheat [71], and other plants [37,72,73]. Many endophytes
responsible for plant-growth-promoting traits (such as IAA, ACC, siderophore production,
nitrogen fixation, phosphorus production, zinc solubilization, and ammonia production)
have been isolated from leaves, seeds, stems, and roots of rice plants (Figure 1). These
beneficial endophytes assist the host plants to maintain their growth and increase immunity
against phytopathogens.

3. Factors Involving in Endophytic Bacterial Communities’ Variations

Endophytic bacterial communities strongly vary by environmental factors, numerous
factors affecting endophytic bacterial diversity, such as host plant genotype, age of the
plant, agricultural practices, and multi-kinds of nutrient availability, may help to increase
bacterial diversity with diverse genera [74]. It is reported by Hardoim et al. [62] that the
rice endophytes community varies with the growth stages of rice plants. The genotype
of rice plants strongly influenced the endophytes community types [75]. It is well docu-
mented by Khaskheli el al. [25,59] that different rice cultivars planted in the soil containing
same physiochemical properties can have distinct endophytic taxonomic composition and
diversity. Thus, the soil physicochemical properties and different genotypes of plants can
determine the endophytes communities’ composition. Numerous studies reported that the
same genotypes of plant species were grown in different soil types having diverse endo-
phyte communities with distinct taxonomic profiles [36]. Recently, climate conditions are
influencing endophytic bacterial diversity composition and taxonomic variations [76,77].
For instance, Ren et al. [78] reported that rice endophytes’ bacterial community compo-
sition and their diversity are significantly affected by climate conditions. It is observed
by Walitang et al. [79] that rice’s endophytic bacterial community diversity and diverse
genera profile are influenced by salt concentration in the growth environment. Researchers
reported that the resistant genotypes of different plant species against phytopathogens
harbor a major portion of the endophytic bacterial community antagonistic to certain
phytopathogens comparative to susceptible genotypes [80]. Andréa et al. [80] illustrated
that the endophytes community was different from symptomatic and non-symptomatic
samples of Colletotrichum spp. and Paullinia cupana, respectively. Hence, the selection of
the endophytic bacteria community process is a very complex process, which is firmly
controlled by the host plant tissues, it is well documented by Berendsen et al. [68] that
plant roots play an essential role for the retrieval of microbiome community from soil.

4. Method for Isolation and Identification of Endophytic Bacteria

A majority of plant endophytic bacterial communities have been isolated and iden-
tified through culture-dependent methods [23–26,59,60,75,81–85]. However, to study the
endophytic bacteria diversity by using these methods, the bacterial strains must be cul-
turable under in vitro conditions. For endophytes, bacterial strains isolated from plant
samples are completely dependent on the isolation procedure. The most common track for
the isolation of endophytic bacteria diversity from rice tissues using a culture-dependent
method which can be visualized in Figure 3, but each study uses a different concentration
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of surface sterilization agent according to the sample size, shape, and thinness of the rice
tissues [27,86]. The surface sterilization of rice samples was carried out by using sodium
hypochlorite (NaClO) with different concentrations, and then the samples were washed
with 70% ethanol solution at the end, to use sterilize distilled water for removing traces of
chemical solutions from samples [60,87]. For the confirmation of the effectiveness of the
surface sterilization procedure, the last washing water is plated on the culture medium.
Moreover, culture medium is very important to explore the endophytic bacterial diversity;
for rice endophytes bacteria, most of the studies used Tryptone soya agar (TAS) medium,
which is also known as a Trypticase soy agar [31,60,86,88,89]. Endophytes bacteria pop-
ulations are dependent on the type of growth media used to culture the bacteria from
plant tissues, host plant growth environment, and surface sterilization method to plant
tissues. Growth-medium selection highly affects the number and divers of endophytes
bacteria communities; indeed, there is no a single growth medium which can fulfill the
growth requirements and nutritional values of all bacteria [90]. However, the abundance
of culturable microorganisms is less than 1% in the environment, and this may be due
to their unknown nutrient requirements or in vitro conditions, or due to the fact that a
few microbes’ cells cannot be culturable, even if their cells are visible under an in vitro
environment [78,91].
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Figure 3. Methods of isolation and identification of rice endophytic bacterial communities: (A) samples collected from
different parts of rice plants; (B) standard surface sterilization of the samples; (C) crushing of samples, followed by
two methods for isolation, namely (D) culture-dependent method and (E) culture-independent method. (F) In culture-
independent method, identification via Sanger sequencing or NGS; the figure was created with BioRender (https://
biorender.com/, accessed on 25 August 2021).

Further culturable bacteria identification is based on their morphological, physio-
logical growth habits, and biochemical and molecular techniques [92]. Several kinds of
molecular markers were available for the identification of specific microbial taxa. Among
them, the most famous 16S rRNA gene markers were used for bacterial phylogeny analysis
and their taxonomic classification. For rice endophytic bacterial taxonomic classification,
most of the researchers amplify the 16S rRNA gene by using 27F (forward primer) and
1492R (reserve primer) for the identification and the taxonomic position [24,25]. Cur-
rently, the taxonomic classification of prokaryotes is based on a combination of steps from
phenotypic, chemo-taxonomic, and genotypic data; this process is commonly known as
poly-phasic taxonomy [93]. These steps provide sufficient information for taxonomic classi-

https://biorender.com/
https://biorender.com/
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fication for most phyla of bacteria, but these steps are not sufficient for the Actinobacteria
phylum [94]. Accurate taxonomic classification of Actinobacteria phylum can be achieved
by using whole-genomic sequencing (WGS) [95,96]. Further genomic data proceed through
DNA–DNA hybridization (DDH) analysis to attained authentic taxonomic classification
of Actino-bacterial species [97]. Moreover, average nucleotide identity (ANI), includ-
ing multilocus sequence analysis (MLSA), is highly recommended for genetic taxonomic
profiles [98].

The culture-independent methods inhibited the culture-dependent methods and pro-
vided fast and true endophytes bacteria taxonomic. The genomic DNA (gDNA) extraction
from surface-sterilized plant tissues, after that selective culture-independent method, was
used to identify the endophytes communities (whole procedure is visualized in Figure 3).
Moreover, several fingerprinting techniques can rely on the gDNA to amplify the specific
gene marker of microbes; the most common known marker is the 16S rRNA gene for bacte-
rial diversity analysis [99]. Several fragments of the 16S rRNA gene were amplified through
DNA fingerprinting techniques, such as temperature gradient gel electrophoresis (TGGE),
Amplified rDNA Restriction Analysis (ARDRA), Terminal Restriction Fragment Length
Polymorphism (T-RFLP), denaturing gradient gel electrophoresis (GGGE), and automated
ribosomal intergenic spacer analysis (ARISA) [100–103]. The culture-independent method
has been utilized to obtain sequenced data, using Sanger sequencing and next-generation
sequencing (NGS). For the identification of rice’s endophytic bacterial diversity, many re-
searchers used Sanger sequencing [26,104,105]. A few studies used NGS for rice leaves and
root endophytic bacterial community analysis [106,107]. In recent year, NGS applications
have been excessed more in microbiome data analysis to identify the endophytic bacterial
diversity from potato, spinach (Spinacia oleracea), lettuce (Lactuca sativa), and from the roots
and leaves of Arabidopsis thaliana [108,109]. This method has been used to sequence the
whole genome of plant endophytes’ microbe diversity and assign their true taxonomic
afflictions [110].

5. Mechanism of Plant-Growth Promotion by Endophytes

The endophytic bacteria have been revealed to indirectly or directly transmit beneficial
effects to their host plant. They can directly support plants to enhance the availability of
easily usable nutrients and by regulating growth substances (phytohormones), which can
increase growth and development of plants under normal and abnormal conditions [111].
The indirect mechanism, the endophytic bacteria, improves plant growth by decreasing
the level of ethylene in plants, producing antibiotics and compounds for the inhibition
of pathogens, producing cell-wall-degrading enzymes, and stimulating systemic resis-
tance [112]. However, the direct mechanism of endophytic bacteria facilitates the host plant
by increasing the uptake of phosphorus and helps the plant in establishing the biological
nitrogen fixation, zinc solubilization in roots, and phytohormones within plants (e.g., IAA,
ACC, and GAs) [20]. Herein, we discuss and summarize these mechanisms below.

5.1. Direct Plant-Growth Promotion by Endophytes

An adequate amount of nutrients that are required for plant growth, which are
typically deficient in soils, can be attained through endophytic bacteria. They have the
potential to increase and provide certain kinds of nutrients to the host plant, such as
nitrogen, iron, and phosphorus. Details of these nutrients and responsible processes
and/or mechanisms are discussed below.

Biological Nitrogen Fixation

Endophytic bacteria, express nitrogenase activity, which can play a role to fix at-
mospheric nitrogen in an available form for their host plants. Nitrogenase is a highly
conserved protein, and this enzyme is commonly found in all nitrogen-fixing bacteria, with
sufficient proof proposing that lateral gene essential components for biological nitrogen
fixation, according to Ivleva et al. [113]. Ambient dinitrogen exists more than 78% in the at-
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mosphere that is unavailable for direct plant consumption without conversion to available
ammonia form for plant uptake. Several rice endophytic bacterial species help to increase
the nitrogen fixation, such as Azoarcus sp. BH72, Herbaspirillum seropedicae, Burkholderia sp.,
and Gluconacetobacter diazotrophicus, have been reported to increase N2 fixation among the
host plant and improve plant biomass under aseptic conditions [60,114]. There are three
main processes for atmospheric nitrogen conversion into a usable form for plants: (i) the
formation of the nitrogen oxides in the atmosphere from atmospheric nitrogen; (ii) the
industrial formation of ammonia via processing the atmospheric nitrogen under catalytic
processes in the presence of a high temperature (300–500 ◦C); and (iii) biological nitrogen
fixation via microorganisms by utilizing complex procedures with the help of enzymes,
such as nitrogenase, that effectively convert atmospheric nitrogen into ammonia [115,116]
(see Figure 4A).

Biological nitrogen fixation is the key process that is fixing about 60% atmospheric
nitrogen on the earth. Moreover, it is more environmentally friendly and economically
valuable than industrial chemical fertilizers [116,117]. Nitrogen fixation takes place among
non-leguminous crops by Plant-Growth-Promoting Rhizobacteria (PGPR) formally, known
as diazotrophs [118]. The nitrogen fixation mechanism comprises the activity of nitrogenase,
which is encoded by nif genes [119]. In bacteria, the nitrogen-fixation system has variations
among different bacteria depending on the environments and, importantly, their growth
rate [120]. Endophytic bacteria colonize within plant tissues/parts (e.g., leaves, stem, roots,
and even reproductive organs), have the ability to fix atmospheric nitrogen, promote the
plant growth, and protect plants from pathogens infestation [121–123]. Previous studies
showed that the endophytic bacteria from rice, wheat, and maize, such as species of
Burkholderia genus, Enterobacter asburiace, and Herbaspirillum seropedicae, and including
other bacteria species of the Azotobacter genus, which are potential biological nitrogen
fixers [1,60,124]. However, Carrell and Frank [125] have noted that the G. diazotrophicus
strain has a great potential for nitrogen fixation, and it forms a symbiotic relationship with
sugarcane and pine plants.

5.2. Availability of Phosphate

Phosphorous is also an essential micronutrient which is vital for enzymatic reactions
after nitrogen that are necessary for many physiological processes in plants [126]. However,
much of the soil’s phosphorous is not available in suitable forms that can be absorbed by
plants. Plants can only absorb the soluble forms, mono- and dibasic phosphate. Besides,
it is estimated that 75% of phosphorus application during agricultural practices in the
form of fertilizer becomes unavailable for the plants from soil [127]. Endophytic bacteria
can improve phosphorus supply for plants by solubilizing precipitated phosphates, using
mechanisms such as acidification, chelation, exchange of ions and organic acid production.
The rhizosphere species also belongs to such microorganisms that provide the iron soluble
form to plants by processing siderophore products and have been isolated from rice, cu-
cumber, cotton, peanut, sorghum (Sorghum bicolor), and maize [128–130]. Several bacterial
communities were isolated from plant compartments and rhizosphere, have a great ability
to provide a soluble form of the phosphorus to plant roots by mineralization of the organic
and/or inorganic phosphate solubilization via acid production [131,132].

In addition, endophytes play an important role in the adsorption and also fixation
of phosphate through assimilating solubilize phosphorus under phosphate-limiting con-
ditions [133]. Hence, these bacteria may serve as a drain to supply the host plants with
phosphorus when they require it. Characteristic of phosphate solubilization processes is
usually encountered in endophytic bacteria. For example, about 59–100% of endophytes di-
versity were isolated from strawberry, rice, soybean (Glycine max), maize, cactus, and other
legumes crops showed the potential of mineral phosphate solubilization [134,135]. Many
rice endophytic bacterial strains effectively have been studied for phosphate solubilization
(Figure 1), e.g., Burkholderia sp. strain BRRh-4 inoculation in rice seedling significantly
enhanced the growth and grain yield of rice variety [136–138].
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atmosphere by beneficial bacteria. (B) Importance of Indole-acetic-acid (IAA) for plant growth. Figure was created
by BioRender.
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5.3. Phytohormones

Endophytic bacteria can boost the accumulation of nutrients and enhance the metabolism
of host plants by generating phytohormones. Recent research investigating the coloniza-
tion of phytohormones producing endophytic bacteria with the host plant increased plant
nutrient absorption and biomass of plants [74]. There are five famously known types of phy-
tohormones, abscisic acid (ABA), auxin, gibberellins (GAs), cytokinins (CKs), ethylene (ET)
and Indole-3-acetic acid (IAA), these two hormones (IAA and ET) are the most important
participants in building plant–bacterial interactions [139]. During the last decade, several
rice endophytic bacteria showed that they have the great potential for phytohormone
production [29,140].

5.3.1. Auxins

Several microorganisms produce auxin as the secondary metabolite, and many of
them are isolated from the inner and outer parts of plants [141]. Many studies showed
that the microorganisms produce IAA under peptone or tryptophan precursor availability.
The IAA plays a multi-functional role in plant-growth promotion, such as cell division
and enlargement, differentiation of tissues, primary root elongation, root inhibition, and
physiological functions [142]. The most common genera of such bacteria are Alicaligenes
faecalis, Azospirillim, Pseudomonas, Xanthomonas, Enterbacter cloacae, Bradyrhizobium japon-
icum, and Bacillales; they have displayed auxin production potential and enhance plant
growth [143,144]. Various rice endophytic bacteria have been isolated from stem, roots,
and leave tissues of different rice genotypes and have the potential to produce IAA in
different amount of concentrations (see Figure 1) [29,59,140,145]. IAA biosynthesis is not
the only way in which endophytic bacteria can enhance the growth of host plants. Certainly,
its reverse process, the IAA catabolism/degradation, may also play an important role in
boosting plant growth and its production. Leveau et al. [146] reported that Pseudomonas
putida strain 1290 displayed an effective role in IAA degradation to enhance plant growth,
such as elongation of the radish (Raphanus sativus) roots through eliminating the inhibitory
effects of exogenous IAA. In the presence of tryptophan, which is a precursor of IAA, the
bacteria also produce IAA. Nevertheless, it also has been described that the development of
IAA by P. putida strain 1290 did not show the same deleterious impact on the radish roots
compared to other high amounts shown by IAA-producing strains. The author proposed
that its dual status mechanism, which includes the potential of both IAA production and its
degradation, which enables this bacterial strain to produce the IAA total amounts, which
can provide their beneficial effect to the host plant. Currently, several endophytic strains
have been isolated and tested for the production of IAA and also showed a significant effect
on plant-growth attributes, such as root and shoot elongation, and root and shoot fresh and
dry weight; they also enhance chlorophyll contents in rice, soybean, and barley [27,147,148],
as shown in Figure 4B.

5.3.2. Cytokinins

Many studies reported that certain beneficial endophytic bacteria can produce cy-
tokinins (CKs) during interaction with host plants; CKs are N6-substituted amino purines
that promote plant growth by activating cell division in roots and shoots parts of the
plant [149]. The CKs are well-recognized phytohormones that promote plant roots’ growth,
development, and release by non-pathogenic microorganisms adhering to plant roots [150].
The adenine precursor synthesis for CKs’ production by a common synthetic pathway in
microorganisms such as Azotobacter sp., Corynebacterium fascians, and Rhizopogon roseolus
highlighted the potential of the microbes for use in CKs’ synthesis [151,152]. A total of 90%
of bacterial strains can produce cytokinin-like substances; these strains are isolated from
the rhizosphere of different crops [116]. In vitro production of cytokinin-like compounds
on growth media by different isolated bacterial strains from pine and Sambung nyawa,
seedling roots strengthen the application of microbes in crops for improving plant growth
and immunity [153]. The strains Bacillus and Pseudomonas that are isolated from various
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varieties of plants, such as rice, barley, canola (Brassica napus L.), soybean, and Arabidopsis,
can produce these compounds. Endophytic Bacillus spp. have a great ability to produce
CKs, which act as growth regulators [154].

5.3.3. Gibberellins

Gibberellins’ (GAs) composition consists of a type of terpenoids commonly referred
to as iso-prenoids, which contain 20-carbon atoms, but in the active form, it contains 19-
carbon atoms and also plant hormones. Additionally, 130 molecules are reported in these
compounds [155]. GAs play an important role in stem elongation, seed germination and
growth, and parthenocarpy, and more prominent action was observed during internode
elongation. Many rice endophytic bacterial communities, such as Azospirillum brasilense,
Acetobacter, Arthrobacter, Agrobacterium, A. lipoferum, Bacillus sp., Pseudomonas, Clostridium,
Rhizobium, Flavobacterium, and Xanthomonas, have great potential to synthesize gas [156].
Acinetobacter calcoaceticus can produce GAs and its application in Chinese cabbage and
crown daisy promoted the growth rate, as compared to non-inoculated crops [157]. It is
reported by Ishak et al. [158] that B. subtilis strain LKM-BK is an endophytic bacterial strain
isolated from surface-sterilized tissue of Theobroma cacao plants, which can produce GAs in
certain concentration and further compounds of trans-zeatin. These findings showed the
use of endophytic bacterial strains for plant-growth promotion and pathogen suppression
is an applicable and result-oriented approach in agriculture development globally.

5.3.4. Ethylene and 1-Aminocyclopropane-1-Carboxylate Deaminase

Ethylene (ET) is a phytohormone and is broadly well-known for enhancing the process
of ripening in different fruits and flower senescence. The ET plays an important role in
plant developmental stages, such as ripening and abscission of fruit, flowering, petal,
leaf senescence and abscission, root growth, and hair establishment [159]. It has been
demonstrated by Dodd et al. [155] that ET also plays a role in root hair promotion, but it
inhibits lateral root formation and primary root prolongation. Alleviated ET production
was observed in plants against stresses, such as drought, pathogen attack, waterlogging,
soil salinity, heat and cold stress, and high concentration of heavy metals [155,160]. ET
is well known as a stress indicator hormone due to its synthesis under abiotic and biotic
stresses under pathogen attack and drought conditions. ET in the planta produces 5′-deoxy-
5′methylthioadenosine (MTA) and ACC by converting the S-adenosylmethionine (SAM),
using enzymatic processes [161].

Several rhizospheres and endophytic bacteria contain enzymes of ACC deaminase,
e.g., Pseudomonas, Bacillus, and Achromobacter, and also in very famous fungi, such as
Trichoderma sp. Plant roots release ACC enzymes; these microbes transfer this enzyme to
other parts of plant tissue and convert it to α-ketobutyrate and ammonia, as reported by
Glick et al. [162]. Moreover, various studies have reported the ACC activity in rhizosphere,
endophytic, and diastrophic bacteria that belong to a wide range of genera, ad well as
their potential for growth promotion in the presence of several stress conditions, such as in
maize [163], tomato (Solanum lycopersicum) [164,165], and wheat [166]. Ethylene protects
the plant from pathogen attaching via altering the virulence signaling molecules to defend
against the pathogen. These results indicating that a reduction in ACC and ET level in
planta indicate a decreasing level of stress. Inoculation of bacteria with the ability to
produce enzyme ACC deaminase in plants, which can protect plants from stresses induced
by the high concentration of heavy metals, drought conditions, over flooding, waterlogging,
pathogen attacks and organic toxic compounds [160,162,167].

5.3.5. Abscisic Acid

Abscisic acid belongs to phytohormones and comprises 15-carbon compounds that
have similarities with ethylene. It plays an important role in seed development and partic-
ularly in maturation stages; activates plant defense mechanisms against stressors, such as
salt stress, drought, a toxic metal, etc.; and plays a vital role in stomatal conductance. All
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of these features enhance its importance for plant-growth promotion [168]. In vitro ABA
production by different genera of endophytes and free-living bacteria, such as Bradyrhizo-
bium japonicum and Azospirillum sp., promotes its synthesis [169]. For instance, A. thaliana
was inoculated with Azospirillum brasilense strain (Sp25), and the alleviated ABA level was
observed under inoculated and non-inoculated plants. Moreover, ABA was reported to
inhibit CK synthesis and enhance plant growth via modulating the CKs consortium [170].
It also experimentally proved that ABA increases shoot and root elongation via providing
relief to the plants against stressors [169].

6. Indirect Plant-Growth Promotion by Endophytes
6.1. Biocontrol of Plant Pathogens by Endophytic Bacteria

The endophytic bacterial strains have great biocontrol potential against pathogens,
including soil-borne pathogens and phytopathogens [171]. Still, many laps exist in un-
derstanding the biocontrol mechanism of phytopathogens and the application of the
endophytic bacterial strains to suppress pathogen infestation and support the plants’ abil-
ity to improve their immunity. The biocontrol mechanism of plant pathogens comprises
a multifactor interplay to suppress/inhibit pathogens, such as nutrient competition, an-
tibiotic production, and ISR against pathogens. The endophytic bacteria mediate several
mechanisms for biocontrol, and ISR is the potential mechanism that was reported in planta.
The endophytic bacterial community can be observed through microscopic examination
and also morphological changes, also examined within the plants to investigate the ISR. For
instance, several Bacillus spp. have been reported by Melnick et al. [172], to colonize cacao
plants and showed potential to suppress symptoms of the black-pod-rot disease and dis-
played effective biocontrol against Phytophthora capsici pathogen. Several studies reported
that rice endophytic bacteria have highly potential against various phytopathogens (Table 1
and Figure 5). During in vitro assay, it was revealed that 18 strains out of 37 endophytic
bacterial strains from Techona grandis and Samanea saman Merr L. have produced inhibit-
ing compounds against Candida albicans [37,173–175] and many Bacillus and Streptomyces
endophytic bacterial strains were also isolated from rice, wheat, maize, rice, and garlic
that displayed the strong potential of antifungal activity against pathogens F. oxysporum, F.
graminearum, R. solani, M. kuwatsukai, B. cinerea, R. cerealis, and G. graminis [175].

Table 1. Rice’s endophytic bacteria’s antagonism potential against various kinds of phytopathogens.

Endophytes Host Antagonistic Activity References

Bacillus wiedmannii strain C-1CL-2

Japonica Rice
(Oryza sativa L.)

cultivar
Xiushui 48

Fusarium graminearum and Rhizoctonia solani

[25]

Bacillus wiedmannii strain C-1CL-4 Fusarium graminearum and Rhizoctonia solani

Bacillus altitudinis strain C-1W-5 Magnaporthe oryzae

Lysinibacillus fusiformis strain C-1WF-3 Fusarium moniliforme

Fictibacillus phosphorivorans strain C-1Y-9 Fusarium graminearum and Rhizoctonia solani

Fictibacillus phosphorivorans strain C-1Y-10 Magnaporthe oryzae

Fictibacillus phosphorivorans strain C-1Y-13 Fusarium moniliforme

Fictibacillus phosphorivorans strain C-1Y-16 Fusarium moniliforme

Fictibacillus phosphorivorans strain C-1Y-17 Fusarium graminearum, Fusarium moniliforme
and Rhizoctonia solani
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Table 1. Cont.

Endophytes Host Antagonistic Activity References

Bacillus altitudinis strain C-2B-2 1

Rice (Oryza sativa
L.) cultivar Y-003

Rhizoctonia solani

Bacillus altitudinis strain C-2D-1 1 Rhizoctonia solani

Bacillus aryabhattai strain C-2HW-1 Fusarium graminearum and Rhizoctonia solani

Lysinibacillus mangiferihumi strain C-2HW-3 Fusarium moniliforme

Bacillus marisflavi strain C-2LY-2 Fusarium graminearum and Rhizoctonia solani

Bacillus marisflavi strain C-2LY-5 Fusarium graminearum and Rhizoctonia solani

Bacillus aryabhattai strain C-2LY-6 Fusarium graminearum, Fusarium moniliforme
and Rhizoctonia solani

Bacillus altitudinis strain C-2RO-1 Fusarium graminearum, Rhizoctonia solani and
Magnaporthe oryzae

Bacillus altitudinis strain C-2RO-3 Fusarium graminearum, Rhizoctonia solani and
Magnaporthe oryzae

Bacillus altitudinis strain C-2RO-4 Rhizoctonia solani

Bacillus altitudinis strain C-2S-1 Rhizoctonia solani

Bacillus altitudinis strain C-2SN-3 Fusarium moniliforme

Bacillus cereus strain C-2W-1 Fusarium moniliforme

Bacillus tequilensis strain C-2W-3 Rhizoctonia solani

Bacillus indicus strain C-2Y-1 Fusarium graminearum and Rhizoctonia solani

Bacillus marisflavi strain C-2Y-2 Fusarium graminearum, Fusarium moniliforme
and Rhizoctonia solani

Bacillus marisflavi strain C-2Y-6 Fusarium graminearum and Rhizoctonia solani

Bacillus cereus strain C-3CL-6

Rice (Oryza sativa
L.) cultivar

CO-39

Fusarium moniliforme

Bacillus toyonensis strain C-3CL-7 Rhizoctonia solani

Bacillus wiedmannii strain C-3CL-8 Fusarium graminearum and Rhizoctonia solani

Lysinibacillus mangiferihumi strain C-3F-5 Fusarium moniliforme

Bacillus altitudinis strain C-3R-1 Fusarium graminearum and Rhizoctonia solani

Bacillus altitudinis strain C-3R-3 Fusarium graminearum, Rhizoctonia solani and
Magnaporthe oryzae

Bacillus altitudinis strain C-3R-8 Fusarium graminearum and Rhizoctonia solani

Bacillus cereus strain C-3R-9 Fusarium moniliforme

Bacillus altitudinis strain C-3R-10 Fusarium graminearum, Rhizoctonia solani and
Magnaporthe oryzae

Cupriavidus metallidurans strain C-3SP-3 Magnaporthe oryzae

Paenibacillus cucumis strain C-3T-7 Fusarium moniliforme

Bacillus altitudinis strain C-3WA-8 Rhizoctonia solani and Magnaporthe oryzae

Bacillus marisflavi strain C-3Y-2 Fusarium graminearum and Fusarium
moniliforme

Bacillus marisflavi strain C-3Y-5 Fusarium graminearum, Fusarium moniliforme
and Rhizoctonia solani

Fictibacillus phosphorivorans strain C-3Y-10 Magnaporthe oryzae

Bacillus sp. (in: Bacteria) strain CPS003
Rice Oryza sativa
L. var. indica cv.

RD41

Bipolaris sp. isolate KPS3, Bipolaris sp. isolate
KPS5, Curvularia sp. isolate KPS41, Nigrospora
sp. isolate KPS45, Fusarium sp. isolate KPS91

and Curvularia sp. isolate KPS102
[176]

Bacillus sp. (in: Bacteria) strain CZR007

Bacillus sp. (in: Bacteria) strain CZS004

Bacillus sp. (in: Bacteria) strain CZS006
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Table 1. Cont.

Endophytes Host Antagonistic Activity References

Streptomyces endus strain OsiSh -2
Rice (Oryza sativa

L.) cultivar
Gumei 4

Magnaporthe oryzae, Colletitrichum karstii,
Colletitrichum siamense, Colletitrichum camelliae,

Colletitrichum frocticola, Colletitrichum
glosporioides, Valsa mali, Guignardia bidwellii,

Physalospora piricola, Botryosphaeria ribis,
Rhizopus nigricans, Phomopsis vexans,

Cladosporium fulvum, Stempblium consortiale,
Botrytis cinerea, Colletrichum orbiculare,

Helminthosporium maydis, Nigrospora oryzae and
Rhizoctonia solani

[140,145]

Bacillus velezensis strain YC7010

Rice (Oryza
sativa L.)

Fusarium fujikuroi

[177]
Bacillus velezensis strain YC7007

Fusarium fujikuroi KACC 44022, Magnaporthe
grisea isolate KACC 40415, Bipolaris oryzae

isolate KACC 40853, Rhizoctonia solani isolate
KCTC 40101, Sclerotinia sclerotiorum isolate

GSCC 50501, Botrytis cinerea isolate KCTC 6973,
Fusarium oxysporum isolate KCTC 16909,

Botryosphaeria dothidea isolate GSCC 50201,
Pythium ultimum isolate GSCC 50651 and

Alternaria panax isolate KACC 42461

Enterobacter asburiae strain VWB1
Rice (Oryza sativa

L.) cultivar rex

Fusarium oxysporum

[178]Pantoea dispersa strain VWB2 Fusarium oxysporum

Pseudomonas putida strain VWB3 Fusarium oxysporum

Pantoea agglomerans strain CT1

Rice (Oryza sativa
L.) variety

CT6919

Pythium ultimum

[179]

Pantoea agglomerans strain CT2 Curvularia sp and Fusarium oxysporum var.
radicis-lycopersici strain 22

Pantoea ananatis strain CT10 Pythium ultimum, Curvularia sp and Fusarium
oxysporum var. radicis-lycopersici strain 27

Paenibacillus sp. CT14 Curvularia sp

Microbacterium sp. CT28 Pythium ultimum

Curtobacterium sp.CT30 Pythium ultimum

Paenibacillus kribbensis strain HS-R01

Rice cultivars
(Oryza sativa var.

Japonica c.v.
Chilbo,

Chuchung,
Haiami, Ilpum

Fusarium oxysporum and Rhizoctonia solani

[83]

Paenibacillus kribbensis strain HS-R14 Fusarium oxysporum and Rhizoctonia solani

Bacillus aryabhattai strain HS-S05 Fusarium oxysporum

Bacillus megaterium strain KW7-R08 Fusarium oxysporum

Klebsiella pneumoniae strain KW7-S06 Fusarium oxysporum and Rhizoctonia solani

Klebsiella pneumoniae strain KW7-S22 Fusarium oxysporum and Rhizoctonia solani

Klebsiella pneumoniae strain KW7-S27 Fusarium oxysporum and Rhizoctonia solani

Klebsiella pneumoniae strain KW7-S33 Fusarium oxysporum and Rhizoctonia solani

Bacillus subtilis strain CB-R05 Fusarium oxysporum and Rhizoctonia solani

Microbacterium binotii strain CB-S18 Fusarium oxysporum and Rhizoctonia solani

Microbacterium trichotecenolyticum strain
SW521-L21 Fusarium oxysporum and Rhizoctonia solani

Microbacterium trichotecenolyticum strain
SW521-L37 Fusarium oxysporum and Rhizoctonia solani
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Figure 5. Indirect plant-growth promotion via biocontrol of phytopathogens. (A) Side showing directly biocontrol potential
against fungal pathogens. (I) Rhizoctonia solani, the pathogen of rice sheath blight (RSB); (II) Fusarium oxysporum, the causal
agent of rice sheath rot and seedling rot; (III) Alternaria alternate, causal agent of leaf spots and blight in several plant
parts; and (IV) Botrytis cinerea, causal agent of several horticulture crops which are responsible for casing botrytis bunch
rot (BBR). (B) Side showing indirect or direct factor role of beneficial bacteria for growth promotion by competing against
phytopathogens in several ways, as shown in the figure. The figure was created by using BioRender.

6.2. Antibiosis

Antibiotics producing bacteria are largely identified and characterized for antibiotic
biosynthesis and regulation under different environments and they are designated as
the best biological control agents (BCAs). Antibiotic biosynthesis is regulated by many
environmental factors, such as high or low temperature, pH variations, the concentration
of different metal ions, etc. [180]. Even so, different bacterial strains require different
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environmental factors [181]. Therefore, the signaling mechanism and interaction between
pathogens, plants and bacteria for antifungal traits’ modulation acquire tripartite inter-
action systems [182]. Previous literature revealed that a strong colonization interaction
between bacterial strains and plant tissues is the key to antibiotic production [183]. The
primary and secondary metabolites production is related to the bacterial-strain growth rate,
it is reported by Haas and Défago [184], that bacterial growth rate boosts the secondary
metabolites production. Bacteria also have unique features, such as biofilms, that play an
important role in quorum sensing. The biofilm-containing bacteria play a vital role in plant
protection against pathogen attack by forming a skin-like cover around plant roots and
releasing antimicrobial compounds that abandon pathogen infestation [185].

6.3. Signal Interference

Primarily, many pathogens attack the plant cell wall to carry out their action. Dur-
ing this interaction, different kinds of exo-enzymes were detected by quorum sensing.
Pathogens act very smartly to inactivate these exo-enzymes with N-Acyl homoserine
lactones (AHL) molecules, and this whole process is known as signal interference [186].
There are only two kinds of classes of AHLs, which have been identified as successful
activators, designated as AHL-acylase, which play an important role in breaking amide
linkage and promoting abiotic factors [187]. It was revealed that AHL generates signals to
release volatile organic compounds (VOCs) and suppress disease attacks in oilseed rape
crops during pathosystem investigation of Verticillium dahlia and production of VOCs and
antifungal metabolite (AFMs) demonstrated by Müller et al. [188] in Serratia plymuthica
strain HRO-C48. Dandurishvili et al. [189] demonstrated that S. plymuthica strain IC1270
and P. fluorescens strain B-4117 generate VOC compounds which might help to control
pathogenic Agrobacterium and suppress the tomato crown gall disease infestation. More-
over, Chernin et al. [190] reported that these strains produce VOC compounds and inhibit
the transcription of AHL synthase genes.

6.4. Predation and Parasitism

The endophytic bacterial strains might adopt a predation and/or parasitism mech-
anism to control fungal pathogen infestation. The microorganisms or endophytes can
synthesize or release cell-wall degrading enzymes such as chitinase, glucanase, and cellu-
lose [191,192]. The endophytic bacteria kill fungal pathogens via disrupting fungal cell-wall
with the excretion of cell-wall degrading enzymes, this mechanism is known as predation
and parasitism. A similar mechanism was also found in Serratia marscens to control the
pathogen attack described by Ordentlich et al. [193]. The Curtobacterium flaccumfaciens
strain was isolated from the citrus plant and showed predation and parasitism mechanisms
to prevent Xylella fastidiosa pathogen infestation [194].

6.5. Induced Systemic Resistance

The discovery of many PGPR free-living or endophytes in soil and those associated
with compartments of plants such as leaves, roots, and plant reproductive parts, triggers
induced systemic resistance (ISR) in the immune system of plants [195]. The chemical
and pathogen application induces systematic-acquired resistance (SAR) during the plant
defense system and SAR induction is responsible for fluctuations in salicylic acid (SA) and
pathogenesis-resistance protein (PP) production [196]. Plant basal resistance is enhanced
via ISR under different environmental conditions against many pathogens of the plant [197].
For instance, the P. fluorescens strains WCS365 and WCS417R are well-known as the inducers
of broad-spectrum resistance in plants [198,199]. Previous studies have reported that
inoculated plants are more efficient in defense and respond rapidly to insects as well
as pathogen attacks, leading to improved protection ability of plants. They have also
described how ISR microbes activate systematically induced resistance in plants and their
distant parts, such as leaves.
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Furthermore, it has been well documented by Van Loon and Bakker [200] that Pseu-
domonas strains release a few types of compounds, such as psuedomanine, SA, and
siderophore, which ultimately increase the defense system in radish plants. Inoculated
Arabidopsis with Actinobacteria endophytes strains upregulated the defense pathways
and protected the plants against pathogens F. oxysporium and E. caratovora. The resistance
pathway against F. oxysporium is dependent on SAR and against E. caratovora resistance
driven through ET or SA [196]. In order to colonize with their host plant, bacteria must
defeat their host defiance response [101].

7. Implementation of Bioinformatics in Endophytes Diversity Analysis

Applications of new bioinformatics tools help to analyze the microbiome diversity
and interpret the results perfectly and meaningfully. Quantitative Insights Into Microbial
Ecology (QIIME 2) is a bioinformatics pipeline that uses decentralized microbiome diversity
analysis with different packages’ plug-ins [201]. QIIME 2 is a completely open-source
package that starts the analysis of raw DNA sequence data and finishes with high-quality
figures and statistics for publications. Each plug-in package has its function in QIIME 2,
such as UCLUST, Python Nearest Alignment Space Termination (PyNAST), q2-feature-
classifier, and PyNAST, which are used for aligning the sequences [202]; then UCLUST can
cluster the millions of sequences and clusters them into Operational taxonomic units (OTUs)
based on sequence similarity. Taxonomic can be assigned by using q2-feature-classifier
by running the Greengene or Ribosomal Database Project (RDP) Classifier [203]. These
tools are practically well applied to several rhizosphere microbes of plants and the earth
microbiome [204,205], but no one has applied them to culture-dependent rice endophytic
bacteria diversity. Most researchers cluster sequence at 97% into OTUs [204,206,207], which
was proposed by Edgar Robert [206], but a new study proposed [208] to enhance the
accuracy of taxonomic affliction at the species level by increasing the optical identity level
of sequence clustering at 99–100% into OTUs for the V4 hypervariable region of 16S rRNA
gene. Applications of these tools are a very simple and rapid way to assign taxonomic. For
the application of beneficial bacteria for plant-growth-promoting assays, firstly we need
to characterize their plant-growth-promoting traits under in vitro conditions in order to
provide a clue about their growth-promoting potential. To characterize these traits is a
laborious and time-consuming task to analyze the beneficial bacteria for applications in
the form of synthetic applications. One possible track to predict these traits by using a
bioinformatics tool was experimentally proved by Zhang et al. [205]. One study predicted
the nitrogen-fixation bacteria via a FAPROTAX bioinformatics package [209] and further
designed their synthetic communities based on nitrogen-fixation bacteria and inoculated
them into rice roots for growth promotion. Applications of these communities increase the
rice growth parameters compared to un-inoculated plants. Application of these tools is
possible and reliable for finding beneficial bacteria.

8. Endophytes-Induced Bioactive Compounds

The endophytic bacteria play a very essential role in bioactive compounds’ (BCs)
production. Various kinds of BCs have been produced by endophytic bacteria, such as
alkaloids, flavonoids, quinols, polyketones, phenols, peptides, and terpenoids [210,211],
and they have been applied in industrial, medical, and agricultural fields for the production
of drugs to treat numerous diseases [212,213]. Several endophytes also release special-
ized biologically and metabolite active compounds [214]. Moreover, endophytic bacteria
associated with ethnomedicinal plants act as a possible origin of bio-products, and their
applications under oxidative stress play a role in producing a new bioactive agent [215].
More than 80% of the natural drugs as a source of BCs and secondary metabolites are
produced by the endophytes of medicinal plants [216]. Endophytic microorganisms are
the depot of precious secondary metabolites that may act as a unique and excellent prove-
nance of drugs for antimicrobial, antidiabetic, anti-arthritic, anti-insect, anticancer, and
immunosuppressant action [210]. Up until now, just a few plants have been studied for
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their endophytes microbial diversity and capacity to produce bioactive compounds and
secondary metabolites. The exposing of these compounds’ and metabolites’ properties by
various endophytes is a significant alternative source to defeat by enhancing the level of
drug resistors in several pathogenic communities [210].

9. Conclusions and Prospects

The current article retires the compressive data of endophyte communities associ-
ated with rice plants. Metadata analysis insightfully proposed that 4 phyla, 6 classes,
22 orders, 46 families, and 74 genera of endophytic bacterial communities have been
identified from rice parts based on culture-dependent and culture-independent methods.
This tiny portion of identified endophytes diversity creates a huge gap between known
endophytes communities. Traditional culture-independent methods need to be combined
with advanced techniques, such as NGS, which is a rapid technique for the identification of
microbes. The application of this method needs to increase at a broad level and its results
are comparatively better than old methods.

Moreover, the culture-dependent method needs to be revised with their advanced
materials, such as media composition, or the use of different types of media at the same
time for microbe’s diversity to explore their diverse microbes’ communities. The 16S
rRNA marker gene is sufficient to allot the taxonomic profile for most bacterial phyla,
but it is not reliable for the Actinobacteria phylum taxonomic profile due to its division
into subclasses and suborders. The whole genomic sequence is the best way to allot the
taxonomic profile of the Actinobacteria phylum. Moreover, the next-generation sequence
raises more interest in taxonomic classification, and this method increases the accuracy
of the taxonomic classification of microbes. Implementation of bioinformatics tools in
endophytic bacterial diversity may enhance the results speed and quality, allot the true
taxonomic profiles, and reduce time consumption.

The application of endophytes with plant-growth-promoting traits and with inhibitory
potential against phytopathogens have been a primary purpose of sustainable agriculture.
The application of endophytic bacteria in the form of bio-fertilizers and bio-pesticides
can be improved if we elaborate on the mechanism of endophytic bacteria interact with
their host plant. How endophytes colonize with their host plant, and which kind of
substrate is provided by the host plant and how endophytic bacteria utilize them as a
source of nutrients, etc., need to explored for a better understanding and for their bio-
fertilizer application at the commercial level for organic agricultural production. This can
be achieved when we have clear and vast details about the bacterial genes uttered in the
plant rhizosphere. A few studies have been performed in this field, but their collected
information is not enough.

Hence, a compressive analysis of bacterial transcriptomes expressed in the plant will
focus on their endophytic bacterial communities’ lifestyle, which is hidden in the plant
endo-sphere parts. Attaining these arguments in the form of a challenging task, we notes
that it is incredibly hard to find eminent attributes of RNA transcripts from growing
bacteria in their host plant. This job is further elaborated by the low cell density of these
endophytic bacteria sustained in their host-plant parts, which react to activating plant
defense responses. Therefore, it is very hard to obtain adequate high-quality bacterial
RNA for transcriptome analysis. However, using advanced techniques, such as RNA-seq,
which can efficiently recognize both rich and rare transcripts, these kinds of analyses
are now possible but need to be implemented for these analyses at broad levels. In
addition, meta-transcriptome analysis of bacteria, using advanced techniques, provides a
clue about their gene abundances and their profiles and would be stronger to expose their
endophytic communities’ activity, which attracts their host plants for their development
and nutritional benefits.

Lastly, as the rice endophytic bacterial diversity and their taxonomic afflictions have
been poorly analyzed, there is the prospect of discovering novel endophytic bacterial
strains with beneficial traits from unexplored genotypes of rice islands. Climatic conditions
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highly affect rice plants, and changing weather conditions develop abiotic and biotic
stress that has an extreme effect on endophytes diversity. The identification of these novel
bacteria with unique features would require an amalgamation of culture-dependent and
culture-independent methodologies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms221810165/s1, Figure S1: Relative abundance of rice endophytic bacterial.
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