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Abstract: Gaucher disease is a lysosomal storage disease, which happens due to mutations in
GBA1/Gba1 that encodes the enzyme termed as lysosomal acid β-glucosidase. The major function
of this enzyme is to catalyze glucosylceramide (GC) into glucose and ceramide. The deficiency of
this enzyme and resultant abnormal accumulation of GC cause altered function of several of the
innate and adaptive immune cells. For example, augmented infiltration of T cells contributes to
the increased production of pro-inflammatory cytokines, (e.g., IFNγ, TNFα, IL6, IL12p40, IL12p70,
IL23, and IL17A/F). This leads to tissue damage in a genetic mouse model (Gba19V/−) of Gaucher
disease. The cellular mechanism(s) by which increased tissue infiltration of T cells occurs in this
disease is not fully understood. Here, we delineate role of the CXCR3 receptor and its exogenous
C-X-C motif chemokine ligand 9 (CXCL9) in induction of increased tissue recruitment of CD4+ T and
CD8+ T cells in Gaucher disease. Intracellular FACS staining of macrophages (Mφs) and dendritic
cells (DCs) from Gba19V/− mice showed elevated production of CXCL9. Purified CD4+ T cells
and the CD8+ T cells from Gba19V/− mice showed increased expression of CXCR3. Ex vivo and
in vivo chemotaxis experiments showed CXCL9 involvement in the recruitment of Gba19V/− T cells.
Furthermore, antibody blockade of the CXCL9 receptor (CXCR3) on T cells caused marked reduction
in CXCL9- mediated chemotaxis of T cells in Gba19V/− mice. These data implicate abnormalities of
the CXCL9-CXCR3 axis leading to enhanced tissue recruitment of T cells in Gaucher disease. Such
results provide a rationale for blockade of the CXCL9/CXCR3 axis as potential new therapeutic
targets for the treatment of inflammation in Gaucher disease.

Keywords: lysosomal storage disease; chemokine; chemokine receptor; inflammation

1. Introduction

Gaucher disease (GD) is a lysosomal storage disorder with a worldwide incidence
of approximately 1/40,000 to 1/100,000 [1,2]. GD is caused by GBA1 mutations that
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lead to decreased activity of lysosomal acid β-glucosidase (D-glucosyl-N-acylsphingosine
glucohydrolase (EC 4.2.1.25; GCase) and the resultant abnormal tissue accumulation of
glucosylceramide (GC) [3,4]. Macrophage (Mφ) lineage cells are prominent disease effectors
due to their massive accumulation of GC, i.e., Gaucher cells. This leads to their secretion
of numerous cytokines and chemokines that influence other innate and adaptive immune
cells [5–8]. The resultant tissue manifestations of GD lead to the clinical signs of anemia,
thrombocytopenia, hypergammaglobulinemia, splenomegaly, hepatomegaly, bone, and
brain defects) [1,6,9–14]. Many of these signs are recapitulated in a genetic GD-mouse
model (D409 V/null; 9 V/null; Gba19V/−) including, tissue accumulation of Gaucher cells
and GC in lung, liver, and spleen as well as infiltration of T cells [4,5,13,15–22].

T lymphocytes are the major effector cells in cellular immunity and produce cytokines
in response to variety of antigens, which leads to inflammation in several diseases [23–27].
Two major groups T cells are termed CD4+ T-helper and CD8+ T cytotoxic cells [28]. CD4+

T helper cells showed significant heterogeneity of their cytokine expression profiles that
lead to the discoveries of interferon gamma (IFNγ) producing T helper 1 (Th1), interleukin
(IL) 4 producing Th2, and IL17 producing Th17 cell subsets [26,29,30]. This cytokine
heterogeneity specifies the interaction of T cells with other immune cells and thereby
their function in host defense and inflammation [25,31–36]. CD8+ T cells are important
for inducing autoimmune and the anti-cancer and anti-viral responses [37–40]. T cell
defects, T cell lymphomas, and increased incidence of CD3+, CD4+, CD8+, CD3+HLA-DR+,
CD4+HLA-DR+, and CD8+HLA-DR+ subset of activated T cells have been observed in
lung and peripheral blood of patients with GD [41–46]. Significantly elevated levels of
CD4+ T cells and modest changes in CD8+ T cells were present in liver, lung, spleen, and
thymus of Gba19V/− mice [5,6,47]. The CD3/CD28-mediated GC-dependent activation
of liver-, lung-, and spleen-derived T cells in co-culture of DC and CD4+ T cells have
shown increased production of several of the pro-inflammatory cytokines, i.e., IFNγ,
tumor necrosis factor alfa (TNFα), IL6, IL12p40, IL12p70, IL23, and IL17A/F. This pro-
inflammatory environment leads to the tissue damage in Gba19V/− GD mouse model.
The genetic deficiency or pharmaceutical blockade of complement 5a (C5a) receptor 1
(C5aR1) resulted in reduction of activated subsets of CD4+ T cells as well as the decreased
generation of pro-inflammatory cytokines in co-cultured cells, (e.g., DC and CD4+ T cells)
from Gba19V/− mice [16]. However, the exact cellular mechanism(s) that causes enhanced
tissue recruitment of T cells in Gba19V/− mice is still unclear.

C-X-C motif ligand 9 (CXCL9), CXCL10, and CXCL11 belong to the CXC subfamily
of chemokines. These are induced by IFNγ and are crucial for recruitment of T cells
and other immune cell phenotypes, (e.g., NK cells) to the sites of inflammation, due to
their binding to chemokine receptor CXCR3 [48–60]. CXCR3 is the member of G protein
coupled receptor family and is expressed on different subsets of T cells [61–64]. IFNγ

drives increased expression of CXCR3 and its ligands, (e.g., CXCL9–11) that are increased
in several inflammatory diseases [64–70]. Elevated levels of IFNγ and CXCL9–11 as well as
increased numbers of tissue T cells were found in GD mouse models and human patients
with GD [5,6,15,41–45,47,71]. However, the cellular mechanism(s) that causes increased
tissue recruitment of T cells in Gba19V/− mice is unclear. Here, analyses of CXCL9-mediated
ex vivo and in vivo T cells chemotaxis in the presence or absence of mouse anti-CXCR3
antibodies identified a role of the CXCL9-CXCR3 axis in excess trafficking of T cells into
tissues affected by GD.

2. Materials and Methods
2.1. Materials

The following reagents were from BD Biosciences (San Jose, CA, USA) or eBiosciences
(San Diego, CA, USA): Monoclonal antibodies to CD11b-FITC (M1/70), F4/80-PerCP5.5,
CD11c-APC, CD3-pacific blue, CD4-FITC, CD8-APC, CXCL9-PE, CXCR3/CD183-PE and
their corresponding isotype antibodies (Rat IgG2a-FITC, Rat IgG2a-PerCP5.5, Armenian
hamster IgG-APC, Rat IgG2a-pacific blue, Rat IgG2a-FITC, Rat IgG2a APC, Hamster IgG-
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PE). Recombinant murine CXCL9 from Pepro Tech (Cranbury, NJ, USA) and purified mouse
anti-CXCR3 antibodies (catalog number-155902, clone-S18001A, and lot number-B265189)
was from Biolegend (San Diego, CA, USA). Liberace Cl was from Roche (Indianapolis,
IN, USA). Bovine serum albumin (BSA), Gey’s balanced salt solution (GBSS), and DNase
were from Sigma (St. Louis, MO, USA). Anti-CD11b, CD11c, CD4, and CD8 microbeads
were from Miltenyi Biotec (Auburn, CA, USA). Diff-Quik stain set was from Dade Behring,
Inc. (Newark, NJ, USA). Polycarbonate membranes, cell scraper, and Boyden chemotaxis
chamber were from Neuro Probe, Inc. (Gaithersburg, MD, USA). ELISA kit for the detection
of mouse CXCL9 was from R&D System (Minneapolis, MN, USA). LSRII flow cytometer
from BD Biosciences (San Jose, CA, USA), FCS Express software from De Novo Software
(Los Angeles, CA, USA).

2.2. Mice

The D409 V/null mice (9 V/null; Gba19V/−) and WT control were of the mixed
background FVB/C57BL/6J/129SvEvBrd (50:25:25) [4] and were 12 weeks of age. The new
nomenclature for D409V includes the 39 amino acid leader sequence and would then be
Asp448Val or p.D448V. Mice were maintained under pathogen-free conditions. All mice
were housed under pathogen-free conditions in the barrier animal facility according to
IACUC-approved protocol (IACUC2020-0052) at Cincinnati Children’s Hospital Research
Foundation (CCHRF).

2.3. Cell Preparation

Lung, spleen, blood, and peritoneal lavage from WT and Gba19V/− mice were removed
aseptically. Single cell suspensions prepared from lung were obtained from minced pieces
that were treated with Liberase Cl (0.5 mg/mL) and DNase (0.5 mg/mL) in RPMI (45 min,
37 ◦C) and spleen by direct grinding. Blood mononuclear cells were obtained after red
blood cell (RBC) lysis (155 mM NH4Cl, 10 mM NaHCO3, 0.1 mM EDTA). Single cell
suspensions prepared from lung, spleen, and the peritoneal lavage were filtered through a
70-micron cell strainer followed by RBC lysis, passage through a strainer, and pelleted by
centrifugation at 350 g. Viable cells were counted using a Neubauer chamber and trypan
blue exclusion. Mφs, DCs, CD4+ T lymphocytes, and CD8+ T lymphocytes were purified
from single cell suspensions of lung and spleen using CD11c, CD11b, CD4 (L3T4), and
CD8a (Ly2) microbeads according to the manufacturer’s protocol.

2.4. Flow Cytometry

FACS staining was performed for characterization of immunological cell types in
lung, spleen, blood, and peritoneal lavage and the chemotactic cells obtained after their
migration. These cells were washed with PBS containing 1% BSA. After incubation for
15 min at 4 ◦C with the blocking antibody 2.4G2 (anti-FcγRII and III), all cells were stained
at 4 ◦C for 45 min with the appropriate labeled antibodies for different cell types, i.e., anti-
mouse CD11b and anti-mouse F4/80 antibodies for Mφs, anti-mouse CD11b, anti-mouse
CD11c antibodies for DCs, anti-mouse CD3, CD4, and CD8, antibodies for T cells, and
anti-mouse B220 antibodies for B cells. In separate batches, the cells were stained with the
respective isotypes. Flow cytometric analyses were performed, where Mφs were gated first
by their typical FSC/SSC pattern based on monocyte gated cells and their F4/80 positivity
and double stained for F4/80 and CD11b. For DCs, monocyte gated cells from FSC/SSC
pattern were gated for CD11c positivity and double stained for CD11c and CD11b. Purified
Mφs and DCs were used to perform intracellular cytokine staining for CXCL9 and its
isotype, (e.g., Armenian Hamster IgG). Flow cytometric analyses of T lymphocytes were
generated after gating lymphocytes from forward and side scatter and then identifying
the CD3+, B220−CD3+CD4+, and B220−CD3+CD8+ T lymphocytes. Mononuclear cells
prepared from blood as well as purified CD4+ T and CD8+ T cells were used to perform
surface staining for CXCR3 and its isotype, (e.g., Armenian Hamster IgG). In an addition
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experiment, purified CD4+ T cells and CD8+ T cells were used for chemotaxis assays. Flow
cytometric analyses were performed on a LSR II, and FCS Express software.

2.5. T Cell Chemotaxis

CD4+ T cells prepared from spleen of WT and Gba19V/− mice were suspended in
chemotaxis medium (GBSS containing 2% BSA) at a density of 5 × 106 cells/mL. The differ-
ent concentration of CXCL9, (e.g., 0, 2, 4, 8, 16, and 32 nM) in chemotaxis medium, placed
in the bottom wells of a micro-Boyden chambers and overlaid with a 3 µm polycarbonate
membrane. Then, 50 µL of the cells were placed in the top wells and incubated for 45 min at
37 ◦C. Subsequently, the membranes were removed and the cells on the bottom side of the
membrane were stained with Diff-Quick. The numbers of migrated cells in five high-power
fields were counted and the number of cells per mm2 was calculated by computer assisted
light microscopy. Results are expressed as the mean value of triplicate samples.

2.6. Ex Vivo Blocking of CXCR3 and T Cells Chemotaxis

To examine whether ex vivo blocking of CXCR3 using mouse anti-CXCR3 antibod-
ies can reduce CXCL9 mediated chemotaxis of T cell subsets in Gba19V/− GD model,
spleen-derived CD4+ T cells and CD8+ T cells (5 × 106 cells/mL) prepared from WT and
Gba19V/−mice were treated in the presence and absence of antibodies to mouse CXCR3 (10
µg/mL) at 4 ◦C for 30 min. These cells were applied to subsequent top wells of Boyden
chemotaxis chamber and chemotaxis was performed towards CXCL9 (16 nM) at 37 ◦C
and 5% CO2 for 45 min. The membrane was removed, and cells were scraped off using a
vertical glass slide on the top of 50 mL falcon tube. These cells were stained with antibodies
to specific cell phenotypes as discussed above.

2.7. In Vivo Blocking of CXCR3 and T Cells Chemotaxis

To examine whether in vivo blocking of CXCR3 alters CXCL9- mediated increased
tissue recruitment of T cells in Gaucher disease, WT (n = 5) and Gba19V/− mice (n = 5)
were injected intraperitoneally (IP) with CXCL9 (200 nM:100 µL) and their vehicle (PBS).
In some experiments, mice were pretreated intravenously (IV) with mouse anti-CXCR3
antibodies (1.0 mg/kg body weight) prior to IP injections of CXCL9 or vehicle (PBS). After
6 h, mice were killed, and the peritoneal cavity was lavage with 10 mL of PBS. Peritoneal
cells were washed once with PBS, and 105 cells in 200 µL of PBS were used for performing
FACS staining with antibodies to mouse CD3, CD4, and CD8s.

2.8. Determination of CXCL9 Production

Mφs and DCs purified from lung of the strain-matched Gba19V/− and WT mice were
cultured (106 cells/200 µL of complete RPMI media) for 48 h. CXCL9 concentrations
were determined in the cell supernatants by commercial ELISA kits according to the
manufacturer’s instructions.

2.9. Statistical Analyses

Statistical significance was assessed by either one-tailed Students t-test (two groups)
or analysis of variance (ANOVA) for multiple groups to determine significance performed
using Prism Graph Pad™. Values shown in one asterisk (*, p < 0.05); two asterisks (**,
p < 0.01); three asterisks (***, p < 0.001), and four asterisks (****, p < 0.0001) were considered
statistically significant.

3. Results

3.1. Gba19V/− Mice Immune Phagocytes Show Increased Levels of CXCL9 Chemokines

Mφs and DCs purified from lungs of WT and Gba19V/− mice were used to assay
CXCL9 chemokine levels. Compared to WT mouse Mφs, Gba19V/− mouse Mφs had
significantly increased amounts of CXCL9 (Figure 1a–e; p < 0.0001). Similarly, as compared
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to WT mice, Gba19V/− mouse DCs showed significantly increased amounts of CXCL9
(Figure 1f–j; p < 0.0001).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 16 
 

 

Mɸs and DCs purified from lungs of WT and Gba19V/- mice were used to assay CXCL9 
chemokine levels. Compared to WT mouse Mɸs, Gba19V/- mouse Mɸs had significantly 
increased amounts of CXCL9 (Figure 1a–e; p < 0.0001). Similarly, as compared to WT mice, 
Gba19V/- mouse DCs showed significantly increased amounts of CXCL9 (Figure 1f–j; p < 
0.0001). 

 
Figure 1. Immune phagocytes that cause increased amounts of CXCL9 in Gba19V/- mouse tissues. CXCL9 amounts in mon-
ocyte gated F4/80hiCD11b+ Mɸs (a–e) and CD11chiCD11b+ DCs (f–j) from lung of strain-matched Gba19V/- and WT mice (n 
= 5/group). Delta Mean Fluorescence Intensity (δ MFI): CXCL9 MFI—isotype MFI. In the histograms of isotypes (c–h), 
specific antibodies (d–i), and the bar diagrams, the black lines/columns correspond to WT and the maroon lines/columns 
to Gba19V/- cell. Values in d-h are the means ± SD. and asterisks show significant differences between WT and Gba19V/- mice 
(**** p < 0.0001). Three independent experiments were conducted, and groups were compared using student’s t-tests. 

3.2. Identification of CXCR3 Positive T Cells in Gba19V/- Mice 
The single cell suspensions prepared from blood of WT and Gba19V/- mice were ana-

lyzed for CXCR3+CD3+ T cells. Compared to WT mouse samples, those from Gba19V/- mice 
CD3+ T cells had elevated amounts of CXCR3 (Supplementary Figure S1a–d; p < 0.0001). 
An additional experiment CD4+ T cells and CD8+ T cells purified from lung of WT and 
Gba19V/- mice were analyzed for CXCR3. Compared to WT mice, Gba19V/- mouse CD4+ T 
cells had elevated CXCR3 (Figure 2a–d; p < 0.0001). In addition, as compared to WT, 
Gba19V/- mouse CD8+ T cells had elevated CXCR3 (Figure 2e–h; p < 0.0001). 

Figure 1. Immune phagocytes that cause increased amounts of CXCL9 in Gba19V/− mouse tissues. CXCL9 amounts in
monocyte gated F4/80hiCD11b+ Mφs (a–e) and CD11chiCD11b+ DCs (f–j) from lung of strain-matched Gba19V/− and
WT mice (n = 5/group). Delta Mean Fluorescence Intensity (δ MFI): CXCL9 MFI—isotype MFI. In the histograms of
isotypes (c–h), specific antibodies (d–i), and the bar diagrams, the black lines/columns correspond to WT and the maroon
lines/columns to Gba19V/− cell. Values in d-h are the means ± SD. and asterisks show significant differences between WT
and Gba19V/− mice (**** p < 0.0001). Three independent experiments were conducted, and groups were compared using
student’s t-tests.

3.2. Identification of CXCR3 Positive T Cells in Gba19V/− Mice

The single cell suspensions prepared from blood of WT and Gba19V/- mice were ana-
lyzed for CXCR3+CD3+ T cells. Compared to WT mouse samples, those from Gba19V/−

mice CD3+ T cells had elevated amounts of CXCR3 (Supplementary Figure S1a–d; p < 0.0001).
An additional experiment CD4+ T cells and CD8+ T cells purified from lung of WT and
Gba19V/− mice were analyzed for CXCR3. Compared to WT mice, Gba19V/− mouse CD4+

T cells had elevated CXCR3 (Figure 2a–d; p < 0.0001). In addition, as compared to WT,
Gba19V/− mouse CD8+ T cells had elevated CXCR3 (Figure 2e–h; p < 0.0001).

3.3. Effect of CXCL9 in Ex Vivo Chemotaxis of T Cells in Gba19V/− Mice

Gba19V/− mice immune phagocytes, (e.g., Mφs and DCs) showed increased amounts
of CXCL9 and their receptor CXCR3 on T cell subsets when compared to WT. These data
suggested a potential role of the CXCL9—CXCR3 pathway for increased numbers of T cells
in Gba19V/− mouse tissues. To confirm this, several concentrations of CXCL9 (0, 2, 4, 8,
and 16 nM) were used to generate dose response curves for ex vivo chemotaxis of WT and
Gba19V/− mouse spleen-derived CD4+ T cells. CXCL9 caused dose-depended increase in
chemotaxis of CD4+ T cells in WT and Gba19V/− mice; compared to WT, such effects were
more pronounced in Gba19V/− mice (Figure 3a–c; p < 0.01; p < 0.0001).
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3.4. Pharmaceutical Targeting of CXCR3 Leads to the Reduction of CXCL9 Mediated Ex Vivo T
Cells Chemotaxis in Gba19V/− Mice

Pharmaceutical blocking of CXCR3 confirmed the altered CXCL9-mediated ex vivo T
cell chemotaxis in Gba19V/− mice. Mouse anti-CXCR3 antibodies or vehicle (PBS) treated
WT and Gba19V/− mouse spleen-derived CD4+ T cells were used for assessing their chemo-
taxis towards CXCL9 (Figure 4a–d). Similarly, mouse anti-CXCR3 antibodies or vehicle
(PBS) treated WT and Gba19V/− mouse spleen-derived CD8+ T cells were used for assessing
their chemotaxis towards CXCL9 (Figure 5a–d).
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In additional experiments, anti-CXCR3 antibodies and vehicle (PBS) were used to
treat WT and Gba19V/− mice spleen-derived CD4+ T and CD8+ T cells. These CD4+ T cells.

(Supplementary Figure S2a–e) and CD8+ T cells (Supplementary Figure S3a–e) were
used for chemotaxis quantification towards the corresponding chemotaxis buffer, i.e., 2%
BSA-GBSS.

Cells were separated and analyzed by flow cytometry. Compared to WT, analyses
of cells from Gba19V/− mice that migrated towards CXCL9 showed increased percent-
ages of CD4+CD11b− (Figure 4a,c,e; p < 0.0001) and CD8+CD11b− T cells (Figure 5 a,c,e;
p < 0.0001). As compared to vehicle treated Gba19V/− cells, mouse anti-CXCR3 antibodies
treated Gba19V/− cells showed reduction in CXCL9 mediated increased chemotaxis of
CD4+CD11b− (Figure 4c–e; p < 0.0001) and CD8+CD11b− T cells (Figure 5c–e; p < 0.0001).
However, these differences were not significant when compared to vehicle or mouse anti-
CXCR3 antibodies treated WT CD4+CD11b− (Figure 4a,b,e; ns) or WT CD8+CD11b− T
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cells (Figure 5a,b,e; ns). Furthermore, vehicle or mouse anti-CXCR3 antibodies treated WT
and Gba19V/− mouse CD4+CD11b−T (Supplementary Figure S2a–e; ns) or CD8+CD11b−T
(Supplementary Figure S3a–e; ns) cells migration towards chemotaxis buffer did not differ.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 5. CXCR3 targeting alters CXCL9-mediated CD8+ T cells chemotaxis in Gba19V/- mice. CD8+ T cells purified from 
spleens of WT and Gba19V/- mice (n = 5/group) were allowed to migrate towards CXCL9 (16 nM) in the presence and absence 
of mouse anti-CXCR3 antibodies (10 µg/mL) at 37 °C and 5% CO2 for 45 min. Cells that had migrated through the filter 
and had attached to the lower side of the filter were collected and analyzed by FACS. Percentage of CD8+CD11b− T cells 
are shown from the (a) vehicle (PBS) treated WT cells and their migration to CXCL9, (b) mouse anti-CXCR3 antibodies 
treated WT cells and their migration to CXCL9, (c) PBS treated Gba19V/- cells and their migration to CXCL9, and (d) mouse 
anti-CXCR3 antibodies treated Gba19V/- cells and their migration to CXCL9. (e) WT (black columns), Gba19V/- (maroon col-
umns) and the values shown in the bar diagram are the mean ± SD. and group comparison was performed with ANOVA. 
Three independent experiments were conducted (**** p < 0.0001). 

Cells were separated and analyzed by flow cytometry. Compared to WT, analyses of 
cells from Gba19V/- mice that migrated towards CXCL9 showed increased percentages of 
CD4+CD11b− (Figure 4a,c,e; p < 0.0001) and CD8+CD11b− T cells (Figure 5 a,c,e; p < 0.0001). 
As compared to vehicle treated Gba19V/- cells, mouse anti-CXCR3 antibodies treated 
Gba19V/- cells showed reduction in CXCL9 mediated increased chemotaxis of CD4+CD11b− 
(Figure 4c–e; p < 0.0001) and CD8+CD11b− T cells (Figure 5c–e; p < 0.0001). However, these 
differences were not significant when compared to vehicle or mouse anti-CXCR3 antibod-
ies treated WT CD4+CD11b− (Figure 4a,b,e; ns) or WT CD8+CD11b− T cells (Figure 5a,b,e; 
ns). Furthermore, vehicle or mouse anti-CXCR3 antibodies treated WT and Gba19V/- mouse 
CD4+CD11b−T (Supplementary Figure S2a–e; ns) or CD8+CD11b−T (Supplementary Figure 
S3a–e; ns) cells migration towards chemotaxis buffer did not differ. 

3.5. Pharmaceutical Targeting of CXCR3 Causes the Reduction of CXCL9 Mediated In Vivo T 
Cells Chemotaxis in Gba19V/- Mice 

To confirm if in vivo administration of mouse anti-CXCR3 antibodies decrease the 
CXCL9-mediated chemotaxis of T cell subsets in GD, WT and Gba19V/- mice were treated 
with CXCL9 and its vehicle (PBS) in the presence and absence of mouse anti-CXCR3 anti-
bodies The peritoneal cells were analysed for total cell infiltrates as well as the CD3+CD4+ 
T cells and CD3+CD8+ T cells (see Methods). Compared to vehicle (PBS) or mouse anti-
CXCR3 antibodies, administered CXCL9 to WT mice showed increased peritoneal cell re-
cruitment (Supplementary Figure S4a–c,e; p < 0.01). Compared to administered CXCL9, 

Figure 5. CXCR3 targeting alters CXCL9-mediated CD8+ T cells chemotaxis in Gba19V/− mice. CD8+ T cells purified from
spleens of WT and Gba19V/− mice (n = 5/group) were allowed to migrate towards CXCL9 (16 nM) in the presence and
absence of mouse anti-CXCR3 antibodies (10 µg/mL) at 37 ◦C and 5% CO2 for 45 min. Cells that had migrated through the
filter and had attached to the lower side of the filter were collected and analyzed by FACS. Percentage of CD8+CD11b− T
cells are shown from the (a) vehicle (PBS) treated WT cells and their migration to CXCL9, (b) mouse anti-CXCR3 antibodies
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Three independent experiments were conducted (**** p < 0.0001).

3.5. Pharmaceutical Targeting of CXCR3 Causes the Reduction of CXCL9 Mediated In Vivo T
Cells Chemotaxis in Gba19V/− Mice

To confirm if in vivo administration of mouse anti-CXCR3 antibodies decrease the
CXCL9-mediated chemotaxis of T cell subsets in GD, WT and Gba19V/− mice were treated
with CXCL9 and its vehicle (PBS) in the presence and absence of mouse anti-CXCR3 anti-
bodies The peritoneal cells were analysed for total cell infiltrates as well as the CD3+CD4+

T cells and CD3+CD8+ T cells (see Methods). Compared to vehicle (PBS) or mouse anti-
CXCR3 antibodies, administered CXCL9 to WT mice showed increased peritoneal cell
recruitment (Supplementary Figure S4a–c,e; p < 0.01). Compared to administered CXCL9,
mouse anti-CXCR3 antibodies given prior to CXCL9 injection abrogated the CXCL9 medi-
ated increased recruitment of peritoneal cells in WT mice (Supplementary Figure S4c–e;
p < 0.01). As compared to vehicle or mouse anti-CXCR3 antibodies administration, CXCL9
injected Gba19V/− mice showed more pronounced peritoneal cell infiltrates (Supplementary
Figure S4f–h and e; p < 0.0001). Compared to administered CXCL9, mouse anti-CXCR3
antibodies given prior to CXCL9 injection caused marked reductions in the increased
recruitment of peritoneal cells in Gba19V/− mice (Supplementary Figure S4e,h,i; p < 0.0001).
These findings were also obtained for CD4+ T cells (Figure 6e–i; p < 0.0001, p < 0.001). In



Int. J. Mol. Sci. 2021, 22, 12712 9 of 16

WT mice, the CD4+ T cell differences were not significant when compared with vehicle,
mouse anti-CXCR3 antibodies, CXCL9 and mouse anti-CXCR3 antibodies administered
prior to CXCL9 (Figure 6a–e; ns).
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Figure 6. In vivo blocking of CXCR3 alters the CXCL9- mediated CD4+ T cells chemotaxis in Gba19V/− mice. WT and
Gba19V/− mice were injected with intraperitoneal administration of CXCL9 and its vehicle as described in the method.
In additional experiments, these mice were injected with intravenous injection of mouse anti-CXCR3 antibodies prior to
intraperitoneal injection of CXCL9 or vehicle and the peritoneal cells were collected and analyzed by FACS. The dot plots
and the corresponding bar diagrams represent the percentage of migrated CD3+CD4+ T cells in WT (a–e) and Gba19V/− mice
(e–i). WT (black columns), Gba19V/− (maroon columns) and the values shown are the mean ± SD. and group comparison
were performed with ANOVA. Three independent experiments were conducted (ns, not significant; ***, p < 0.001, ****,
p < 0.0001).

As compared to PBS or mouse anti-CXCR3 antibodies treated mice, CXCL9 injected
Gba19V/− mice showed elevated recruitment of peritoneal CD8+ T cells (Figure 7e–h;
p < 0.0001), In comparison, mouse anti-CXCR3 antibodies administration prior to giving
CXCL9 abrogated the increased recruitment of peritoneal CD8+ T cells in Gba19V/− mice
(Figure 7e,h,i; p < 0.05). The effects of these treatments on WT CD8+-cells were not
significant (Figure 7a–e; ns).
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Gba19V/− mice were injected with intraperitoneal administration of CXCL9 and its vehicle as described in the method.
In additional experiments, these mice were injected with intravenous injection of mouse anti-CXCR3 antibodies prior to
intraperitoneal injection of CXCL9 or vehicle and the peritoneal cells were collected and analyzed by FACS. The dot plots
and the corresponding bar diagrams represent the percentage of migrated CD3+CD8+ T cells in WT (a–e) and Gba19V/−

mice (e–i). WT (black columns), Gba19V/− (maroon columns), and the values shown are the mean ± SD. and group
comparison were performed with ANOVA. Three independent experiments were conducted (ns, not significant; * p < 0.05;
**** p < 0.0001).

4. Discussion

Here, Mφs and DCs have been recognized as the sources of local increases of CXCL9
in Gba19V/− mice. Furthermore, CD4+ T cells and the CD8+ T cells from Gba19V/− mice
had increased amounts of CXCR3. Although not explicitly tested, these findings impli-
cate mutant Gba1 and the resultant excess tissue accumulation of GC in increasing the
production/expression of CXCL9 in GD. Such increased CXCL9 directed the chemotaxis of
CXCR3 expressing T cell subsets in the Gba19V/−mouse model of GD. This is supported by
the lung-derived Gba19V/− Mφs and DCs having increased amounts of CXCL9 and the T
cell subsets with increased amounts of CXCR3.

In addition, these findings highlight the importance of the CXCL9-CXCR3 axis in the in-
duction of ex vivo and in vivo chemotaxis of CD4+ and CD8+ T cells in the Gba19V/−mouse.

CXCL9 chemokines attracts CXCR3+CD4+ and CD8+ effector T cells to sites of inflam-
mation and direct their polarization into highly potent effector T cells that lead to the tissue
enlargement in several diseases [64,67,72–84]. Elevated levels of such T cell subsets and
their interaction with antigen presenting cells (e.g., DCs and/or Mφs) are a and, potentially,
the major effector contributing to massive increases of pro-inflammatory cytokines and
tissue destruction in GD [5,6,15,16,85]. However, the cellular mechanism(s) underlying
increased infiltration of T cell subsets in GD are not clearly understood. As compared to
CXCL10 and CXCL11, massive increases of CXCL9 in Gba19V/− [10] provided the impetus
for exploring the role of CXCL9-induced T cell trafficking in GD.

In certain tissues, e.g., lung, intestine, and tumor, cause downregulation of chemokine
receptor expression once the infiltrating cells reside in the tissues and are exposed to
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high concentrations of ligands and/or interact with abnormal local production of pro-
inflammatory cytokines [86–89]. To avoid this limitation, the current study used spleen
derived T cells for testing CXCL9-mediated ex-vivo chemotaxis in the Gba19V/− mouse.
This study identified a direct role of the CXCL9-CXCR3 axis in aiming the excess tissue
recruitment of T cells in the Gba19V/− mouse. CXCR3 is an attractive therapeutic target
for treating T cell-mediated inflammatory diseases [83,84,90–96]. CXCL9-mediated ex vivo
and in vivo chemotaxis of T cell subsets (i.e., CD4+ T and CD8+ T cells) in the presence or
absence of mouse anti-CXCR3 antibodies showed that targeting CXCR3 caused marked
reduction in CXCL9-mediated enhanced tissue recruitment of T cell subsets in GD.

The exact mechanism(s) by which immune phagocytes, (e.g., Mφs and DCs) and/or
T cells lead to increased levels of CXCL9/CXCR3 in Gba19V/− mice remain to be fully
elucidated. IFNγ and its downstream signaling is needed for driving CXCL9-CXCR3-
mediated tissue inflammation in several diseases [64–70].

Excess tissue amounts of GC, IFNγ, and their downstream effects have been reported
in mouse models and human patients with GD [5,6,13,15–17,41–45,47,71]. Additionally,
genetic deficiency of C5aR1 resulted in decreased tissue levels of GC, IFNγ, CXCL9–11, and
reductions in tissue recruitment of T cell subsets in mouse models of GD [16]. These findings
implicate a mechanistic link between GC/C5a-C5aR1-IFNγ pathways for activation of
CXCL9/CXCR3 in GD, which require further mechanistic elucidation.

The clinical features of human GD that happens due to GBA1 defect includes anemia,
thrombocytopenia, hypergammaglobulinemia, splenomegaly, hepatomegaly, bone and
brain defects) [1,9–12,14]. Gba19V/− mouse model of GD recapitulated many of these signs
including, tissue accumulation of Gaucher cells and GC in lung, liver, and spleen as well as
infiltration of T cells [4,5,13,15–22]. However, there is still some limitations of the study
as the Gba19V/− mouse model of GD does not recapitulate exactly the human disease and
other indicated disease complications.

Mice express a single isoform of CXCR3 that exclusively binds to CXCL9, CXCL10,
and CXCL11. CXCR3a, b and alt isoforms exist in humans [97]. Human CXCR3a is
equivalent to mouse CXCR3 and binds CXCL9, CXCL10, and CXCL11. Human CXCR3b
binds to CXCL9, CXCL10, CXCL11 as well as an additional ligand CXCL4. Human
CXCR3alt binds specifically to CXCL11 [97]. The translational potential of this research
could be challenging as in contrast to murine CXCL9 and CXCL11, human CXCL9–11 are
inactivated rapidly in the presence of physiological concentrations of dipeptidyl peptidase
IV/CD26 [98–100]. Despite of these complexities, the current study invites investigation
into the different isoforms of CXCR3 and their ligands, i.e., CXCL9–11, as well as their up
and/or downstream signaling that enhance T cell trafficking in GD. These findings open
new areas of research that may identify CXCR3 and several of their ligands as interesting
drug targets for modulation of immune cell function that fuel tissue inflammation in GD
and other lysosomal storage sicknesses.
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