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A new deep learning algorithm 
of 12‑lead electrocardiogram 
for identifying atrial fibrillation 
during sinus rhythm
Yong‑Soo Baek1,4,5, Sang‑Chul Lee2,4,5, Wonik Choi3,4* & Dae‑Hyeok Kim1,4*

Atrial fibrillation (AF) is the most prevalent arrhythmia and is associated with increased morbidity 
and mortality. Its early detection is challenging because of the low detection yield of conventional 
methods. We aimed to develop a deep learning-based algorithm to identify AF during normal 
sinus rhythm (NSR) using 12-lead electrocardiogram (ECG) findings. We developed a new deep 
neural network to detect subtle differences in paroxysmal AF (PAF) during NSR using digital data 
from standard 12-lead ECGs. Raw digital data of 2,412 12-lead ECGs were analyzed. The artificial 
intelligence (AI) model showed that the optimal interval to detect subtle changes in PAF was within 
0.24 s before the QRS complex in the 12-lead ECG. We allocated the enrolled ECGs to the training, 
internal validation, and testing datasets in a 7:1:2 ratio. Regarding AF identification, the AI-based 
algorithm showed the following values in the internal and external validation datasets: area under the 
receiver operating characteristic curve, 0.79 and 0.75; recall, 82% and 77%; specificity, 78% and 72%; 
F1 score, 75% and 74%; and overall accuracy, 72.8% and 71.2%, respectively. The deep learning-based 
algorithm using 12-lead ECG demonstrated high accuracy for detecting AF during NSR.

Atrial fibrillation (AF) is one of the most important public health problems and a significant cause of increasing 
health care costs worldwide1. AF is the most common form of arrhythmia and is reported to increase mortal-
ity and the risk of ischemic stroke, heart failure, and dementia in patients2,3. AF is confirmed based on 12-lead 
electrocardiogram (ECG) findings; however, it is difficult to identify AF, especially paroxysmal AF (PAF), from 
ECGs acquired during normal sinus rhythm (NSR) because of low detection by conventional methods and the 
silent nature of PAF4. Conventional methods, such as Holter ECG monitoring and event recorder examination, 
rely on the detection of symptoms over a relatively short period. ECG patches, such as smartwatches, have 
recently shown a diagnostic AF yield of 34%5. It has been reported that ECG monitoring with an implantable 
loop recorder (ILR) was superior to conventional follow-up for detecting AF after cryptogenic stroke3,6. However, 
smartwatches and ILRs are not widely available because of their cost and invasiveness, making them less acces-
sible to some patients and doctors. These methods also have insurance issues on a case-by-case basis. Therefore, 
a new cost-effective strategy to meet the “unmet need” and improve AF detection is needed in the future. Mean-
while, the progression of AF can cause electrical and structural changes, manifesting as subtle changes on normal 
ECGs7,8. However, even for cardiologists, it is impossible to distinguish the NSR of a patient with PAF from that 
of a healthy person without AF on an ECG. A recent report showed good performance of artificial intelligence 
(AI) using a convolutional neural network for point-of-care identification of AF using ECGs acquired during 
NSR in patients with PAF9. We hypothesized that we could identify the subtle ECG changes present in a standard 
12-lead ECG during NSR in patients with PAF using a deep learning algorithm. To evaluate this hypothesis, we 
trained, validated, and tested a recurrent neural network (RNN) deep learning algorithm using NSR ECGs in 
PAF and healthy individuals in a tertiary hospital.
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Results
Patient characteristics.  The baseline characteristics and comorbidities of the development and external 
validation datasets are shown in Table 1. The mean age of the participants was 61.2 ± 12.8 years. The mean body 
mass index was 24.1 ± 3.9 kg/m2. The mean CHA2DS2-VASc score of NSR in patients who have PAF recorded 
(PAF-NSR group) was 2.8 ± 1.9. Patients with PAF-NSR in both data A and B had higher HR and prolonged PR 
interval, QRS duration, and corrected QT interval than healthy persons who have no AF recorded (Table 1). 
We included 2412 NSR ECGs for analysis (NSR in healthy persons who have no AF recorded (healthy-NSR): 
1057 ECGs; PAF-NSR: 1355 ECGs); especially, 1677 ECGs from 426 patients, 238 ECGs from 60 patients, and 
497 ECGs from 124 patients were used in the training, validation, and testing datasets, respectively. We per-
formed external validation using dataset B, which included 1291 12-lead ECGs (healthy-NSR: 727; PAF-NSR: 
564) (Fig. 1).

Optimal section for AF detection during NSR in ECG.  We hypothesized that the vicinity of the P-wave 
before the QRS complex would be important for differentiating AF during NSR. We conducted an experiment, 
which consisted of gradually increasing the section size including the P-wave section starting from the onset of 
the QRS complex. By incrementing 10 samples within the range of 20–180 samples, the experiment was per-
formed by designating it as a sequence length to observe the trend of classification accuracy.

As shown in the Supplemental Figure, we found that the optimal interval to detect subtle changes of AF detec-
tion during a sinus rhythm was approximately within 240 ms (about 120 sample size) before the QRS complex by 
the validation accuracy test. The moving average is computed by averaging the validation accuracy values within 
a range of [S − 20, S + 20] for the sample size S tested in [70, 180], which is equivalent to the period of 80 ms.

Performance of the model for identifying AF.  The suggested model produced an F1 score of 75% 
(95% confidence interval [CI] 73.0–76.9), recall of 82.0% (80.3–83.6) in the PAF-NSR group, a specificity of 78% 
(76.1–79.8) in the healthy-NSR group, and an overall accuracy of 73% (71.6–74.3; Table 2). As shown in Fig. 2, 
during external validation, the algorithm showed an area under the receiver operating characteristic (ROC) 
curve (AUC) of 0.75 (0.74–0.76), a recall of 77% (75.1–80.2), a specificity of 72% (69.8–73.8), an F1 score of 74% 
(71.0–76.1), and an overall accuracy of 71.2% (69.8–73.5) for identifying AF.

Table 1.   Patient characteristics and electrocardiographic findings at enrollment. Values are expressed as n 
(%) or as means ± standard deviations. NA means not applicable. *P value of Student’s t-test or chi-square test 
between PAF-normal and healthy-NSR participants. † P value of Student’s t-test or chi-square test between 
datasets A and B. bpm: beats per minute; CHA2DS2-VASc: a score taking into account congestive heart failure, 
hypertension, age ≥ 75 years, diabetes mellitus, previous stroke/transient ischemic attack, vascular disease, 
age 65–74 years, and sex (female); ECG electrocardiography; PAF paroxysmal atrial fibrillation; QRSd QRS 
duration; TIA transient ischemic attack.

Dataset A Dataset B

Overall PAF-NSR Healthy-NSR

*P-value

Overall PAF-NSR Healthy-NSR

*P-value †P-value(n = 2,412) (n = 1,355) (n = 1,057) (n = 1,291) (n = 564) (n = 727)

Age, years 61.2 ± 12.8 66.5 ± 13.0 54.7 ± 9.2  < 0.001 59.6 ± 13.2 65.2 ± 12.6 55.3 ± 11.9  < 0.001  < 0.001

Female sex, n (%) 1,544 (65.0) 571 (43.3) 973 (92.1)  < 0.001 813 (63.0) 206 (36.5) 607 (83.5)  < 0.001 0.234

Body mass index, kg/m2 24.1 ± 3.9 24.2 ± 4.3 23.9 ± 3.2 0.345 24.4 ± 3.4 25.7 ± 4.2 23.7 ± 2.7  < 0.001 0.275

Hypertension, n (%) 1,021 (42.3) 837 (63.5) 184 (17.4)  < 0.001 613 (47.5) 463 (82.1) 150 (20.6)  < 0.001 0.009

Diabetes mellitus, n (%) 387 (16.0) 304 (23.0) 83 (7.9)  < 0.001 341 (26.4) 273 (48.4) 68 (9.4)  < 0.001  < 0.001

Heart failure, n (%) 239 (9.9) 239 (18.1) 0 (0)  < 0.001 149 (11.5) 145 (25.7) 4 (0.6)  < 0.001 0.177

Stroke, n (%) 78 (3.2) 74 (5.6) 4 (0.4)  < 0.001 54 (4.2) 52 (9.2) 2 (0.3)  < 0.001 0.165

TIA, n (%) 50 (2.1) 41 (3.1) 9 (0.9)  < 0.001 22 (1.7) 16 (2.8) 6 (0.8)  < 0.001 0.456

Vascular disease, n (%) 369 (15.2) 2 (1.3) 0 (0) 0.500 142 (11.0) 131 (23.2) 11 (1.5)  < 0.001  < 0.001

CHA2DS2-VASc score 2.2 ± 1.7 2.8 ± 1.9 1.4 ± 0.9  < 0.001 1.9 ± 1.3 2.5 ± 1.4 1.4 ± 1.0  < 0.001  < 0.001

ECG findings

Heart rate, bpm 67.9 ± 11.6 68.6 ± 12.9 67.3 ± 10.1 0.003 67.9 ± 10.5 68.6 ± 11.5 67.4 ± 9.6 0.038 0.938

PR interval, msec 162.2 ± 19.4 164.0 ± 19.6 160.4 ± 19.0  < 0.001 164.8 ± 19.3 167.0 ± 20.1 163.1 ± 18.4  < 0.001  < 0.001

QRS duration, msec 90.4 ± 9.5 91.8 ± 9.8 89.0 ± 8.9  < 0.001 91.0 ± 9.4 91.8 ± 9.5 90.5 ± 9.3 0.013 0.046

QT interval, msec 405.8 ± 33.5 407.6 ± 37.6 403.9 ± 28.6 0.003 400.6 ± 30.2 402.8 ± 33.9 398.8 ± 26.7 0.02  < 0.001

QTc, msec 427.6 ± 26.1 430.9 ± 30.2 424.2 ± 20.6  < 0.001 422.6 ± 23.3 426.5 ± 25.0 419.6 ± 21.4  < 0.001  < 0.001

Duration between an AF episode and PAF-NSR 
ECG, months NA 3.8 ± 4.7 NA NA NA 3.3 ± 4.5 NA NA 0.112
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Application of ECG interpretation using deep learning analysis.  We developed an RNN-based AI 
application that can be used for analyses in real-time on computers in our hospital after internal validation of 
the RNN-based deep learning algorithm. Using our application, there were interesting findings revealed by the 
NSR ECGs. For instance, when taken on a date close to the date of documented AF or when an AF symptom was 
present, it tended to have high detection probability, and low AF detection probability was noted in the absence 
of AF symptoms when multiple serial ECGs were assessed from the same patient. As shown in Fig. 3, the prob-
ability of PAF using a deep learning algorithm program could change according to the dates of ECG acquisition. 
For example, a 72-year-old man diagnosed with PAF was calculated to have AF with probabilities of 90% and 
100% by the AI program during NSR, acquired after his AF episode had terminated, and to have AF with prob-
abilities of 6.3% and 10% in the absence of AF symptoms.

Discussion
We analyzed the predictive value and the optimal section in an ECG for identifying AF during NSR using a 
deep learning algorithm. The AI-deep learning algorithm developed to estimate the probability of PAF during 
NSR using a 12-lead ECG was excellent for identifying PAF (recall of 82%, specificity of 78%, F1 score of 75%, 
and overall accuracy of 72.8%). The suggested model showed a reliable harmonic mean of precision and recall 
(F1 score) for identifying PAF during NSR compared with the models used in recently published studies9,10. 
The model showed that the optimal interval to detect subtle changes of PAF was within 0.24 s before the QRS 
complex in a 12-lead ECG.

Figure 1.   Patient flow diagram showing the selection of the study population and the creation of the study 
datasets. ECGs were allocated to the training, internal validation, and testing datasets in a 7:1:2 ratio to assure a 
robust and reliable dataset. PAF paroxysmal atrial fibrillation; ECG electrocardiogram.

Table 2.   AI model performance. Data in parentheses represent the 95% confidence intervals. AI artificial 
intelligence; avg average; PAF paroxysmal atrial fibrillation. *F1 Score (balanced F-score) is the harmonic mean 
of precision and recall, and calculated as follows: F1 score = 2 (precision × recall) / (precision + recall). a Support 
is the number of occurrences of each class when it is true.

Precision Recall (sensitivity) F1-score* Supporta

Healthy-NSR 0.78 (0.76–0.80) 0.64 (0.62–0.66) 0.70 (0.68–0.72) 2,096

PAF-NSR 0.69 (0.67–0.71) 0.82 (0.80–0.84) 0.75 (0.73–0.77) 2,074

Accuracy 0.73 (0.72–0.74) 4,170

Macro avg 0.74 (0.73–0.75) 0.73 (0.72–0.74) 0.73 (0.72–0.74) 4,671

Weighted avg 0.74 (0.73–0.75) 0.73 (0.72–0.74) 0.73 (0.72–0.74) 4,671
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Deep learning models usually require access to large and accurate datasets11. Despite the relatively small size 
of our data compared to those in the previous studies, our model showed favorable recall and accuracy9,10. This 
could be attributed to the use of accurate ECG data for training and validation of deep learning verified by two 
electrophysiologists and the detection of optimal intervals for AF detection. It has been reported that P-wave 
analysis calculated on a standard surface ECG could be used to identify patients with PAF12–14. We intended to 
recognize the subtle but significant differences among PAF-NSR and healthy-NSR ECGs carefully through this 
approach despite the relatively small data size. It is expected that through the use of this model, the amount of 
data required for a diagnosis would reduce greatly, making it easy to apply to actual clinical trials.

Opportunistic screening for AF in patients aged ≥ 65 years during other examinations, such as blood pressure 
checks, has detected AF in approximately 1.4% of patients15. The detection rates of AF using repeated snapshot 
handheld ECG devices and continuous recordings, such as patches or ILRs, were 1–2.5% per day (3.8% per 
week) and 22–34% per year, respectively16,17. However, these monitoring devices are invasive and expensive18. 
Although it is difficult to perform a head-to-head comparison among these various modalities for AF detection 
because of different techniques used and heterogeneity of patients enrolled, AI using ECG could have a good 
performance to detect patients with PAF using a single 12-lead ECG, which is a rapid, simple, and inexpensive 
point-of-care test. Currently, there is an unmet need for a method to increase AF detection with good sensitiv-
ity. Our algorithm showed excellent performance for recall of identifying AF. ECG and Holter monitoring are 
short-term monitoring methods that usually show NSR in one or more tests, even in patients with AF. However, 
patients’ preferences for intensive long-term monitoring pose limitations for AF detection. Therefore, the use of 
AI to increase the accuracy of AF diagnosis would be very useful in pre-screening, as it would save unnecessary 
inspection time and cost. With continuous ECG monitoring over extended periods for people aged 65 years and 
older, one-fourth to one-third of them would have brief AF episodes. The use of our model in this population 
could be a cost-effective alternative for AF detection.

Data from a Swedish registry helped identify two major gaps in AF-related stroke prevention, representing 
33% of all ischemic strokes19. AF was not detected before the stroke in 9% of all stroke cases15. In these patients, 
AF screening and stroke prevention, such as appropriate anticoagulation prescription, would be needed for the 
prevention of recurrent strokes. Pre-screening for AF using AI could be helpful in reducing the evidence-practice 
gap of oral anticoagulant (OAC) prescriptions in these populations.

The cost-effectiveness is likely to be a result of earlier diagnosis of AF and initiation of treatment to reduce 
stroke risk, as stroke is a severe event with a high economic burden20. Since stroke is a serious event with a large 
economic burden, cost effectiveness is most likely the result of early diagnosis of AF and initiation of treatment 
to reduce the risk of stroke. Early rhythm-control therapy was associated with a lower risk of adverse cardio-
vascular outcomes compared with usual care in patients diagnosed early with AF according to findings from 
the EAST-AFNET 4 trial21. Accurate early diagnosis and proper clinical management of AF are expected to 
contribute to improving patient and population health outcomes by ensuring that patients receive appropriate 
treatment. We expect that if AI performance becomes more accurate in the near future, it will play a role in this 
first step of AF screening.

Figure 2.   Multiclass ROC curves with deep neural networks applied in the internal and external datasets. The 
micro-average and macro-average AUC derived from the ROC curve of the AI algorithm is calculated during 
the internal and external validations (0.78 [95% CI 0.76–0.80], 0.79 [95% CI 0.78–0.80] for internal validation 
dataset; 0.75 [95% CI 0.74–0.76], 0.75 [95% CI 0.74–0.76] for external validation dataset). ROC receiver 
operating characteristic; AUC​ area under the ROC curve. Class 0: healthy-NSR, Class 1: PAF-NSR.
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It has been demonstrated that the maintenance of AF provokes ion channel changes and leads to a marked 
shortening of the atrial effective refractory (AER) period, a reversion of its physiological rate adaptation, and an 
increase in rate, inducibility, and stability of AF; all these changes were completely reversible within 1 week of 
sinus rhythm22. AF is a progressive disease associated with progressive electrical and structural remodeling and a 
gradual increase in AF burden23. Delayed recurrence of AF after AF ablation might be related to AF progression24. 
The time-course of AER involves a transitional period associated with the progression and maintenance of AF25. 
AF progression shows patient-specific patterns of the atrial activation rate26. Our model showed differences in 
acquired AF probabilities of NSR ECG according to AF episodes in the same patients (Fig. 3). It suggested that 
the duration between an AF episode and the length of PAF-normal ECG recording might be associated with 
subtle changes in ECG, indicating AF progression. Additionally, our study showed that AI could identify this 
subtle difference even in NSR. This could explain the reflected reversible electrical remodeling when there were 
AF symptoms or episodes. In this study, patients with PAF-NSR had higher HR and prolonged PR interval, QRS 
duration, and corrected QT interval than healthy persons who have no AF recorded. Previous studies showed that 
several ECG changes had been identified in patients with AF, including prolonged PR interval, P wave duration, 
and QT interval, and left ventricular hypertrophy23,26,27. Although we cannot understand and interpret these 
ECG changes because of a so-called “black box” limitation of a deep learning algorithm in terms of the approach 
to the decision for detecting AF, we have assumed that these changes related to atrial remodeling might have 
influenced our deep learning decision process.

We have evaluated an AI-based deep learning algorithm for the identification of AF during NSR. Further 
studies should evaluate the hypothesis that combining ECG analysis with AI and clinical comorbidities could 
enhance AF prediction. Such algorithms could be useful stratification tools for patients at risk for developing 
new-onset AF, especially in those with cryptogenic stroke. While there have been many reported traditional 
predictors of PAF after cryptogenic stroke, only a few studies focused on ECG analysis using AI9,10,28. Attia and 
colleagues reported that AI could help in identifying the point of care of individuals with AF by using 649,931 
ECGs acquired during NSR9. It has been reported that deep learning network could help in identifying new-onset 
AF and AF-related stoke using the 1.6 million 12-lead ECGs by Raghunath and colleagues10. In other words, the 
intensive analysis of ECG provided by the deep neural network might detect subtle and multifaceted perturba-
tions of ECG and to identify AF-related stroke patients predicted to be at a high risk of AF. Although further 
research is needed, these deep learning algorithms may be able to identify a high-risk subset of patients with 
potential stroke who may benefit from empirical anticoagulant therapy. Improved risk stratification would allow 
more patient-centered intervention and patient-tailored decision making for better AF management. Increasing 
awareness and detection of undiagnosed AF and administering OAC for thromboprophylaxis remains an ongoing 
issue. The increased detection yield of AF by AI could lead to the establishment of effective thromboprophy-
laxis with OACs to overcome the treatment gap between aspirin and OACs29. In the future, efforts should be 
directed at the primary prevention of AF to provide the basis for fine-tuning patient-tailored decision making. 
Furthermore, it could be used to predict responsibility of AF treatment, such as electrical and pharmacological 
cardioversions, and AF catheter ablation.

Figure 3.   The serial changes of the probability of PAF using AI deep learning algorithm program according 
to acquired ECG dates. A 72-year-old man diagnosed with PAF is calculated to have AF with probabilities of 
90% and 100% by the AI program during normal sinus rhythm, observed after his AF episode had terminated 
(red lightning bolt). Moreover, he was calculated to have AF with probabilities of 6.3% and 10% when there was 
no AF symptom. AF symptom is defined as palpitations, fatigue, dizziness, dyspnea, chest pain, and anxiety 
during AF. AI artificial intelligence; ECG electrocardiogram; NSR normal sinus rhythm; PAF paroxysmal atrial 
fibrillation.
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Several limitations in this study should be considered. First, as this study was a retrospective research con-
ducted in one tertiary hospital in Korea, it is necessary to validate the model with patients from other hospitals 
and countries. Study enrollment duration of data B is different from that of data A because of the limitation of a 
retrospective study. Baseline characteristics and electrocardiographic findings were different between data A and 
B. However, patients with PAF-NSR in both data A and B had similar characteristics and pattern of electrocar-
diographic findings. A prospective study is warranted to establish its usefulness in AF patients as a new feasible 
and non-invasive screening tool. The interpretation of deep learning models is challenging, and benefiting from 
deep learning models requires access to large datasets. Therefore, future studies to improve the interpretability of 
the developed deep learning models and to identify the right size of the training and test datasets are warranted. 
Second, despite focusing on a specific area on the ECG, the accurate rationale behind AI decision making remains 
unknown because of the nature of AI; therefore, this needs to be further explored. Recently, explainable AI has 
been studied, and the automatic detection of bias and the ability to explain its decision making process could 
be made possible in the near future30. Furthermore, we focused on developing screening tools for AF based on 
12-lead ECGs. Despite the favorable performance of our deep learning algorithm, overcoming false positives 
and negatives to identify the optimal treatment and predict prognosis remains an important issue. Nonetheless, 
health professionals can be alerted to potential occurrences of AF in the population with a higher risk of AF by 
the suggested algorithm, and additional evaluation with ECG monitoring might be warranted. Although it is 
difficult to rely on AI as a direct factor in clinical decisions involving the administration of drugs, such as novel 
OACs or antiarrhythmics, the algorithm can predict AF with high sensitivity to improve AF detection, which is 
an unmet need in the field, especially for patients with cryptogenic stroke.

In conclusion, the deep learning-based algorithm using 12-lead ECGs may discriminate “hidden” AF during 
NSR. Further studies are needed to evaluate their possible use in future prognostic models for precise decision 
making in daily practice.

Methods
Study design and population.  This retrospective cohort study included adult participants (age ≥ 18 years) 
with standard 12-lead ECGs acquired at least twice every 3 months to ensure accuracy of PAF and health-NSR 
group classification of AF rhythms recorded at the Inha University Hospital. ECG XML raw data to access and 
extract for AI use in our hospitals have been stored since 2015. Dataset A, acquired from March 2015 to March 
2019, was used for development and internal validation, and dataset B, acquired from April 2019 to April 2020 
after AI development, was used for external validation. All ECGs were acquired at a sampling rate of 500 Hz 
using a GE-Marquette ECG machine (Marquette Tools, Milwaukee, WI, USA), with the raw data stored as XML 
documents using the MUSE data management system in relational databases. We defined PAF as episodes of 
AF lasting < 48 h, which terminated spontaneously within 7 days or terminated following electric or pharmaco-
logical cardioversion within 48 h14. The first recorded ECG with AF was defined as the index ECG; subsequent 
NSR ECGs were defined as PAF-NSR ECGs. We identified healthy-NSR ECGs as the NSR ECGs of healthy 
individuals on the health screening list at our hospital, with NSR ECGs acquired at least twice every 3 months to 
ensure accuracy of health-NSR group classification of no AF rhythms recorded. Patients who continued to use 
antiarrhythmic drugs for > 3 months were excluded to rule out antiarrhythmic effects. Two electrophysiologists 
reviewed all the ECGs with corrections made to the diagnostic labels as necessary. Figure 1 shows the dataset 
creation and analysis strategy, which was devised to ensure a robust and reliable dataset for training, validating, 
and testing the network. The study protocol was approved by the Institutional Review Board of the Inha Univer-
sity Hospital (2018-630 and 2019-10-038) and complied with the principles of the Declaration of Helsinki. The 
need for obtaining patients’ informed consent was waived owing to impracticality and minimal risk of harm.

Development of the AI algorithm for identifying AF during NSR.  The AI algorithm was developed 
using an RNN to manage sequential data reflecting the ECG characteristics31,32. An ECG is a graphical display of 
the heart’s electrical activity depicting changes in voltage over time through electrodes. These electrodes detect 
subtle electrical changes resulting from cardiac muscle depolarization and repolarization during each cardiac 
cycle. Changes in the normal ECG pattern occur in numerous heart abnormalities, including arrhythmia. We 
have chosen the RNN of deep neural networks, which have advantages in dealing with time-series data, such as 
ECG data33. The bi-directional connection is added so that time flow can be considered in forward and backward 
passes, and long short-term memory is used to maintain a series of information in the short and long terms. We 
extracted and analyzed XML data from the MUSE data management system to minimize artifacts. All data files 
were stored in the XML format on a GE MAC5500 machine (GE Healthcare, Chicago, IL, USA). The ECGs were 
originally measured on 12 leads, but because of the deviceʼs data storage method, only data from eight leads 
were stored, excluding XMLʼs Lead III, aVR, aVL, and aVF. The data from these four leads can be calculated 
with simple arithmetic expressions, and it is common practice to approximate the data with these operations. 
Therefore, in this study, only the eight measured signals of leads I, II, V1, V2, V3, V4, V5, and V6 were used. The 
signals were measured for 10 s on each lead simultaneously. When the Base 64 encoded value was read, eight 
one-dimensional arrays for each XML file were obtained. As a 10-s signal has multiple pulses and the heart rate 
varies from person to person, approximately 10 or more pulses can be obtained per person. For training, we used 
all the individual beats sampled from each recording after discarding a few highly noisy signals. The validation 
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and test were performed by grouping the beats from a single recording. The result was finally computed by the 
ratio of test detected beats as PAF-NSR to the total number of beats in the recording. We separated the training, 
validation, and test sets to include a group of patient recordings in only one set.

AF has characterized atrial fibrillatory waves and an irregular ventricular rate on 12-lead ECG. We hypoth-
esized and verified that the vicinity of the P-wave before the QRS complex would be important for differentiating 
AF during NSR. To verify this hypothesis, we tested the accuracy of the binary classification by assessing whether 
each case was a PAF-NSR or healthy-NSR ECG; then, the data were evaluated once with five-fold cross-validation. 
The results demonstrated that the accuracy of PAF detection starts to improve when approximately ≥ 100 samples 
are used in the test. The experiment for the optimal sample size to identify AF was performed at the specific range 
of the R-R interval that was significantly related to PAF 12,34. We reweighted the input ECG signal f(t) using the 
window function g(t). For the optimal interval to detect subtle changes in PAF-NSR, we used the rectangular 
function as follows:

The reweighted signal h(t) was computed as follows: h(t) = f(t) × g(t). This process clarified the value ranges 
that particularly affect the trained model along the time-axis. The bi-directional connection was added so that 
time flow could be considered in forward and backward passes, and long short-term memory was used to main-
tain a series of information in the short and long terms (Fig. 4).

A ROC curve was created to test and validate the datasets and assess the AUC of the AI-enabled ECGs 
acquired during NSR to determine whether AF was present. Using the ROC curve for the small internal valida-
tion set, the probability threshold was set and applied to the testing dataset to derive the accuracy, sensitivity, 
specificity, and F1 score of the testing dataset. After the internal validation of this RNN-based deep learning 
algorithm, we developed AI applications that can be used on computers in our hospital. Continuous ECG data 
since 2019 were gathered and analyzed in real-time. Figure 5 describes the schematic representation of the AI 
algorithm and its application for detecting PAF.

Statistical analysis.  Continuous variables are reported as means ± standard deviations or medians and 
interquartile ranges, and categorical variables are expressed as percentages and frequencies. Comparisons 
between the two groups were performed using the independent sample t-test or chi-square test. The perfor-
mance of the AI model was measured using the AUC and ROC curves for predicting dataset accuracy, recall 
(sensitivity), specificity, and F1 score. The recall is the ratio of correctly predicted positive observations to all 
observations. F1 score (balanced F-score) is the harmonic mean of precision and recall. A two-sided value of 
P ≤ 0.05 was considered statistically significant. Statistical analyses were performed using SPSS statistical soft-
ware (SPSS version 21.0 for Windows, SPSS Inc., Armonk, NY, USA).

g(t) =

{

1 if 140 ≤ t < −20

0 otherwise

Figure 4.   Optimal section for AF detection during NSR. (a) The experiment for the optimal sample size to 
identify AF was performed at a certain range of the R–R interval, where we reweighted the input EEG signal f(t) 
using the window function g(t) (b). The reweighted signal h(t) is computed by the equation h(t) = f(t) × g(t) and 
illustrated by the red dotted curve (c). This process clarifies the value ranges that particularly affect the trained 
model along the time-axis. The bi-directional connection is added so that the time flow can be considered in 
forward and backward passes, and long short-term memory is used to maintain a series of information in the 
short and long terms (d). NSR normal sinus rhythm, AF paroxysmal atrial fibrillation; LSTM long short-term 
memory.
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Data availability
The data collected from the Inha University Hospital during this study are patient data obtained under the 
institutional review boards’ ethical approval. The corresponding author agrees to share de-identified individual 
participant data, the study protocol, and the statistical analysis plan with academic researchers following comple-
tion of a data use agreement specifying that this information cannot be shared. The coding used to train the AI 
model is dependent on annotation, infrastructure, and hardware and therefore, cannot be released.

Received: 16 March 2021; Accepted: 7 June 2021

Figure 5.   Description of the artificial intelligence algorithm for detecting PAF. All raw ECG data were stored 
as XML documents using the MUSE data management system in a relational database server. PAF probability 
is calculated through our developed AI algorithm using an RNN with two-dimensional convolution (red box). 
AI artificial intelligence; ECG electrocardiogram; LSTM long short-term memory; PAF paroxysmal atrial 
fibrillation; RNN recurrent neural network.
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