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Abstract
Regulation of immune responses is critical for ensuring pathogen clearance
and for preventing reaction against self-antigens. Failure or breakdown of
immunological tolerance results in autoimmunity. CD28 is an important
co-stimulatory receptor expressed on T cells that, upon specific ligand binding,
delivers signals essential for full T-cell activation and for the development and
homeostasis of suppressive regulatory T cells. Many   mouse modelsin vivo
have been used for understanding the role of CD28 in the maintenance of
immune homeostasis, thus leading to the development of CD28 signaling
modulators that have been approved for the treatment of some autoimmune
diseases. Despite all of this progress, a deeper understanding of the
differences between the mouse and human receptor is required to allow a safe
translation of pre-clinical studies in efficient therapies. In this review, we discuss
the role of CD28 in tolerance and autoimmunity and the clinical efficacy of
drugs that block or enhance CD28 signaling, by highlighting the success and
failure of pre-clinical studies, when translated to humans.
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Introduction
Shifting the balance toward restoration of immune tolerance 
could represent an important goal of the ongoing research in  
autoimmunity. Promising therapeutic strategies would be aimed 
to concomitantly dampen pathogenic inflammatory T-cell  
responses and induce/expand suppressive regulatory T (Treg)  
cells. Since its discovery in 19801,2 and based on the high  
homology between rodent (mouse and rat) and human CD283,4, 
several in vivo animal models have been generated for  
understanding the role of CD28 in T-lymphocyte activation and  
differentiation. CD28 is constitutively expressed on both naïve and  
activated T cells. By binding its ligands B7.1/CD80 or B7.2/CD86 
on the surface of professional antigen-presenting cells (APCs), 
through a MYPPPY motif within its extracellular immunoglobu-
lin (Ig)-V-like domain5,6 and to B7-H2 through a region outside 
the MYPPPY motif7, CD28 delivers signals, which lower the 
T-cell receptor (TCR) activation threshold, thus leading to opti-
mal cytokine production, cell cycle progression, and survival8.  
Furthermore, in the human system, CD28 is able to emanate TCR-
independent autonomous signals, which account for its critical 
role in regulating pro-inflammatory cytokine/chemokine produc-
tion and T-cell survival9,10. Finally, pre-clinical mouse models 
also showed a paradoxical function of CD28 in the development 
and homeostasis of CD4+CD25+ Treg cells11–13. Treg cells are  
negative regulators of T-cell signaling and contribute to T-cell  
anergy and to the maintenance of self-tolerance by suppress-
ing autoreactive T cells14. Therefore, CD28 can either reduce  
or enhance the susceptibility to autoimmune diseases by altering  
T-cell effector and Treg cell compartments. However, the trans-
lation of knowledge from pre-clinical mouse models led to the  
development of CD28 signaling modulators that often failed 
when applied in clinical trials. Here, we discuss CD28 regulatory 
functions in mouse models of autoimmune diseases by showing 
the success and failure of pre-clinical studies when translated to  
humans.

CD28 role in autoimmune diseases: from animal models 
to human clinical trials
Owing to the high conservation between Mus musculus and  
Homo sapiens, mice represent the favorite experimental models 
used by immunologists. Most of the data on the pivotal role of 
CD28 in regulating tolerance and susceptibility to autoimmunity  
derive from mouse models, which have been extensively used 
for clarifying the pathogenic mechanisms of several autoim-
mune diseases as well as for identifying molecular targets to 
translate in clinical trials. These efforts led to the development 
of soluble CTLA-4-binding domain linked to the Fc region of Ig  
(CTLA-4Ig) able to efficiently bind B7 molecules (with a  
20-fold higher affinity compared with the CD28Ig) and to block  
CD28/B7 interaction through the removal of its ligands from  
APC, a process known as trans-endocytosis, and by directly 
interfering with T/APC interaction15. The success obtained in  
animal models led to many pre-clinical and clinical trials in 
order to assess the potential use of CTLA-4Ig to ameliorate the 
onset, progression, and clinical course of human autoimmune  
diseases13. However, despite the positive results gained in  
non-human organisms, data from CTLA-4Ig clinical trials showed 
discrepant results that, for brevity, are discussed below for  
two major autoimmune diseases: rheumatoid arthritis (RA) and 
multiple sclerosis (MS).

Targeting CD28 in rheumatoid arthritis
RA is a chronic autoimmune disease affecting about 1% of the 
population and is characterized by the production of autoan-
tibodies, inflammation in the joints with progressive articular 
destruction, and systemic cardiovascular and pulmonary disor-
ders. Although the role for autoreactive T cells in the pathogen-
esis of RA has long been debated, these cells’ contribution to the 
disease has been established by the analysis of several murine  
models and pre-clinical and clinical interventions16. For 
instance, autoreactive T cells may help B cells to produce  
high-affinity autoantibodies as well as secrete inflammatory 
cytokines, thus contributing to synovial inflammation and osteo-
clast activation17. The pivotal role of CD28 in the pathogen-
esis of RA has been firstly shown in a collagen-induced arthritis 
(CIA) mouse model by the use of recombinant CTLA-4Ig. This 
molecule efficiently binds CD80 and CD86 and prevents access 
to these ligands, thus leading to the inhibition of lymphocyte 
expansion and pro-inflammatory cytokine production as well as 
to the induction of Treg cells by generating tolerogenic dendritic  
cells18. In 2005, a CTLA-4Ig compound, abatacept, was approved 
by the US Food and Drug Administration (FDA) for the treatment 
of RA, and its second-generation form, belatacept, which shows 
a higher-avidity binding for CD86, was approved by the FDA in 
2011 for the prevention of acute rejection in adult patients who 
have had a kidney transplant. The results obtained from clinical  
trials showed that abatacept treatment of patients with estab-
lished RA refractory to methotrexate or TNF therapy (or both)  
significantly reduced the progression of structural damage at  
1 year. The evaluation of the safety and efficacy of treatment 
over 5 and 7 years demonstrated that abatacept was also well  
tolerated and provided several clinical benefits and sustained  
disease remission19,20. The efficacy of abatacept-mediated reduced 
inflammation and disease progression was also highlighted by the 
maintenance of clinical remission following the withdrawal of  
abatacept21,22 or by reducing abatacept dose23.

More recently, a novel CD28 antagonist Ab, FR104, which 
selectively and efficiently prevents CD28 interaction with B7  
molecules without affecting the inhibitory signals transmitted 
through CTLA-4 and PD-L124, has proven to be as potent as  
abatacept in reducing clinical symptoms, inflammation, and Ab 
serum levels and more effective in suppressing the prolifera-
tion of autoreactive peripheral blood T cells in a rhesus monkey 
model of CIA25. Thus, blocking CD28 co-stimulatory signals has  
proven to be an effective therapeutic treatment for RA.

Targeting CD28 in multiple sclerosis
MS is an autoimmune chronic inflammatory disorder charac-
terized by the infiltration of macrophages, autoreactive T cells,  
and B lymphocytes within the central nervous system (CNS), thus 
causing demyelination and remyelination events, which finally  
lead to the loss of sensory and motor functions. On the basis 
of the data obtained from MS patients and murine models of  
experimental autoimmune encephalomyelitis (EAE), two models 
for explaining the etiology of MS have been proposed26. In the  
CNS-extrinsic (peripheral) model, the priming and activation of 
autoreactive myelin-specific T cells likely occur in peripheral lymph 
nodes, where the dendritic cells may present myelin epitopes 
to naïve T cells. Differentiated autoreactive effector/memory 
T cells in turn cross the blood-brain barrier and migrate into  

Page 3 of 8

F1000Research 2018, 7(F1000 Faculty Rev):682 Last updated: 30 MAY 2018



the CNS where they trigger an acute inflammatory response, 
thus mediating primary demyelination and axonal damage. For  
instance, in EAE, myelin-specific T-cell responses seem to initi-
ate in the CNS-draining cervical lymph nodes, thus suggesting 
that myelin proteins are constitutively present in some lymph 
nodes. Several pieces of evidence support a function for myelin  
proteins—such as MBP (myelin basic protein), PLP (prote-
olipid protein), and MOG (myelin oligodendrocyte glycopro-
tein)—as relevant antigens in both EAE and MS26. In contrast, 
the alternative intrinsic model predicts that events within the CNS  
trigger disease development, and the infiltration of autoreac-
tive lymphocytes occurs as a secondary phenomenon. Independ-
ently of the mechanism, data demonstrated that CD4+ Th1 and 
Th17 subsets exert a central role in the pathogenesis of both  
EAE and MS26.

The role of CD28 in MS pathogenesis has been extensively 
studied in animal models. Initial studies suggested that CD28/
B7 interaction is essential for the development of EAE27. How-
ever, data from Vogel et al. showed that the blockade of B7 by  
CTLA-4Ig or anti-B7 monoclonal antibodies (Abs) after T-cell 
priming led to severe CNS inflammation and demyelination 
and exacerbated EAE. These events correlated with the recruit-
ment of interferon gamma (IFN-γ), interleukin-17 (IL-17),  
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
and IL-10 producing CD4+ T cells in the popliteal lymph nodes 
and in the CNS28. Furthermore, recent data from a randomized 
clinical trial of abatacept did not show any significant efficacy in 
reducing neuroinflammation in patients with relapsing-remitting 
(RR) MS29. These discrepancies may be related to the ability of  
CTLA-4Ig to inhibit both co-stimulatory signaling through 
CD28 and co-suppressive signals mediated by CTLA-4. For 
instance, CTLA-4 knockout mice failed to develop EAE, an 
event associated with the expansion and activation of Treg  
cells30. More recent data by Haanstra et al. showing the reduc-
tion of both CNS inflammation and demyelination in human 
EAE in rhesus macaques following the administration of FR104 
CD28 blocking Ab31 strongly support a crucial role for CD28 in 
regulating the expansion and inflammatory function of auto-
reactive T cells in MS. Finally, the identification of single- 
nucleotide polymorphisms within genes encoding molecules 
belonging to the CD28/CTLA-4/CD80/CD86 pathway associ-
ated with MS susceptibility and the age of onset highlights the  
relevance of co-stimulation in MS pathogenesis32.

CD28 in the regulation of tolerance: spotlight on 
regulatory T cell functions
Despite the pivotal role of CD28 in favoring the proliferation,  
differentiation, and functions of conventional T cells, increas-
ing evidence accumulated during the last two decades high-
lighted a critical function of CD28 in promoting the homeostasis 
and suppressor function of Treg cells. Depending on the context,  
CD28 can deliver either pro-inflammatory or anti-inflammatory 
signals. Indeed, CD28 is required both for efficient genera-
tion of Treg cells in the thymus and for Treg cell peripheral  
homeostasis, as shown by the initial demonstration that mice 
deficient in CD28 or CD80/CD86 exhibit a strong reduction of 
thymic Treg cells and develop diabetes in a non-obese diabetic 
(NOD) background33. More recent data on conditional deletion 

of CD28 in FOXP3+ Treg cells showed a 25–30% decrease of 
thymic Treg cells, whereas the percentage of Treg cells in lymph 
nodes and spleens was unaffected, thus indicating that CD28 
influences the cell number and turnover of thymic, but not periph-
eral, Treg cells34. However, all mice developed signs of systemic 
autoimmunity, such as lymphadenopathy and splenomegaly, that 
could be prevented by supplementation with CD28-sufficient 
Treg cells. Moreover, they showed accumulation of activated  
T cells in the skin and liver and failed to suppress induced  
colitis and EAE34. A more detailed characterization of the skin  
disease in these animals revealed that, in the absence of CD28, Treg 
cells failed to mature and differentiate from a quiescent/central 
to an effector phenotype that is characterized by the downregula-
tion of the CCR7 chemokine receptor (lymphoid retention) and 
by the expression of the chemokine receptors required for skin  
homing, such as CCR635. More recently, the same group showed 
that CD28 was also essential for the numbers and function of 
follicular Treg cells, whose loss in a CD28-deficient mouse 
caused increased germinal center B cells and Ab production36.  
Similarly, Franckaert et al. found that CD28 deficiency in 
Treg cells caused a severe autoimmune syndrome as a result of  
impaired Treg cell proliferation and functions37. These data strongly 
suggest a role for CD28 in maintaining the homeostasis of both 
thymic and peripheral Treg cells and in sustaining their suppres-
sive functions necessary to maintain immune tolerance in vivo.  
However, other studies displayed discordant results. Vahl et al. 
showed that the differentiation and maintenance of effector 
Treg cells as well as their suppressive functions were severely  
compromised by TCR ablation in mature Treg cells38. Similar 
results were obtained by Levine et al.39, thus suggesting a  
critical role for continuous TCR signals in maintaining the  
suppressive function of Treg cells in vivo. Data from Dilek et al. 
showed that, in human Treg cells, blockade of CD28 interaction  
with CD80 or CD86 prolongs Treg cell/APC contacts and  
calcium mobilization without affecting cell motility40. In contrast, 
in a mouse model, CD28 interaction with CD80 is critical for 
stopping motility and forming symmetrical immunological  
synapse in the presence of antigen41. Finally, recent data from 
Kishore et al. showed a crucial role for CD28 signals in induc-
ing the migration of Treg cells and for their redistribution from 
lymphoid tissues42. This scenario was further complicated  
following the discovery, by the Hünig research group, of a class  
of CD28 superagonistic Abs (CD28SAs).

In rodent models, Hünig et al. found that CD28SAbs, by bind-
ing the laterally exposed C”D loop of the Ig-like domain of CD28 
in a parallel manner, were able to expand Treg cells without  
any pro-inflammatory responses43,44. The same group showed that 
in vivo treatment of EAE mice with CD28SAbs protected them  
from the disease45. This discovery led to a plethora of pre- 
clinical experiments in mouse models of RA, MS, Guillain–Barré  
syndrome, and type 1 diabetes (T1D) in order to evaluate the  
potential use of these CD28SAbs to ameliorate the clinical course 
of human autoimmune diseases46,47. The promising results obtained 
from these experimental models led to the generation of a fully 
humanized CD28SAb, named TGN1412, which, in March 2006, 
was injected in six healthy young men. Surprisingly, the phase 
I clinical trial turned into a catastrophe because all volunteers 
experienced a rapid and massive cytokine release syndrome48.  
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The ability of human CD28 stimulation to expand Treg cells 
has been supported by data showing that agonistic Abs49 and the  
natural ligands B7.1/CD80 and B7.2/CD86, in the presence of 
recombinant human IL-2, mediate ex vivo expansion of human 
Treg cells50. Other studies showed that human CD28 stimula-
tion by either natural ligands or agonistic or superagonistic Abs  
induced a strong increase in pro-inflammatory cytokine produc-
tion in CD4+ T lymphocytes from either healthy donors or patients 
with RR MS or T1D9,10. Such a pro-inflammatory signature of 
human CD28 should be taken into account when stimulating  
T cells in vivo, as re-empathized by TGN1412 administration to 
a humanized mouse model in which it induced strong lympho-
penia, pro-inflammatory cytokine production, and death within 
2–6 hours51. Thus, although more recent data from Tabares et al.  
showed that low doses of CD28SAbs increased the number of  
activated Treg cells without affecting pro-inflammatory cytokine 
production52 and no detectable inflammatory cytokines were 
found in the plasma of healthy volunteers in a new phase I trial53, 
CD28SAbs must be used with great caution. For instance, two 
recent studies showed that effector T cells from patients with MS 
may also acquire resistance to Treg cell suppressive mechanisms 
in an IL-6 receptor-dependent manner54,55 and CD28 stimulation 
of peripheral CD4+ T cells from patients with RR MS strongly 
upregulates IL-6 production9. Moreover, the non-physiologic  
activation by CD28SAbs fails to induce PD-1 on the cell surface, 
thus leading to the loss of a crucial negative feedback conferred 
by the PD-1/PD-L1 interaction56 that represents a key checkpoint 
of immune response by effecting its negative regulation mainly on 
CD2857.

Conclusions
All these data suggest that, despite many similarities, a diver-
gent evolution of about 65 million years may have generated 
significant differences between humans and mice that, if not 

taken into account, could determine new “errors in translation”.  
CD28 has a pivotal role in the orchestration of the immune response 
that makes it a precious target for the treatment of immune-
based diseases, but caution is needed to translate experimental 
results from mice to humans because differences in CD28 func-
tions and signaling capability might determine dramatic effects.  
For instance, our recent identification of a single amino acid 
variant within the cytoplasmic tail of human and rodent CD28  
(P212 in human versus A210 in rodent) as a critical residue for 
human CD28 pro-inflammatory and signaling functions58 raises 
the question of whether or not rodents can be used as a model for 
the study of CD28-mediated functions and for the safety of new  
therapeutic approaches. Thus, new efforts to develop better  
in vivo and in vitro systems are required to take advantage of 
the great potential retained in the co-stimulatory pathway and to 
provide novel insights into CD28 biology and implications for  
therapies.
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