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Abstract

Programmed cell death-1 (PD-1) is an inhibitory immune checkpoint receptor that negatively

regulates the functioning of T cell. Although the direct targets of PD-1 were not identified, its

inhibitory action on the TCR signaling pathway was known much earlier. Recent experiments

suggest that the PD-1 inhibits the TCR and CD28 signaling pathways at a very early stage─
at the level of phosphorylation of the cytoplasmic domain of TCR and CD28 receptors. Here,

we develop a mathematical model to investigate the influence of inhibitory effect of PD-1 on

the activation of early TCR and CD28 signaling molecules. Proposed model recaptures sev-

eral quantitative experimental observations of PD-1 mediated inhibition. Model simulations

show that PD-1 imposes a net inhibitory effect on the Lck kinase. Further, the inhibitory effect

of PD-1 on the activation of TCR signaling molecules such as Zap70 and SLP76 is signifi-

cantly enhanced by the PD-1 mediated inhibition of Lck. These results suggest a critical role

for Lck as a mediator for PD-1 induced inhibition of TCR signaling network. Multi parametric

sensitivity analysis explores the effect of parameter uncertainty on model simulations.

Introduction

Activation and subsequent proliferation of T cell are crucial events preceding pathogen clear-

ance. However, proper functioning of the immune system also relies on the ability of T cells to

promote self-tolerance. Hence, these processes are tightly controlled at multiple levels by regu-

latory mechanisms[1]. T cells have co-stimulatory and co-inhibitory receptors that coordinate

to modulate its response[2]. TCR (T cell receptor) activation is primarily responsible for the

activation of effector functions of T cells and its full activation needs co-stimulation by CD28

(Cluster of Differentiation 28) receptor [3, 4]. Induction of TCR and CD28 signaling pathways

result in T cell proliferation, increased glucose uptake and production of cytokines [5]. On the

other hand, inhibitory receptors CTLA-4 (Cytotoxic T-lymphocyte-associated antigen 4) and

PD-1 (Programmed Cell Death-1) negatively regulate the T cell response. Activation of PD-1

receptor has been shown to negatively affect several processes upregulated by the TCR and its

associated co-stimulatory signaling pathways[6, 7].Knockouts of the genes encoding these
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inhibitory receptors have produced autoimmune phenotypes in the animal models suggesting

their role in preventing autoimmune diseases [8–10].

The finding that cancer cells can be recognized and destroyed by the immune system, has

established the field of cancer immunology and the interaction between cancer cells and

immune system is being studied extensively [11, 12]. Cancer cells are found to evade the

immune system by employing numerous mechanisms and one such mechanism is the activa-

tion of negative regulators, PD-1 and CTLA-4 [13]. High expressions of ligands that are specific

to the negative regulatory receptors have been detected on the cancer and immune cells in the

tumor microenvironment [14, 15]. Further IFN-γ produced by the T cell induces the expression

of these inhibitory ligands on the cells of the tumor microenvironment [16–18]. Consequently,

T cells receiving high level of inhibitory signals become inactive and have suppressed effector

functions. PD-1 and CTLA-4 are extensively being studied and are considered as potential tar-

gets for activating the tumor infiltrating T cells that remain inactive in the immunosuppressive

tumor microenvironment [19, 20]. Antibodies against these receptors have shown exceptional

efficacy and are considered as promising drugs that could potentially revolutionize cancer treat-

ment. A few of the antibodies for instance, Nivolumab and Pembrolizumab targeting PD-1

receptor have been approved by the FDA (Food and Drug administration) for the treatment of

melanoma [2]. However, administration of these immune checkpoint inhibitor drugs has

numerous adverse effects and the treatment remains ineffective for a significant proportion of

patients [21]. Apart from its role in inducing tumor immune escape, its role in several viral

infections such as HIV (Human immunodeficiency virus), HCV (Hepatitis C virus) and HBV

(Hepatitis B virus) are also demonstrated [22]. Exhaustion of T cells due to persistent TCR stim-

ulation is observed during chronic viral infections [23, 24]. Hence, an understanding of how the

PD-1 receptor influences the T cell response is crucial for the development of effective treatment

against cancer, autoimmunity and several other diseases.

Mathematical models have been an integral part in understanding complex biological phenom-

ena such as apoptosis [25], cell cycle [26, 27], NF-κB oscillations [28], cellular differentiation [29],

cell signaling [30]. Mathematical modelling tools have become popular in explaining various aspects

of immune systems[31] such as discrimination of self and non-self antigen [32, 33], T cell activation

[34–36], cytokine signaling pathways [37–39], T cell differentiation[40]. With the accumulation of

quantitative and semi quantitative experimental results, modeling the TCR signaling network is

increasingly being explored [41]. Protein-protein docking, molecular dynamics and mathematical

modeling studies on interaction of PD-1 with its ligands have provided insights into the atomistic

details and factors affecting these interactions at cellular interfaces [42, 43]. Mathematical models

were developed to predict tumor response to immune checkpoint inhibitors, and immune check-

point therapy in combination with radiotherapy [44, 45]. However, until now there is no mathe-

matical model available to understand the influence of PD-1 on TCR signaling molecules.

To better understand the molecular basis of PD-1 induced inactivation of T cell signaling

molecules, we constructed a deterministic mathematical model of PD-1 regulatory pathway.

The proposed model investigates the role of feedback regulatory mechanisms in inhibition of

early TCR signaling by PD-1. The model simulations provides the mechanistic basis of several

features of PD-1 mediated inhibition that were observed in the recent experiments done using

the reconstitution system by Hui et al [46].

Results and discussion

Review of TCR and PD-1 activation pathway

TCR is stimulated by the binding of cognate p-MHC (peptide-major histocompatibility com-

plex) present on the surface of antigen-presenting cells. Stimulation of TCR results in the
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phosphorylation of cytoplasmic domain of the TCR complex at the ITAMs (Immunoreceptor

tyrosine-based activation motifs) by the Src family tyrosine kinase, Lck (Lymphocyte specific

protein tyrosine kinase). Phosphorylated CD3 ITAMs recruit Zap70 (Zeta-chain-associated

protein of 70 KDa), a Syk family kinase. Studies on ZAP70 phosphorylation have shown that

Y315 and Y319 are initially phosphorylated by Lck and this in turn allows the Y493 present in

the activation loop of the Zap70 to get phosphorylated. Phosphorylation of Y493 has shown to

be crucial for the complete activation of the kinase Zap70 [47, 48]. Activated Zap70 phosphor-

ylates TCR signaling molecules such as the adaptor molecule, LAT (Linker for activation of T

cells) and Slp76 (SH2-domain-containing leukocyte protein of 76 KDa)[49]. Phosphorylated

LAT recruits signaling proteins such as Gads (Grb2-related adapter protein 2), Grb2 which in

turn interact with other signaling proteins. Gads associates with Slp76 and this brings Slp76 in

close proximity to activated Zap70 bound to the cytoplasmic domain of TCR complex. Several

other molecules are recruited to form a complex called as signalosome and the signal is trans-

mitted to the downstream effector molecules. Signal is transduced to the nucleus by the activa-

tion of the transcription factors AP1, NFAT and NF-KB resulting in changes of the gene

expression [50–53]. CD28 receptor is activated upon binding to its ligands B7-1 and B7-2

inducing a conformational change in its cytosolic domain. This recruits PI3K and it transmits

signal by activating other signaling molecules[54].

PD-1 receptor is stimulated by binding to its ligand, PD-L1 or PD-L2 expressed on the sur-

face of APCs (Antigen Presenting Cells) [55]. Studies have demonstrated the inhibitory effect

of PD-1 stimulation on several of the TCR signaling components [56, 57]. PD-1 receptor upon

activation recruits the cytosolic tyrosine phosphatase Shp2, which in turn dephosphorylates

the TCR and CD28 signaling components. Recently, a FRET (Fluorescence Resonance Energy

Transfer) based assay was done by Hui et al. [46] using a biochemical reconstitution system, to

understand the molecular basis of suppression of T cell functions by PD-1. Few of the compo-

nents of the T cell signaling network were reconstituted to understand the effect of PD-1 acti-

vation on the sequence of events that occur after the phosphorylation of cytosolic domain of

the receptors TCR and CD28. In the in vitro reconstitution system, the cytosolic domains of

receptors and membrane bound proteins were tethered to the surface of LUVs (large unilamel-

lar vesicles) and the cytosolic signaling components were added to the solution. FRET based

techniques were used to quantify the phosphorylation state of the receptors involved. These

experiments demonstrated that Shp2 recruited by the cytosolic domain of PD-1 receptor can

directly dephosphorylate the cytosolic tails of CD3z and CD28. The key findings of the experi-

ments are that the CD28 is preferentially dephosphorylated in response to increasing PD-1

concentration whereas the CD3z chain and the other components of the TCR signaling tested

are less sensitive to the inhibitory effect of PD-1. Further these findings were also confirmed

using a cell based experiment employing Jurkat T cells and Raji B cells.

Model construction

We have constructed an ordinary differential equation (ODE) based mathematical model for

the early signaling events following the TCR, CD28 and PD-1 stimulation. The full network

diagram of the model is given in Fig 1 and a simplified influence diagram of the model can be

found in Figure A in S1 File.

Ligated PD-1 receptor is doubly phosphorylated in distributive manner by the active Lck

kinase (Lckactive). Shp2 binds to both the singly and doubly phosphorylated PD-1 to form the

complexes referred as CP1 and CP2 respectively. Shp2 bound to the phosphorylated PD-1

(CP2and CP1) distributively self-dephosphorylate the PD-1 to return either CP1 or mono/

unphosphorylated PD-1 and thereby releasing Shp2 from the complex. CD28 and CD3z

Mathematical modeling of PD-1 inhibitory pathway on early TCR signaling
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receptors are phosphorylated by the active Lck kinase and dephosphorylated by the Shp2

bound to the phosphorylated PD-1 (CP1 and CP2). We must mention here that free Shp2 does

not have any catalytic activity. We used Michaelis-Menten kinetics to model these phosphory-

lation and dephosphorylation reactions.

Phosphorylation of CD28 and CD3z lead to engagement of free PI3K and free Zap70 to

form PI3Kb andZap70icomplexes, respectively. Zap70 bound to CD3z (Zap70i) is phosphory-

lated by active Lck at tyrosine Y315 initially to form Zap70a1 and then at tyrosine Y493 to form

Zap70a2. Zap70a2 is considered as the active form of Zap70 and it phosphorylates LAT, referred

as LATi, to form phosphorylated LAT, referred as LATa. Although LATi is phosphorylated at

several sites by active Zap70, the individual phosphorylation events of LAT molecule are not

considered separately in the model to reduce the complexity and therefore these phosphoryla-

tions are considered as processive in nature. LATa is considered to be the active form of LAT

and it binds to the adaptor protein Gads to form the complex Gadsa. Gadsa in turn interacts

Fig 1. Network diagram of the model of PD-1 signaling pathway. Solid line represents a chemical reaction and dashed line represents catalytic effect on a

reaction. Three types of chemical reactions are involved in the model: phosphorylation, dephosphorylation and association-dissociation. Lckactive (=

Lckya+Lckyiya) is the total active form of Lck and similarly CPactive (= CP1+CP2) is the total Shp2 bound to PD-1. The model equations and parameters are given

in Table 1 and Table 2. The description of model variables are listed in Table A in S1 File.

https://doi.org/10.1371/journal.pone.0206232.g001
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with free Slp76 to form LATa-Gads-Slp76 complex referred as Slp76i. Slp76 bound to the

LATa-Gads complex is phosphorylated by Zap70a2 to form the complex Slp76a.

Experimental and molecular dynamics studies have shown that phosphorylation of Lck at

Y394 has an activating effect and whereas Y505 is inhibitory[66]. Further it is believed that

when the Lck is phosphorylated at Y505 first, it acquires a closed conformation and subse-

quent phosphorylation at Y394 does not change its activity [67]. Therefore five different forms

of Lck are considered in the model depending on the phosphorylation state of the two tyrosine

amino acid residues (Y394 and Y505): a. unphosphorylated at both tyrosines (Lcki), b. phos-

phorylated only at Y394 (Lckya), c. phosphorylated only at Y505 (Lckyi), d.Y394 and Y505

phosphorylated sequentially (Lckyiya) and e. Y505 and Y394 phosphorylated consecutively

(Lckpi). Consequently, among all forms of Lck in the model, only Lckya and Lckyiya were con-

sidered to be active and are capable of phosphorylating their substrates. All these reactions are

modeled using mass action rate law of chemical reactions.

Experimental results by Hui et al[46] on the recruitment of Shp2 at various doses of PD-1

demonstrated that Shp2 recruitment to the PD-1 saturates beyond a certain concentration of

PD-1. As the mechanistic basis to this observation is not known, a correction factor was intro-

duced in the equations for the phosphorylation of PD-1 to account for this observation. This

correction factor ensures the saturation of Shp2 recruitment at increasing concentration of

PD-1, depending on the concentration of the Lck in the system.

Table 1. List of model equations.

dCD3a
dt ¼

kp;cd3 �Lckactive �ðCD3T � ðCD3aþZap70iþZap70a1þZap70a2ÞÞ

KMp;cd3þðCD3T � ðCD3aþZap70iþZap70a1þZap70a2ÞÞ
�

kdp;cd3 �CPactive �CD3a
KMdp;cd3þCD3a

þ kd;zap � Zap70i � ka;zap � CD3a � ðZap70T � ðZap70i þ Zap70a1 þ Zap70a2ÞÞ

dCD28a
dt ¼

kp;cd28 �Lckactive �ðCD28T � ðCD28aþPI3KbÞÞ

KMp;cd28þðCD28T � ðCD28aþPI3KbÞÞ
�

kdp;cd28 �CPactive �CD28a
KMdp;cd28þCD28a

þ kd;pi3k � PI3Kb � ka;pi3k � CD28a � PI3KT � PI3Kbð Þ

dPD1p1

dt ¼
kp;pd1 �Lckactive �PD1

KMp;pd1þPD1
� 1 �

PD1p1þPD1p2

LckT k

� �
�

kp;pd1 �PD1p1 �Lckactive
KMp;pd1þPD1p1

� ka;shp � PD1p1 � Shp2þ kd1;shp � CP1 þ kd2;shp � CP2

dPD1

dt ¼ �
kp;pd1 �Lckactive �PD1

KMp;pd1þPD1
1 �

PD1p1þPD1p2

LckT k

� �
þ kd2;shp � CP1

dPD1p2

dt ¼
kp;pd1 �PD1p1 �Lckactive

KMp;pd1þPD1p1
� ka;shp � PD1p2 � Shp2þ kd1;shp � CP2

dShp2

dt ¼ � ka;shp � Shp2 � PD1p1 þ PD1p2

� �
þ kd1;shp � CP1 þ CP2ð Þ þ kd2;shp � CP1 þ CP2ð Þ

dCP1

dt ¼ kdp;cp2 � CP2 þ ka;shp � PD1p1 � Shp2 � kd1;shp � CP1 � kd2;shp � CP1

dCP2

dt ¼ � kdp;cp2 � CP2 þ ka;shp � PD1p2 � Shp2 � kd1;shp � CP2 � kd2;shp � CP2

dLckyiya
dt ¼ � kdpa;yiya � CPactive � Lckyiya � kdpi;yiya � CPactive � Lckyiya þ kpi;ya � Lckya

dLckyi
dt ¼ kdpa;yiya � CPactive � Lckyiya � kdpi;yi � CPactive � Lckyi þ kpi;i � ðLckT � ðLckyiya þ Lckyi þ Lckya þ LckpiÞÞ � kpa;yi � Lckyi þ kdpa;pi � CPactive � Lckpi

dLckya
dt ¼ kdpi;yiya � CPactive � Lckyiya � kpi;ya � Lckya � kdpa;ya � CPactive � Lckya þ kpa;i � ðLckT � ðLckyiya þ Lckyi þ Lckya þ LckpiÞÞ

dLckpi
dt ¼ � kdpa;pi � CPactive � Lckpi þ kpa;yi � Lckyi

dZap70i
dt ¼ ka;zap � CD3a � Zap70T � ðZap70i þ Zap70a1 þ Zap70a2Þð Þ � kd;zap � Zap70i � kp1;zap � Lckactive � Zap70i

dZap70a1

dt ¼ kp1;zap � Lckactive � Zap70i � kp2;zap � Lckactive � Zap70a1

dZap70a2

dt ¼ kp2;zap � Lckactive � Zap70a1

dLATa
dt ¼ kp;lat � Zap70a2 � LATT � ðLATa þ Gadsa þ Slp76i þ Slp76aÞð Þ � ka;gads � LATa � GadsT � ðGadsa þ Slp76a þ Slp76iÞð Þ þ kd;gads � Gadsa

dSlp76i
dt ¼ ka;slp � Gadsa � Slp76T � ðSlp76i þ Slp76aÞð Þ � kd;slp � Slp76i � kp;slp � Slp76i � Zap70a2

dSlp76a
dt ¼ kp;slp � Slp76i � Zap70a2

dGadsa
dt ¼ ka;gads � LATa � ðGadsT � ðGadsa þ Slp76i þ Slp76aÞÞ � kd;gads � Gadsa � ka;slp � Gadsa � ðSlp76T � ðSlp76i þ Slp76aÞÞ þ kd;slp � Slp76i

dPI3Kb
dt ¼ ka;pi3k � CD28a � PI3KT � PI3Kbð Þ � kd;pi3k � PI3Kb

Lckactive = Lckyiya + Lckya
CPactive = CP1 + CP2

https://doi.org/10.1371/journal.pone.0206232.t001
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Table 2. Description of model parameters and their values.

Kinetic rate constants

Parameter Description of rate constant Value used in the model (nM.

s)-1
Literature value

1 kdpa,yiya Dephosphorylation of Y394 from Lckyiya by CP1 and CP2 2.4×10−5 -

2 kdpi,yi Dephosphorylation of Y505 from Lckyi by CP1 and CP2 2.4×10−5 -

3 kdpi,yiya Dephosphorylation of Y505 from Lckyiya by CP1 and CP2 1.2×10−5 -

4 kdpa,ya Dephosphorylation of Y394 from Lckya by CP1 and CP2 6×10−6 -

5 kdpa,pi Dephosphorylation of Y394 from Lckpi by CP1 and CP2 1.2×10−7 -

6 ka,zap Association of CD3a and Zap70 7×10−5 3.5×10−5–

9.1×10−5

(nM.s)-1[58]

7 kp1,zap Phosphorylation of Zap70 Y315 in Zap70i by Lck 2×10−6 -

8 kp2,zap Phosphorylation of Zap70 Y493 in Zap70a1by Lck 3×10−5 -

9 kp,lat Phosphorylation of LATi by Zap70a2 10−3 -

10 ka,slp Association of SLP76 and Gadsa 1.5×10−2 1.5×10−2 (nM.s)-1

[59]

11 kp,slp Phosphorylation of SLP76i by Zap70a2 to form SLP76a 0.003 -

12 ka,gads Association of LATa and Gads to form Gadsa 5×10−4 -

13 ka,pi3k Association of CD28a and PI3K 1.4×10−6 -

14 ka,shp Association of phosphorylated PD1 and Shp2 6.5×10−3 10−3(nM.s)-1

[60, 61]

Parameter Description of rate constant Value used in the model (s-1) Literature value

15 kpi,i Auto-phosphorylation of Y505 of Lcki 6×10−7 [62]

16 kpi,ya Auto-phosphorylation of Y505 of Lckya 6×10−5 [62]

17 kpa,i Auto-phosphorylation of Y394 of Lcki 1×10−6 [62]

18 kpa,yi Auto-phosphorylation of Y394 of Lckyi 7.5×10−4 [62]

19 kp,cd3 Phosphorylation of CD3i by Lck 3.29 1–7 s-1 [63]

20 kdp,cd3 Dephosphorylation of CD3a by CP1 and CP2 5 -

21 kd,zap Dissociation of Zap70i 10−3 1.4×10−4–9×10−4

s-1 [58]

22 kd,slp Dissociation of SLP76i to Gadsa and SLP76 0.12 0.12 s-1[59]

23 kd,gads Dissociation of Gadsa into LATa and Gads 1.5 -

24 kp,cd28 Phosphorylation of CD28i by Lck 1 -

25 kdp,cd28 Dephosphorylation of CD28a by CP1 and CP2 5 -

26 kd,pi3k Dissociation of PI3Kb into CD28a and PI3K 9×10−4 -

27 kp,pd1 Phosphorylation of PD1 by Lck 7.5 -

28 kd1,shp Dissociation of CP1 into PD1p1 and Shp2 or CP2 into PD1p2 and Shp2 10 10 s-1 [61, 64, 65]

29 kdp,cp2 Self dephosphorylation of CP2 to form CP1 5×10−8 -

30 kd2,shp Dissociation of CP2 into PD1p1 and Shp2 or CP1 into PD1 and Shp2 due to self

dephosphorylation

1 1 s-1 [61, 64, 65]

Michaelis-Menten constants

Parameter Description of rate constant Value used in the model (nM) Literature value

31 KMp,cd3 Phosphorylation of CD3i by Lck 80 69–172 nM[63]

32 KMdp,cd3 Dephosphorylation of CD3a by CP1 and CP2 150 -

33 KMp,cd28 Phosphorylation of CD28i by Lck 1000 -

34 KMdp,cd28 Dephosphorylation of CD28aby CP1 and CP2 500 -

35 KMp,pd1 Phosphorylation of PD1 and PD1p1 by Lck to form PD1p1and PD1p2 respectively. 1000 -

Constant used in the correction factor

36 k - 41 -

https://doi.org/10.1371/journal.pone.0206232.t002
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Model parameterization and simulation

The model consists of 20 ODEs and 36 parameters. The model equations, the parameters val-

ues and the biological description of variables of the model are listed in the Table 1, Table 2

and Table A in S1 File respectively. Among 36 parameters we managed to get values for 13

parameters from experimental literature. Rest of the rate constants were parameterized to

reproduce the experimental data of Hui et al [46]. Shp2 may bind to doubly phosphorylated

PD-1 with higher affinity as compared to the singly phosphorylated PD-1. However due to

lack of experimental binding data and also to reduce number of parameters we preferred same

binding parameters for both the phosphorylated forms. CP1 and CP2 are assumed to have

same catalytic activity in dephosphorylation of all of its substrates. For doubly phosphorylated

Lck, dephosphorylation of Y394 is faster than that of Y505. Such preferential dephosphoryla-

tion of activating tyrosine by SHP-1 has been observed earlier[68]. CP1 and CP2 are also con-

sidered to be equally stable. However, rate constants for the auto-phosphorylation of different

forms of Lck were assumed to be different. Lck auto-phosphorylation rate constants have been

estimated and employed in a published mathematical model by Rohrs et al [62]. The catalytic

rate estimated by Rohrs et al for the tyrosines Y394 and Y505 differ several orders of magni-

tude depending on the Lck form that trans-autophosphorylates Lck. Although, the autopho-

sphorylations of a given Lck form by different forms are not distinguished in the model, the

rate constants employed in our model are well within the range of parameters used by Rohrs

et al.

The system of equations is solved with MATLAB using ode15s solver. Initial values for the

model components are based on the concentration of components used in the experiments by

Hui et al [46]. Simulations for a few experiments for which the concentrations are not men-

tioned, are done by using guessed concentrations. However, changing the concentration in

most cases did not alter the qualitative behavior of simulated responses. Initial concentration

for the following Lck states–Lckyiya, Lckya, Lckyi and Lcki are taken as 25% of the total Lck con-

centration. This is consistent with the relative proportion of different forms of Lck measured

in Jurkat T cells [67]. The initial condition of Lckpi was chosen to be 0 as it is believed that

majority of doubly phosphorylated Lck is derived by the phosphorylation of Lckya at Y505

[67].

Units of concentration and time in the model are nM and seconds, respectively. Hence,

initial concentrations of species were provided in nM. In few cases, nM concentrations in

the simulation results were converted to molecules/μm2 for easier quantitative comparison

with published experimental results. Michaelis-Menten constant of phosphorylation of

CD3z by Lck obtained from the literature had unit of μm-2 and was converted to nM before

employing in the model. To interconvert the concentration units between nM and mole-

cules/μm2we used 1 nM = 2.9 molecules/μm2as conversion factor. Concentration as surface

density (molecules/μm2) is estimated by dividing the number of molecules of a species (cal-

culated from concentration in nM) by the total area of exposed vesicle membrane [63]. The

surface density of protein (d) is related to the number of protein molecules (N) and surface

area of liposome (σ) as d = N/σ. The N and σ are given by, N = [P]VNA and σ = [L]VNAfaL,

where [P], [L], V, NA, f and aL are concentration of protein, concentration of phospholipid,

volume, Avogadro’s number, fraction of exposed lipid and the area of each lipid head. For a

liposome of diameter 200 nm, ~52.6% of total lipids were found to present on the outer

membrane of liposome [63]. Thus with a lipid concentration of 1 mM (as used by Hui et al.
[46]), the protein concentration of 1 nM becomes equivalent to surface density of ~2.9 mole-

cules/μm2.
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Model validation

We benchmarked our model by performing several simulations corresponding to the experi-

ments done by Hui et al on the biochemical reconstitution system. It includes the time course

of recruitment of Shp2, Zap70 and PI3k to PD-1, CD3z and CD28 respectively; comparison of

phosphorylation activity of Lck on CD3z and CD28; dissociation of Zap70 and PI3k from

their corresponding receptors in the absence of Lck activity; the dephosphorylation of TCR

signaling molecules and CD28 due to PD-1.

We investigated the recruitment of Shp2 to the PD-1 receptor upon its phosphorylation by

Lck. Upon introduction of Lck at time zero, Shp2 rapidly binds to PD-1 and the extent of bind-

ing increases with PD-1 concentration (Fig 2A). Here we did not allow Shp2 to dephosphory-

late the receptor after binding in order to recapture the experiments consisting of only binding

domain of Shp-2 lacking catalytic activity. In order to determine the effect of self-dephosphor-

ylation of PD-1 receptor bound to Shp2 on the kinetics of Shp2 recruitment, we allowed self-

dephosphorylations of CP1 and CP2 complexes. Results from Fig 2B indicate that after a rapid

initial engagement, Shp2 slowly dissociates from the PD-1 due to the dephosphorylations. Fur-

ther there is a weak dependence of Lck on the dissociation kinetics of Shp2 as the slope of the

line increases slightly with the increased Lck concentrations.

Next we investigated the kinetics of Lck phosphorylation and PD-1 mediated dephosphory-

lation of receptors in absence of each other. We determined the kinetics of engagement of

PI3K and Zap70 to their respective receptors upon Lck mediated phosphorylation of CD28

and CD3z in absence of PD-1 (Fig 2C). Similar to the experimental profile, simulation results

Fig 2. a) Time course of Shp2 (binding domain) recruitment for different concentrations of PD-1 receptor with 7.2 nM Lck and 100 nM Shp2. b) Time course

of full length Shp2 recruitment by PD-1 receptor for different Lck concentrations with 300nM PD-1 and 50 nM Shp2. c) Time course of PI3K and Zap70

recruitment in absence of PD1 with 800 nM CD3z and CD28, 300nM Zap70 and PI3k, and 100nM Lck. d) Time course of PI3K and Zap70 disengagement in

absence of Lck and PD1 with 300nMof Zap70i, 300nMof PI3Kb, and 200nMof CP2. e) and f) Effect of PD-1 on the time course of recruitment of PI3K and

Zap70 respectively. For e and f the concentrations used were 50 nM CD3z, 300 nM Zap70, 250 nM CD28, 500 nM PI3K, 300 nM Lck, 100 nM PD-1 and Shp2.

https://doi.org/10.1371/journal.pone.0206232.g002
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show that phosphorylation of CD3z and subsequent recruitment of Zap70 proceeds at a much

higher rate as compared to the CD28 phosphorylation and subsequent PI3K recruitment. Fur-

ther we investigated the PD-1 receptor mediated dephosphorylation dynamics of CD28 and

CD3z by calculating the percentage of free PI3K and Zap70 in absence of Lck (Fig 2D). Here

we started simulations with a certain initial concentrations of Zap70i and PI3Kb considering

that all of the CD28 and CD3z are already phosphorylated leading to full engagement of PI3K

and Zap70 respectively. The initial concentrations of Lck and PD-1 were also set to zero. Then

to determine the dephosphorylation kinetics we used a non-zero concentration of CP2 com-

plex as a proxy for membrane bound Shp2 used in the experimental protocol. In order to be

consistent with the experimental protocol we did not allow self-dephosphorylation, dissocia-

tion and the degradation of CP2 complex. In experiments Hui et al used full length Shp2 pro-

tein and it was directly attached to the membrane of vesicles. As observed in the experiments,

simulations results showed that the percentage of free PI3K and Zap70 increases monotoni-

cally with time with similar rates.

Till now we showed the kinetics of phosphorylations or dephosphorylations in absence of

either PD-1 or Lck. Now we investigated the kinetics when both of them are present essentially

simulating the whole network. Simulation results showed that in presence of PD-1 the steady

state values of free PI3K and Zap70 are higher than in absence of PD-1 (Figure B in S1 File).

This is due to dephosphorylations of CD28 and CD3z resulting release of respecting signaling

molecules. The kinetics of PI3K indicates that the effect of PD-1 on CD28 is drastic as com-

pared to CD3z (Fig 2E and 2F, Figure B in S1 File). We must point that all the simulation

results of Fig 2 are in excellent qualitative and quantitative agreement with the experimental

plots reported in Hui et al [46].

We now turn our focus towards the steady state results of model simulations and their com-

parison with reported experimental literature. We have carried out PD-1 dose response simu-

lations of the full model where at a given concentration of PD-1 we record response at 30 min

(Fig 3) as done in the experiments. Concentration of phosphorylated forms of each species was

calculated and normalized with respect to the phosphorylation in the absence of PD-1. Phos-

phorylated CD3z was calculated by adding the CD3a, Zap70i, Zap70a1 and Zap70a2 in the

model. Similarly, phosphorylated CD28 includes CD28a and PI3Kb; phosphorylated LAT

Fig 3. PD-1 dose response curves of various signaling molecules. Concentrations of the components are as follows: 100nM Lck and CD3z; 200nM PI3K;

300nM CD28, Zap70, Shp2, LAT, Gads and SLP76. These concentrations are same as Hui et al [46]. Concentration of phosphorylated species is calculated as:

Phosphorylated CD3z = CD3a+Zap70i+Zap70a1+Zap70a2, Phosphorylated CD28 = CD28a+PI3Kb, ZAP70 phosphorylated at Y315 = Zap70a1+Zap70a2, Zap70

phosphorylated at Y493 = Zap70a2, Lck phosphorylated at Y505 = Lckyi+Lckyiya+Lckpi, Lck phosphorylated at Y394 = Lckya+Lckyiya+Lckpi, Phosphorylated

LAT = LATa+ Gadsa+Slp76i+Slp76a and Phosphorylated SLP76 = Slp76a.

https://doi.org/10.1371/journal.pone.0206232.g003
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includes LATa, Gadsa, Slp76i and Slp76a. Lck phosphorylation at Y394 is calculated by adding

Lckyiya, Lckya, and Lckpi. Similarly, Lck phosphorylated at Y505 was calculated by adding

Lckyiya, Lckyi and Lckpi.

Consistent with the experimental results PD-1 leads to dramatic decrease in CD28 phos-

phorylation. Whereas in the same concentration range of PD-1, dephosphorylation of CD3z is

not significant (Fig 3). We have calculated the IC50 and Hill coefficient of the response by fit-

ting the dose response curves with a standard Hill function (k � xn=ðICn
50
þ xnÞ where k is the

maximum response). See Figure C in S1 File for fitting of dose responses with Hill function.

The IC50 value of CD28 is smaller in several orders of magnitude than that of CD3z highlight-

ing the sensitivity of CD28 towards PD-1 (Table 3). The dose response curves for individual

phosphorylations of Lck show similar IC50 values indicating the identical effects of PD-1 on

dephosphorylating tyrosines Y394 and Y505 of Lck. Further Y315 and Y493 tyrosines of

Zap70 have almost similar IC50 values in PD-1 dose responses. Two other key downstream sig-

naling molecules in CD3z pathway, LAT and Slp76, showed less susceptibility towards PD-1

dephosphorylation. Overall dose response results indicate CD28 is more potent target of PD-1

as compared to CD3z and Zap70 is stronger target among the target molecules in CD3z

pathway.

Insights and predictions

In Figs 2 and 3 we have shown results from the model that quantitatively recaptures the experi-

mental observations reported in Hui et al and thus validating the model. Hui et al suggested

that the net dissociation of Shp2 from PD-1 complexes seen in the experiments, is due to the

dephosphorylation of PD-1 by the PD-1-Shp2 complex. To test this, we performed simulations

in the presence and absence of self dephosphorylation activity of CP1 and CP2 complexes for a

large range of PD-1 and Lck concentrations. We find that till 500 nM of Lck there is a net

decrease in Shp2 binding with increase in PD-1 concentration (Fig 4) as compared to simula-

tions lacking self-dephosphorylation of PD-1 receptor by Shp2.

We generated similar surface plots to determine the dependence of phosphorylation of

CD28 and CD3z and the subsequent recruitment of PI3K and Zap70 by the respective phos-

phorylated receptors in absence of PD-1 (Figure D in S1 File). We find CD28 and CD3z are

completely phosphorylated irrespective of the substrate concentration for Lck concentrations

above 10 nM due to the large catalytic activity of Lck. This also suggests that Lck can

completely phosphorylate all the CD28 and CD3z at physiological concentration of these com-

ponents. Consequently PI3K recruitment and Zap70 recruitment are almost independent of

Lck concentration. In the case of Zap70, 100% recruitment is achieved at approximately

500nM of CD3z concentration. Percentage of active Zap70 increases with increasing CD3z

Table 3. Comparison of model calculated and experimental [46] IC50 values for PD-1 dose response curves.

Signaling molecule Hill coefficient IC50 (PD-1 molecules/μm2) Experimental IC50 (PD-1 molecules/μm2)

CD3z 1.40 3017.4 >3000

CD28 1.25 126.3 96

Lck (Y505) 1.15 680.0 400

Lck (Y394) 1.05 980.7 ~600

Zap70 (Y315) 1.04 1285.0 ~3000

Zap70 (Y493) 1.07 919.1 ~1400

LAT 2.09 4698.6 >3000

SLP76 1.62 3779.0 ~3000

https://doi.org/10.1371/journal.pone.0206232.t003
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and Lck concentrations thus showing stronger dependence on CD3z and Lck. As opposed to

this, complete recruitment and activation of Slp76 is achieved at low Lck and CD3z concentra-

tions (Figure D in S1 File).

Now to assess the effect of PD-1, on the same variables we ran simulations with 300 nM

PD-1 and 300nM Shp2 (Fig 5). Introduction of PD-1 leads to a dramatic reduction in CD28

phosphorylation and subsequent reduction in PI3K recruitment as compared to their response

without PD-1 (Figure D in S1 File). Whereas CD3z phosphorylation is reduced only at low

Lck concentration highlighting the differential sensitivity of CD28 and CD3z towards PD-1.

Lck at higher concentrations could reduce the inhibitory effect of PD-1 on the phosphoryla-

tion of these receptors. Due to the less sensitive nature of CD3z to PD-1 the effect on associa-

tion of downstream signaling molecule Zap70 is minimal (Fig 5D).

In order to find out the effect of PD-1 for a range of its concentration, we performed a two

dimensional scan of PD-1 and either CD28 or CD3z as appropriate (Fig 6) with 300 nM Shp2

and 100 nM Lck. PD-1 fully reverses the effect of Lck on CD28 even at its moderate concentra-

tion (~300 nM) resulting a complete loss of engaged PI3K (Fig 6A & 6C). Inhibition of CD3z

phosphorylation happens at PD-1 concentrations greater than 500nM only when the CD3z

concentration is also higher (Fig 6B). The maximal inhibition happens only at very high con-

centrations of PD-1 and CD3z. Recruitment of Zap70, its subsequent activation (Zap70a2) and

activation of Slp76 are affected only at very high concentration of PD-1 (Fig 6D–6F). The effect

of PD-1 on Slp76 is very weak as Slp76 is not a direct target of PD-1. Thus PD-1 causes a dual

effect by a strong inhibition of CD28 pathway and a moderate inhibition of CD3z.

PD-1 dose response simulations (and experiments) showed that PD-1 dephosphorylates

both the activating (Y394) and inhibitory (Y505) tyrosine amino acid residues of Lck (Fig 3).

Although, both the tyrosine amino acids are dephosphorylated to similar extent by PD-1 (simi-

lar profiles in the PD-1 dose response curve in Fig 3), due to the presence of a doubly phos-

phorylated species of Lck which retains catalytic activity, it is unclear if the dephosphorylation

of Lck has a net activating or inhibitory effect. In the model Lckyiya and Lckya are considered as

active Lck forms capable of phosphorylating its substrates PD-1, ZAP70, CD28 and CD3z, and

all other forms of Lck are considered as inactive. In the absence of PD-1, both the active and

inactive Lck forms are present in equal proportion but in the presence of 300nM PD-1, pro-

portion of inactive Lck increases over time (Fig 7A). A two dimensional variation of PD-1 and

Fig 4. Recruitment of Shp2 after 30 min of simulation for various doses of Lck and PD-1 with 300 nM of Shp2 without (left) and with (right) self-

dephosphorylation of PD-1 by Shp2.

https://doi.org/10.1371/journal.pone.0206232.g004
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Lck shows (Fig 7B) that above 100 nM Lck concentration the proportion of active Lck

decreases systematically with increasing PD-1 indicating its net inhibitory effect on Lck. At

Lck concentrations below 100nM, the decrease in active Lck proportion with increasing PD-1

concentration is less and this is due to the requirement of Lck for PD-1 activation. Thus the

model predicts that PD-1 imposes a net inhibitory effect on Lck and thereby causing an indi-

rect inhibition to CD28 and CD3z signaling.

These observations raise the question, how significant is the inactivation of Lck in inhibit-

ing the TCR and CD28 early signaling molecules. To explore this, we performed simulations

where CP1 and CP2 (PD-1-Shp2 complexes) do not dephosphorylate Lck but dephosphorylate

its usual target CD28 and CD3z. In the absence of Lck dephosphorylation by PD-1/Shp2 com-

plexes, the inhibitory effect on Zap70 and Slp76 molecules are shown in Fig 7C and 7D.

Although activation of CD3z and CD28 receptors were not greatly affected (not shown) but

the activation of Zap70 and Slp76 are significantly affected without Lck dephosphorylation.

Hence, the inhibitory effect of PD-1 on the downstream components such as the Zap70 and

Slp76 are achieved indirectly via Lck dephosphorylation.

We have shown that after rapid engagement Shp2 dissociates from the PD-1 at later time

(Fig 2B). To test if self-dephosphorylation is solely responsible for this net dissociation or loss

of Lck activity due to Lck dephosphorylation affects the net dissociation, we again carried out

perturbation simulations of the model. As shown before without self-dephosphorylation and

with Lck dephosphorylation there is no recovery of Shp2 (Fig 8B). However in the reverse

Fig 5. Effect of 300 nM PD-1 and Shp2 on (a) CD28 phosphorylation, (b) CD3z phosphorylation, (c) PI3K recruitment and (d) Zap70 recruitment for a

range concentrations of Lck and CD28 or CD3z. Concentrations of other components are same as in Fig 3.

https://doi.org/10.1371/journal.pone.0206232.g005
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condition also the model predicts no net dissociation of Shp2 from PD-1 (Fig 8A). These simu-

lations show that both the self dephosphorylation and Lck dephosphorylation are collectively

responsible for the observed net dissociation of Shp2 from PD-1. Previous simulations in Fig 7

show that the Lck is inactivated by this PD-1 induced dephosphorylation. Hence, the self

dephosphorylation activity of CP1 and CP2 complexes, decrease their stability and the inactiva-

tion of Lck decreases the phosphorylation of PD-1 thus inhibiting the formation of these inhib-

itory complexes.

Sensitivity analysis

Predictions and output of a mathematical model rely largely on parameter values. Hence, it is

crucial to test the robustness of the model output to changes in parameters. Parameter sensitiv-

ity analysis is a technique extensively used for mathematical models to determine the fluctua-

tions in the model output due to uncertainty in the parameters used. We used global

parameter sensitivity analysis where all the chosen parameters are varied simultaneously to

explore their collective effect on the dynamics of the system (see Materials and methods).

Global sensitivity analysis offers advantage over the local parameter sensitivity analysis, as it

explores the impact of the interaction between uncertainties in different parameter values and

is considered more reliable [69]. Owing to the large number of optimized parameters, global

sensitivity analysis was performed to test the robustness of Shp2 recruitment, PI3K recruit-

ment and Slp76 activation in a ‘modular’ manner.

1) Shp2 recruitment by PD-1:

Dissimilarity measure, K-S statistic (see Materials and Methods) was calculated for parame-

ters involved in the activation of PD-1 by phosphorylation, formation of CP1 and CP2 com-

plexes and parameters for Lck auto-phosphorylation and dephosphorylation. This module

Fig 6. Effect of PD-1 on (a) CD28 phosphorylation, (b) CD3z phosphorylation, (c) PI3K recruitment, (d)Zap70 recruitment, (e) activation of Zap70

(Zap70a2) and (f) activation of Slp76 (Slp76a) with 300 nM Shp2 and 100 nM Lck.

https://doi.org/10.1371/journal.pone.0206232.g006
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includes 15 parameters (all other parameters were kept constant) and representative cumula-

tive frequency distributions for most and least sensitive parameters were provided in Figure E

in S1 File. The K-S statistic estimates for all of the 15 parameters are summarized in the bar

plot given in Fig 9A. The results suggest that the percentage of Shp2 recruitment is influenced

mainly by changes in the parameters kp,pd1 and ka,shp which are the phosphorylation rate con-

stant of PD-1 and association rate constant of Shp2 to phosphorylated PD-1. Their K-S statistic

values are approximately 0.13. Shp2 recruitment is relatively robust to changes in the phos-

phorylation and dephosphorylation rate constants of Lck.

2) PI3K recruitment by phosphorylated CD28:

Sensitivities of PI3K recruitment to 21 different parameters were calculated keeping other

parameters constant. Out of all the parameters tested, the parameter ka,pi3k, rate constant for

association of PI3K to phosphorylated CD28 was the most influential, with a K-S statistic value

Fig 7. (a) Time course of active and inactive Lck with and without PD-1. (b) Percentage of active Lck at 30 minutes for different PD-1 and Lck

concentrations. (c) Effect of Lck dephosphorylation on Zap70 Y493 phosphorylation and (d) Slp76 phosphorylation. The concentrations used for a-d

are 100nM CD3z and Lck, 300 nM Zap70, Shp2, LAT, SLP76 and Gads. Concentration of PD-1 was 300 nM for (a) and 500 nM for (c) and (d).

https://doi.org/10.1371/journal.pone.0206232.g007
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of ~0.3, in affecting PI3K recruitment. Parameter kd,pi3k, dissociation rate constant of PI3K

from CD28, had a K-S statistic value of 0.1. However, the K-S statistic for other parameters

were less than 0.05, suggesting that PI3K recruitment is insensitive to a wider range of these

parameter values around their optimized values (Fig 9B).

3) Slp76 activation:

Effect of uncertainties in 29 parameters on Slp76 activation was tested. The remaining 7

parameters involving CD28-PI3K module were kept constant. Among all the 29 parameters,

K-S statistic for the parameters kp1,zap, kp2,zap, kp,lat and kp,slp are high (K-S statistic values are

approximately 0.35, 0.2, 0.15 and 0.15 respectively), highlighting their relative importance in

determining the Slp76 activation (Fig 9C). These parameters are the rate constants of phos-

phorylation of Zap70 by Lck, LAT and Slp76 by activated Zap70. Rest of the parameters had a

K-S statistic value less than 0.05.

Conclusion

We propose a mathematical model of PD-1 pathway that negatively regulates the TCR activa-

tion pathway. The model has been parametrized and benchmarked to quantitatively recapture

kinetic and dose response experimental results from recently published paper by Hui et al[46].

Further it explored two dimensional dose responses of various signaling molecules for a wide

concentration range of PD-1 and CD28 or CD3z. The model provides molecular insights into

the inhibitory effect of PD-1 on several key regulators such as CD28, CD3z, PI3K, Zap70 and

Slp76. A key finding of the model is that PD-1-Shp2 complex targets TCR pathway both

directly and indirectly. On the direct path, it leads to dephosphorylation of CD28 and CD3z

resulting a decrease in binding of PI3K and Zap70, respectively. On the indirect path, it

dephosphorylates Lck leading to a net inhibitory effect on Lck and thereby it indirectly down-

regulates activation of Zap70, LAT, Slp76 in the TCR-CD3 pathway whose activation requires

phosphorylated Lck. Therefore PD-1 causes a dual effect to the TCR activation pathway by

downregulating CD28, CD3z directly and Zap70, LAT, Slp76 indirectly via Lck dephosphory-

lation. The model highlights the importance of Lck dephosphorylation by PD-1-Shp2 complex

in downregulating the TCR pathway. Global parameter sensitivity analysis of the model finds

crucial parameters in PD-1 mediated dephosphorylation of several key molecules. Higher

Fig 8. Time course of free Shp2 in the absence of (a) Lck dephosphorylation and b) PD-1 dephosphorylation for different PD-1

concentrations with 100nM Lck and 300nM Shp2.

https://doi.org/10.1371/journal.pone.0206232.g008
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parameter sensitivity of Lck mediated phosphorylation rate of Zap70 in the Slp76 activation

pathway further suggests that the inhibition of Lck could have a relatively large impact on the

early TCR signaling. Collectively, simulation results point out that the Lck could be a potential

target employed by PD-1 pathway to inhibit the activation of several signaling components or

alter several signaling pathways. Here we used manual approach in parameterizing our model

to benchmark with the experimental data. We preferred the manual approach as our primary

goal was to model the network of PD-1 pathway and not to estimate the parameter values of

an established pathway. However one can use a parameter estimation tool box to optimize the

model parameters.

Fig 9. Parameter sensitivity: Bar plot showing K-S Statistic measure of parameters tested for sensitivity of Shp2 recruitment (% of bound Shp2) (a),

PI3K recruitment (% of bound PI3K) (b) and Slp76 activation (% of Slp76a) (c).

https://doi.org/10.1371/journal.pone.0206232.g009
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Our proposed model is deterministic in nature considering all the cells in a population as

identical in every aspect. Therefore the physiological basis of dose response curves with vary-

ing quantity/dose of signaling molecules such as Lck, PD-1, CD28 and CD3z in our model

needs to be highlighted. A clonal population of cell exhibits large cell-to-cell variation in cellu-

lar content, shape, size and cell cycle phases due to intrinsic and extrinsic source of heteroge-

neity. The variations in expression of key signaling components, both in upstream and

downstream pathways, ultimately lead to heterogeneous response across the population [70–

74]. Although our model does not consider cell-to-cell variation of proteins, however the

deterministic dose response curves provides an avenue to estimate the dynamic range of

response and the critical amount of signal needed for the population to respond (IC50) for a

heterogeneous population of cells. Therefore in a way our model sets the background for pre-

dicting the outcome of the system in presence of population heterogeneity.

A key feature in PD-1 pathway is the presence of a negative feedback loop involving PD-1

and Shp2 (Fig 1). In this motif activation of PD-1 leads to recruitment of Shp2 that ultimately

deactivates PD-1 via dephosphorylation. A negative feedback loop is well known for its adapta-

tion property that allows the system to respond to the external signal and reset back to its origi-

nal state even in presence of persistent signal [75]. The resetting of the system is very crucial

for T cell to avoid any unwanted over- or under-reaction of the immune system. Further for

coherent and collective response of a population of T cell against pathogen the effect of inevita-

ble noise must be minimized by the regulatory pathway. Previous experimental and computa-

tional studies have demonstrated that network architecture, in particular negative feedback

loop and feed forward loop, play a crucial role in reducing molecular noise [76–81]. Therefore

these network motifs in the PD-1 pathway may have been selected over evolution due to their

role in reducing noise in addition to their usual deterministic properties.

Early TCR signaling has numerous potential implications. Recently, a study has shown a

direct role of early TCR signaling in the activation of the enzyme pyruvate dehydrogenase

kinase 1 (PDHK1). Consequently, mitochondrial import of pyruvate is inhibited and aerobic

glycolysis is promoted [82]. Hence, early TCR signaling is important in regulating the aerobic

glycolysis, which is characteristic of activated T cells. Model developed here could be employed

to understand the inhibition of several early TCR signaling molecules due to PD-1 in the case

of T cell activation or T cells exhausted due to chronic viral infections.

Experiments done on membrane based reconstitution system are considered physiologi-

cally more realistic when compared to traditional solution based experiments for signaling

studies[62]. Although the model recaptures several of these observations, in vivo scenario

could be considerably different from the network modeled here. Future improvements in the

model could potentially result in a better prediction and reproduction of in vivo scenario.

Although the impact of PD-1 on Lck activity was explored here, regulation of Lck activity is

very complex due to the action of several other kinases and phosphatases such as Csk and

CD45[83]. Model simulation could be made more realistic by considering the timescale of sep-

aration of TCR and PD-1 activation. This is because PD-1 expression itself is under the control

of TCR signaling. In fact, recent studies have shown that the strength of TCR signaling influ-

ences PD-1 expression [84, 85]. Moreover, binding dynamics of receptors on the T cell surface

to the ligands present on the surface of antigen presenting cells could significantly impact

downstream activation. However, this model serves as a base to which such effects could be

incorporated provided reliable experimental results or kinetic measurements are available.

Finally, the proposed model is based on a set of deterministic dynamical equations.

Although our deterministic model recaptures many key experimental observations however

being deterministic in nature it is not capable of explaining single cell data which requires sto-

chastic modeling. It is established that in the early T cell receptor activation pathway
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population heterogeneity of key signaling proteins, such as Lck, Zap70, play a crucial role [70,

86]. However in this paper our main objective was to establish a mechanistic mathematical

model of PD-1 pathway and stochastic calculations of the current model is definitely a scope of

the future.

Materials and methods

Parameter sensitivity analysis

To implement global sensitivity analysis, we make use of multi parametric sensitivity analysis

(MPSA) where multiple parameters are selected together for testing the sensitivity. Each param-

eter was picked from a uniform distribution with a range ±50% of the optimized parameter

value used in the model (Table 2). We used Latin hyper cube sampling technique to create a

sample of 20000 values for each parameter. Parameter samples were permuted randomly and a

combination of parameters was taken as a parameter set, thus generating 20000 parameter sets.

We calculated the parameter sensitivity on the time course data of various quantities. 11 differ-

ent PD-1 concentration values were generated that include 0 nM and 10 logarithmically spaced

between 1 and 1000 nM. In each PD-1 concentration, we calculated the sum squared deviation

over 10 different time points with respect to the time course of optimized parameter. Finally we

estimated the overall error by summing the squared deviation over all PD-1 concentrations. In

order to determine acceptable parameter combination, we set a threshold by taking the average

of the overall sum of squared error determined over 20000 parameter sets. Any parameter com-

bination that results overall error below the threshold was considered as acceptable and other-

wise it was considered unacceptable [87]. We calculated cumulative frequency distribution for

individual parameter values from the acceptable and unacceptable parameter sets. See Figure E

in S1 File for representative cumulative frequency distributions. To determine the sensitivity of

a parameter we calculated Kolmogorov-Smirnov (K-S) statistic which quantifies the dissimilar-

ity of two probability distributions by measuring the maximum perpendicular distance between

their respective cumulative distribution functions. The more dissimilar the two distributions

are the distance between the two distributions would be higher. Hence, higher the K-S statistic,

higher is the sensitivity of that particular parameter[88]. Concentration of components used in

the sensitivity analysis is close to physiological concentrations. Sensitivity analysis was per-

formed separately for three different measures in the model–percentages of Shp2 recruitment,

PI3K recruitment and active form of Slp76 pertaining to sensitivities of PD-1-Shp2 complex for-

mation, early CD28 signaling and early TCR signaling, respectively.
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