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Abstract: The synthesis of MMT and poly(o-anisidine) (MMT/POA) clay nanocomposites was carried
out by using the chemical oxidative polymerization of POA and MMT clay with POA, respectively.
By maintaining the constant concentration of POA, different percentage loads of MMT clay were
used to determine the effect of MMT clay on the properties of POA. The interaction between POA
and MMT clay was investigated by FTIR spectroscopy, and, to reveal the complete compactness
and homogeneous distribution of MMT clay in POA, were assessed by using scanning-electron-
microscope (SEM) analysis. The UV–visible spectrum was studied for the optical and absorbance
properties of MMT/POA ceramic nanocomposites. Furthermore, the horizontal burning test (HBT)
demonstrated that clay nanofillers inhibit POA combustion.

Keywords: MMT (montmorillonite) clay; (poly)ortho-anisidine; nanocomposites; nanofiller; HBT

1. Introduction

The area of science and competition in the preparation of better materials with impor-
tant characteristics is steadily expanding, and particularly in nanotechnology areas, a vast
quantity of studies and improvement has been observed over the last few centuries [1–3].
Nanotechnology is becoming the largest area of growth in the world [4]. This technology
can be used in all areas of science, and so nanotechnology is a multidisciplinary technol-
ogy [5–7]. Nanotechnology effectively addresses products with at least one aspect in the
nanometer spectrum [8–11]. Nanotechnology involves buildings and systems with fresh
characteristics owing to the configuration of their atoms [12–14]. Nanocomposites are, in
fact, mixtures in which one of the parts at the nanometer stage is available. Differences
in particle characteristics can be seen when the particle size is below a certain point; this
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point is the nanometer stage. This is essential for enhancing characteristics, and these
characteristics can be used for product enhancement [15–17].

In order to immediately recognize performance upgrades (thermochemical, limited,
fireproof capability) with the filler-dispersion levels and the quality of the relations of
the nanoparticle’s solution, the nanocomposites have an obvious effect on their macro-
scopic characteristics. These nanocomposites display fresh component characteristics and
are likely to become prospective applicants in different areas, such as corrosion safety,
catalysis, electrode equipment, biosensors, storage equipment, and sensors [18–20]. In the
past century, the strength, rigidity, and high aspect ratio of nanocomposites were high.
Nanocomposites have been examined through chemical polymerization and humidity
detecting features. Polymer clay nanocomposites have been found to enhance the gas
obstacle, thermal stability, mechanical resistance, and flame retardancy [21–23].

Poly(ortho-anisidine) POAS/MWCNT compares this with plain Polymer POAS con-
duction to verify the actual progression in the polymer matrix owing to the existence of
MWNT [24–26]. MMT clay is one of the smectite clusters, with a framework made of
an octahedral sheet, which is sandwiched between tetrahedral silicate sheets [26–28]. It
is the most commonly used as characteristic dirt and has been efficiently interlinked in
different nanocomposite frameworks [29]. It has been used as both an excipient and a
vibrant ingredient in pharmaceutical products. In comparison with Pt backed up with
POA/MWCNT for formaldehyde oxidation, poly(o-anisidine)/MWNT was proven to have
stronger catalytic activities [30]. To decrease the very costly Pd price and enhance their
catalytic performance, it should be highlighted that Pd-based bimetallic nanostructures are
particularly important as low-cost anode catalysts due to their reduced prices, increased
density, and increased resistance to poisoning.

In this work, we show that the addition of mono (o-anisidine) (POAS) to CNTs can
make excellent HCl molecular transmitters feasible. Following exposure to small HCl
concentrations in the environment, the POAS-modified CNT test shows significant electric-
conductance modulation. Especially at room temperature, these advanced sensor charac-
teristics are accomplished. Furthermore, we demonstrate that CNT and nanocomposites
of poly(o-anisidine) can be easily scaled up through a simple growth approach with a
collection of CNTs for self-assemblies. The existence of polymeric-matrix CNTs appears to
lower the unpoetic form’s insulating capacity, but they cannot produce a large increase in
the conductive features [31]. For doped POA and POA/CNT, the specific conductivity of
pure polymers for all samples of different thicknesses is nearly the same magnitude. CNTs
have insufficient capacitance characteristics.

2. Experimental
2.1. Materials and Chemicals

o-anisidine, double-distilled water, ammonium peroxy disulfate (APS), ethanol (CH3
CH2OH) HCl, diaminodiphenylamine (DDPA), ammonium persulfate ((NH4)2S2O8), and
montmorillonite clay (MMT clay) were used. All of the chemicals were bought in analytical
grades and put to use right away.

2.2. Preparation of Poly(o-anisidine)

POA was prepared by the chemical-oxidative-polymerization technique (Figure 1).
An amount of 0.2463 g of POA in 20 mL of 1 M HCl was used to prepare Solution A. An
amount of 0.02463 g of DDPA was added to Solution A. An amount of 0.4563 g of APS
in 20 mL of 1 M HCl was used to produce Solution B. Solution A was kept in an ice bath
by magnetic agitation. Subsequently, Solution B was inserted dropwise to Solution A on
continuous stirring for 3 h. The color of the solution turned green, and then the agitation
was stopped. Then, it remained undisturbed for some time. The product was purified with
1 M of HCl, and then with distilled water. The product was added to a Petri dish and was
kept in the oven overnight at 80 °C. The sample was obtained as a powdered dry form.
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2.3. Preparation of MMT/POA Clay Nanocomposite

Nanocomposites of MMT/POA clay were constructed by the chemical-oxidative-
polymerization technique, as mentioned for the POA. Different desired percentages of
MMT concerning POA clay were added at the time of polymerization (i.e., 2%, 4%, 6%, 8%,
and 12%). The percentage of MMT clay was taken by keeping in view the weight of the
o-anisidine monomer, as mentioned in Table 1. The o-anisidine monomer was dissolved in
a 1 M HCl solution, and DDPA was added afterward. The mixture was mixed with MMT
clay and was sonicated for 15 min for uniform dispersion. The solution was continuously
stirred for complete mixing. Another solution of APS was prepared by adding it to 20 mL of
1 M HCl. This solution acted as an oxidant and was added dropwise to the above mixture.
Afterward, the mixture was stirred for 3 h for complete mixing. The reaction temperature
was maintained at 0–4 ◦C. Keeping in mind the above process, all the composites of the
desired percentages of MMT clay were prepared. Finally, the samples were centrifuged
and washed using distilled water, and then with ethanol. Then, the samples were dried in
an electric oven at 80–100 ◦C, and they were obtained in dry-powder form. Consequently,
the characterization was performed by using FTIR, SEM, and UV–visible spectroscopy.
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Table 1. Scheme of nanocomposite preparation.

Sr. No. Monomer
Poly(o-anisidine)

APS
(Ammonium
Persulphate)

DDPA MMT Clay % of Filler
in Composite

1 0.0255 g 0.456 g 0.002555 g 0 g 0%

2 0.0255 g 0.456 g 0.002555 g 0.00051 g 2%

3 0.0255 g 0.456 g 0.002555 g 0.000102 g 4%

4 0.0255 g 0.456 g 0.002555 g 0.00153 g 6%

5 0.0255 g 0.456 g 0.002555 g 0.00204 g 8%

6 0.0255 g 0.456 g 0.002555 g 0.00306 g 12%

3. Result and Discussion
3.1. FTIR Spectroscopy Studies

The FTIR analysis of the MMT/poly(o-anisidine) clay nanocomposite was obtained by
using an Agilent 630 carry spectrometer. The FTIR values of pure polymers and nanocom-
posites were recorded, and the peaks of the values are shown in the graph [32]. Fourier
transform infrared spectroscopy is an apparatus and strategy that helps to estimate and
understand what type of groups and elements are attached to samples [33]. Figure 2a shows
the FTIR spectra of pure POA. The strong peaks appeared at 3467cm−1, which showed
the presence of N-H. The peaks at 1644 and 1574 cm−1 indicated that the POA contained
the spine’s benzene ring, and these clusters also indicated that the poly(o-anisidine) was
neutralized at the counter ion load. The C-N elongation method correlated the 1345 cm−1

and 1255 cm−1 spikes. The spectra (Figure 2b) show the presences of MMT glue with 2%
MMT resin, 1067 cm−1 elevated ribbon, and 1002 cm−1 bands [34].

In Figure 2c, the FTIR spectra suggest that the peak range started at 1644 and 1574 cm−1,
and they show that the polymers with the aid of 4% MMT material were nearly the same
as 2%, showing that 4% of the MMT glue was used to reinforce the plastic crystallinity.
The active started with O-H 3011 cm−1, and CH2 bands at 2826 cm−1 and 2371 cm−1.
In Figure 2d, the spectra show that the acid surface with 1067 cm−1 and 1009 cm−1 was
distinguished by waves of MMT clay by adding six times MMT clay in the polymer matrix.
The bottom frequency part is assigned a maximum of 2979 cm−1 and 2735 cm−1 for the
elongation waves of N-H.

In Figure 2e, the spectra indicated the increase in C-O-C, OR-C-C, bonded C-H to CH2,
and the C=O elongation was due, with 8% of the MMT clay that was added to a polymer,
and the maximum peaks were discovered at 1071 cm−1, 1163 cm−1, 1430 cm−1, and 1625
cm−1. Bands of 2836 cm−1 were assigned to the asymptomatic extended C-H of CH2 and
CH3 of MMT/POA. In Figure 2f, the spectra show the 1644 and 1574 cm−1 bands that
showed the presence of benzenoids and quinoids in the form of polymers, to which were
added 12% MMT clay to the polymeric matrix. These bands indicated that the counter-ion
charges were neutralized in the poly(o-anisidine) chain. Based on the present moisture, the
highest range was 3667 cm−1, which showed the presence of NH-.

3.2. UV–Visible Absorption of POA and MMT/POA Clay Nanocomposites

To determine the absorption characteristics of the MMT/POA clay composites, UV–
visible spectroscopy was used. [35]. The spectrophotometer was provided with UV Win
Lab programming for the recording and analysis of the data. The fundamental spec-
trophotometer correction was conducted using an empty reference. Some early researchers
in UV–visible spectral studies have measured the interaction and quantities of poly(o-
anisidine)/MMT pottery. In Figure 3a, the poly(o-anisidine) intercalated in the toner pits
indicated the UV–visible variety with the aid of 2% MMT of clay. At 340 nm, a strong
peak was found for the UV absorption, and the normal change n fi p* is provided for
poly(o-anisidine). In Figure 3b, after the mechanical reaction of poly(o-anisidine)/MMT
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with the stoichiometric oxidizing force ((NH4)2S2O8), the poly(o-anisidine) completely
disappeared in the 4% MMT composite. There were two new poly(o-anisidine) values, one
at 420 nm, and the other at 800 nm, for the HCl-doped poly(o-anisidine).
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In Figure 3c, the MMT clay with the poly(o-anisidine) nanocomposite existed with
an excess of 6% of MMT clay [36]. The polymerization of polymer and MMT clay was
completely homogenized. The maximum peak was at 351 nm, and the atomic changes were
linked with the benzene and quinoid clusters. However, at 439 nm, they were associated
with small and high-power polar caps. In Figure 3, the spectra 3d and 3e show two new
severe highs assigned to p-p*, and for the others, 650 nm due to p-polar transformation
with the aid of 8 and 12% MMT sand, respectively. The UV–visible spectral study assessed
the amount of poly (o-anisidine) charged in the clay.
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3.3. Scanning-Electron-Microscopy (SEM) Analysis

SEM evaluation represents a powerful tool for researchers that uses a focused electron
beam to produce complex and high-large images of the topography sample layer [37,38].
A mechanochemical intercalation method with different POA components, together with
intact MMT clay, was used to register the SEM micrographs of the poly(o-anisidine)/MMT
clay nanocomposites. In Figure 4a–c, the SEM images show the poly(o-anisidine) ground
morphology. A crushed rock indicated the sheer POA. In Figure 4d–f, the semi-micrographs
of the NCF film are displayed at separate magnifications by the addition of 2 % MMT clay.
The growth of polymer clay nanocomposites was ended with an SEM micrograph. Because
of the insufficient MMT clay, the existing POA ground was not intercalated. This shows
that the polymer was in lighter regions.
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Figure 5a–c shows the semi-microwave properties of the ceramic strands and the
light regions of the fabric indicated by the black constructions of 6% of MMT material.
In the different paths, the irregular allocation of the strands of tone was observed. The
polymer matrix indicated that the organized composition was distressing, and the clay parts
dispersed. The disorderly structure of the clay strata was better at increased magnification.
In Figure 5a–c, some lighter regions in the micrographs, the existence of some intercalated
parts or feasible edge-to-edge relationships of some ceramic phases were still discovered in
comparison with 6% of MMT material. These interactions may include emulsion-based
nanocomposites, including particularly hydrophilic clays.
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In Figure 5d–f, the structure of POA was noticed by adding roughly 50–100 nm of
nanofibers (i.e., by adding 12 parts of MMT gum). The clusters of POA contained sheets
of clay with caught POA fibers. The image presents a standardized nanocomposite layer
of POA clay due to the intercalation of POA and wood. In Figure 5d–f, the combination
of POA with clay in nanocomposites is demonstrated by a 12-fold quantity of MMT clay.
However, in a nanocomposite film, the dispersion of clay was not consistent. In comparison
with the POA clay, strong interface binding between the POA and sand revealed higher
mechanical and heat features. Compared with natural POA, the POA surface area of
nanocomposites was enhanced. This is owing to the inclusion of nanofillers that causes the
polymer matrix and fillers to interact more closely.

3.4. TGA/DSC Evaluation of Pure POA and MMT/POA Clay Nanocomposites

The thermal stability of the investigated polymers was assessed using TGA/DSC.
The thermal properties of pure POA and its nanocomposites (MMT/POA) were examined
using thermogravimetric analysis. TGA (thermogravimetric analysis) is often used to
examine weight loss as a function of time, and especially temperature, in order to study
the degradation of polymeric materials. The thermal stability may be improved by adding
nanofiller clay to the polymer matrix. It is extremely elegant and crucial for commercial
reasons because the products can be prepared for less money, with a simpler process,
and with less weight, even though it represents the possibility of achieving a significant
increase in thermal stability by using only a small amount of MMT clay in the finished
product [25,39,40]. According to the DSC/TGA measurements, the inclusion of dispersed
MMT clay in the polymer matrix considerably improved the flame retardancy and thermal
stability of MMT/POA clay nanocomposites compared with pure POA [41].

The elimination of H2O molecules causes the initial weight loss at 50 ◦C, and continues
up to 110 ◦C, according to the thermogram of pure POA and MMT/POA nanocomposites.
The loss of HCl was detected at 200 ◦C, followed by fast mass loss until 620 ◦C [42]. POA
breakdown is continuous up to 700 ◦C (Figure 6). POA nanocomposites have superior
heat stability compared with pure polymers, according to this thermogravimetric research
(poly(o-anisidine)). The inserted polymer’s consistency and strength are related not only
to its unique structure, but also to the steric considerations that prevent the portions
sandwiched between MMT clay layers from thermally moving [43]. The superiority of
the benzenoid structure explains the higher thermal stability of nanocomposites. Pure
POA, in contrast, has a quinoid ring in its structure, which contributes to its poor thermal
stability. POA decomposes continuously up to 700 ◦C; however, the total degradation of
MMT/POA clay nanocomposites does not occur until beyond 700 ◦C [42]. When POA
and MMT/POA nanocomposites decompose, some char is produced. This means that the
presence of -Cl has prevented the whole breakdown from taking place. Lower weight loss
was shown by comparing POA and POA/MMT clay nanocomposites with varying mass
weights. POA has 50% residue (Figure 6a,b), while POA/MMT clay nanocomposites with
6% have 58% residue (Figure 6c,d). The thermal stability of POA was improved using MMT
clay nanofiller in this study. POA polymer decomposes as the temperature is elevated;
however, adding MMT clay to the polymer does not dissolve it due to the MMT nanofiller’s
excellent thermal resilience [44]. By increasing the quantity of MMT clay, the percentage of
the residual steadily rose.

3.5. Horizontal Burning Test

A strip of PCO/MMT blend was created in a Teflon mold for the horizontal burning
test (118 mm × 7 mm × 1 mm). The strip was hung horizontally from the stand. For
each blend system, the opposite end of the strip was lit with a burner, and the time it took
to burn from Mark A to B was recorded [45–47]. The blend of MMT/POA at 12% has a
3.4-fold lower burning rate than pure POA (Table 2). The clay nanofillers’ ability to delay
the POA heat deterioration was validated by this finding. The trend is linear, which means
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that, as the fraction of additive increases, the rate of burning decreases, and vice versa
(Figure 7).
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Table 2. The horizontal burning rates for MMT/POA nanocomposite.

Nanocomposite POA 2% 4% 6% 8% 12%

Burning Time/73 mm 16 25 33 47 58 75
HBR (mm/s) 24 22 19 15 11 7

3.6. Cone-calorimeter Test

Pure POA and MMT have been manufactured and evaluated in the cone calorimeter
with the aim of evaluating the fire efficiency of the MMT/POA in terms of the kind
and integration of the nanofillers. (2, 4, 6, 8, and 12 mass percent loading) [48–50]. By
altering the chemistry in the condensed phase and physical burning process, inorganic
flame-retardant additives such as MMT usually increase the flame retardancy of polymeric
materials [51]. As a result, it is predicted that adding nanoclay to the POA matrix will
improve the MMT/POA’s flame-retardancy performance when compared with pure POA
in the cone-calorimeter test, and the results would be comparable to earlier smaller-scale
thermal investigations [52]. For a well-established fire scenario, a cone calorimeter offers
a comprehensive portrayal of the fire-response qualities. Data from cone calorimeters
may be employed to equivalence the fire behavior of various materials, provide data for
modeling the behavior of fires in the real world, and also to establish the parameters
needed for regulatory reasons, such as the total heat evolved, heat-release rate, and fire-
growth-rate index (FIGRA) [53]. The heat-release rate (HRR) is considered to be the utmost
important of these fire-response qualities because it is the factor that drives the spread of
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fire. The total heat release, effective heat of combustion, duration to ignition, mass loss
rate, smoke-specific extinction or obscuration area, and CO and CO2 production are other
cone-calorimeter characteristics that are examined. Table 3 lists the findings from the cone
calorimeter for pure POA and MMT/POA nanocomposites.
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Table 3. Cone-calorimeter tests on the heat and ignition characteristics of pure POA and MMT/POA
nanocomposites.

Samples
Effective Heat of

Combustion,
MJ kg−1

Time to
Ignition, ting/s

Flame-Out
Time, s

Mean CO2 Yield,
kg kg−1

Average Mass
Loss Rate (MLR),

avg/g s−1 m−2

Total Heat
Release

(THR), MJ m−2

POA 27.4 11 486 2.3 25.4 131.5

2% MMT/POA 29.6 10 541 2.3 29.5 134.6

4% MMT/POA 31.8 17 606 2.4 35.6 137.4

6% MMT/POA 34.2 24 649 2.4 39.8 140.7

8% MMT/POA 33.5 19 681 2.3 28.4 139.4

12% MMT/POA 32.7 13 723 2.2 17.6 136.7

4. Conclusions

With the oxidative-polymerization technology and the coarse protective components
of their POA mixture with MT sand, MMT/POA resin nanocomposites were efficiently
generated with 2%, 4%, 8%, and 12%. This study demonstrated that the POA layer has
excellent protective properties for rust and can be considered as a future-oriented covering
fabric to protect noncorrosion materials in aqueous environments. The cumulative and
electronic steric effects of the important methoxide substitute were attributable to the
reduced conductivity at room temperature of the POA. Enhanced product conductivity
can be used with the benefit of elevated solubility in predominantly alcoholic solvents
for several technical purposes. FTIR and SEM described the nanocomposite composition
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of MMT/POA clay and its morphology, which verified the MMT/POA-nanocomposite
growth. The UV–visible spectrum has been studied for the optical and absorption qualities
of MMT/POA ceramic nanocomposites.
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