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A B S T R A C T   

Objective: To provide a methodology for estimating the effect of U.S.-based Certified Electronic Health Records 
Technology (CEHRT) implemented by primary care physicians (PCPs) on a Healthcare Effectiveness Data and 
Information Set (HEDIS) measure for childhood immunization delivery. 
Materials and methods: This study integrates multiple health care administrative data sources from 2010 through 
2014, analyzed through an interrupted time series design and a hierarchical Bayesian model. We compared 
managed care physicians using CEHRT to propensity-score matched comparisons from network physicians who 
did not adopt CEHRT. Inclusion criteria for physicians using CEHRT included attesting to the Childhood Im-
munization Status clinical quality measure in addition to meeting “Meaningful Use” (MU) during calendar year 
2013. We used a first-presence patient attribution approach to develop provider-specific immunization scores. 
Results: We evaluated 147 providers using CEHRT, with 147 propensity-score matched providers selected from a 
pool of 1253 PCPs practicing in Maryland. The estimate for change in odds of increasing immunization rates due 
to CEHRT was 1.2 (95% credible set, 0.88–1.73). 
Discussion: We created a method for estimating immunization quality scores using Bayesian modeling. Our 
approach required linking separate administrative data sets, constructing a propensity-score matched cohort, and 
using first-presence, claims-based childhood visit information for patient attribution. In the absence of integrated 
data sets and precise and accurate patient attribution, this is a reusable method for researchers and health system 
administrators to estimate the impact of health information technology on individual, provider-level, process- 
based, though outcomes-focused, quality measures. 
Conclusion: This research has provided evidence for using Bayesian analysis of propensity-score matched provider 
populations to estimate the impact of CEHRT on outcomes-based quality measures such as childhood immuni-
zation delivery.   

1. Introduction 

In 2009, the U.S. embarked on incentivizing providers to adopt 
government-certified electronic health record technologies (CEHRTs), 
aiming to reduce costs and inefficiencies in the health care system, while 
improving quality [1] (abbreviations are listed in Supplementary Ma-
terials, Table 1). Electronic clinical quality measures (eCQMs) were 
introduced along with CEHRTs as an approach to quantify the 
improvement in clinical performance and outcomes. One of the eCQMs 

is childhood immunization (NQF#0038), which requires having a series 
of vaccinations administered by the second year of age. 

Despite the importance of immunization for reducing morbidity and 
mortality [2–4] and the potential for CEHRT to improve immunization 
rates, the immunization rate in the U.S. remains below national levels 
[5,6]. In 2013, 70.4 percent of children ages 19–35 months received the 
full Center for Disease Control and Prevention (CDC) recommended 
vaccine series [7]. For Medicaid children through 2 years of age in 2014, 
the national mean immunization rate was 62.1 percent [8]. 
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Within Medicaid agencies, Healthcare Effectiveness Data and Infor-
mation Set (HEDIS) measures are the primary method of tracking quality 
[9]. HEDIS generally uses administrative data with occasionally hybrid 
methodologies for medical record data supplements to calculate process- 
based quality measures. Hybrid methods are applied to quality calcu-
lations when administrative data is lacking [10]. HEDIS managed care 
health care quality measures are calculated at the health plan level and 
not the individual provider level [11]. 

The literature assessing the correlation of quality measures to the use 
of CEHRT suggest that quality improvement is more likely if the CEHRT 
functionality tracks closely with the quality metric and if providers use 
the CEHRT functionality effectively. The functionalities of best-practice 
alerts, order sets, and panel-level reporting, have led providers to 
receive statistically significantly higher “meaningful use” quality scores 
related to the EHR functionality [12]. These “best practice alerts,” or 
clinical decision support (CDS), pertained to the preventative services of 
tobacco cessation, breast cancer screening, colorectal cancer screening, 
pneumonia vaccination, and body mass index screening [12,13]. 

CEHRT-based CDS focuses on prompting providers to take some type 
of action on particular patients, usually during or immediately sur-
rounding the patient encounter. CDS may be effective as a childhood- 
vaccine intervention because it takes advantage of the presence of the 
child during well- and sick-child visits to reduce the likelihood of missed 
opportunities to administer or catch up on vaccines. How the CDS is 
implemented within the clinical workflow can differentially impact the 
effect of CEHRT on vaccination rates, with some studies showing im-
provements in vaccine rates [14,15] while others not showing the ex-
pected improvements [16]. With standardized Electronic Health Record 
(EHR) systems, Medicaid agencies will soon be able to collect patient- 
level data by provider to compare like providers to like providers 
longitudinally, allowing for pay-for-outcomes models. However, until 
the adoption of certified EHRs is widespread, the integration of health- 
care related data sources is easier, patient attribution is precise and 
accurate, and electronic clinical measures become more commonplace, 
any longitudinal analysis of quality must rely on HEDIS-like quality 
methodologies. Maryland Medicaid uses the HEDIS Childhood Immu-
nization Status score, Combination 7 (HEDIS immunization measure), as 
a standard measure to quantify immunization rates for its child 
population. 

2. Objective 

The primary objective of this study is to develop a methodology for 
estimating the effect of CEHRT use by Maryland Medicaid managed care 
network providers on a HEDIS immunization measure to provide a 
working model for measuring provider-specific outcomes. The approach 
used by the research team may be used for other health technology 
adoptions or other outcome measures where a single health practitioner 
can be reasonably assumed to be responsible for care leading to the 
outcome. 

3. Materials and methods 

3.1. Study design 

This research used a retrospective, interrupted time series to assess 
the association between CEHRT use and a provider-specific HEDIS im-
munization measure (Fig. 1) [17]. The first observation begins in 2010, a 
full year before Maryland began the Medicaid EHR Incentive Program. 
Providers selected as the intervention group adopted their EHR in 2011 
or 2012 but achieved MU in 2013 (Fig. 1). 

Due to Medicaid’s EHR Incentive Program participation rules – 
which allowed a provider to participate in the program only once per 
year – this study applied a one-year measurement pause or “contami-
nation buffer.” (Fig. 1) The “contamination buffer” is necessary because 
providers who have achieved MU in 2013 likely acquired their EHR in 
2012. However, the provider who acquired and implemented their EHR 
in 2012 could have done so at any point during that year. The exact 
implementation dates were unknown to the research team. 

3.2. Study sample 

The study population included any Maryland Medicaid Managed 
Care Organization (MCO) primary care network physician who was 
continuously enrolled in an MCO over the four-year study period and 
provided immunizations. From this population, the intervention group 
contained those providers who adopted an EHR and achieved MU in 
2013 while reporting eCQM NQF#0038 (Childhood Immunization Sta-
tus) (n = 147). In 2013, providers participating in the EHR Incentive 

Fig. 1. Research design for studying the effect of CEHRT on HEDIS immunization measure.* *Solid, dark grey boxes represent measurement periods for the HEDIS 
immunization measure for the intervention group. Solid, white boxes represent HEDIS immunization measurement periods for the comparison group. The box with a hatched 
pattern represents the contamination buffer. Abbreviations: CY: Calendar Year; MU: Meaningful Use. 
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program were not required to submit the Childhood Immunization 
Status eCQM. Because providers could opt to report the Childhood Im-
munization Status measure, we assumed that providers submitting on 
this measure likely intended to use their CEHRT to at least track vaccines 
administered to their patients. We did not use the NQF#0038 rate re-
ported by providers who adopted EHR at any point in this study. 

The providers who met MU in 2013 and attested to meeting 
NQF#0038 (the “intervention group”) were compared to PCPs who gave 
immunizations but had not adopted CEHRT (the “comparison group”). 
We compared the intervention group’s HEDIS immunization measure 
result to the HEDIS immunization measure results of the comparison 
group. The authors created a propensity score matching (PSM) com-
parison group using R’s MatchIt package and the nearest neighbor 
approach, 1:1 match ratio, without replacement (n = 147) [18,19]. 

We operationalized PSM by scoring the likelihood to adopt CEHRT 
matching against data by each calendar year on multiple provider 
specifications: primary group affiliation; specialization; Early and Peri-
odic Screening, Diagnostic, and Treatment (EPSDT) certification status; 
participation in the Vaccines for Children Program (VFC); and Medicaid 
claims and encounter volume [20]. The number, size, and distribution of 
individuals within groups is available in Supplementary Materials, 
Table 2. 

3.3. Outcome measure 

The outcome measure, the HEDIS immunization measure, requires 
that the following vaccines be administered before age 2: four diph-
theria, tetanus and acellular pertussis (DTaP); three inactive polio virus 
(IPV); one measles, mumps and rubella (MMR); two H influenza type B 
(HiB); two hepatitis B (HepB), one varicella-zoster virus (“chicken pox”) 
(VZV); four pneumococcal conjugate (PCV); two hepatitis A (HepA); and 
two or three rotavirus (RV). See Supplementary Materials, Tables 3 and 
4 for additional details about the outcome measure. For each outcome 
measurement period in this study, we calculate the HEDIS immunization 
measure. 

3.4. Patient attribution 

In order to calculate a HEDIS immunization measure at the provider 
level, the authors used a passive patient-to-provider attribution algo-
rithm based on the first presence of Evaluation and Management, pre-
ventative medicine Current Procedural Terminology (CPT) codes 
signaling the child’s first, outpatient visit with a PCP, which is a similar 
approach used by Medicare for quality reporting programs [21,22]. 
Because Medicaid may not necessarily confirm that a child’s visit is 
initial versus periodic (e.g., CPT code 99381 versus 99391), we included 
codes 99391 and 99392. However, CPT codes 99391 and 99392 are only 
used to bind a recipient to a PCP if encounter history does not reveal an 
earlier 99381 or 99382 code. Additionally, we restricted the search to 
only those encounters for Medicaid beneficiaries aged less than 2. 

3.5. Propensity score 

Because researchers and health system administrators will likely be 
using this method while the health care delivery system is actively 
providing care and the health information technology has already been 
implemented, most, if not all of the research designs will be observa-
tional, using a quasi-experimental research method. Thus, a clear com-
parison group will be lacking. One method for establishing a comparison 
group for quasi-experimental research designs is PSM (Fig. 2). PSM 
simulates the conditional probability of being selected for the treatment 
group given a series of confounders related to the outcome but not the 
treatment [23,24]. In observational studies, where an intervention does 
not have a clear comparison group such as randomized control trials, 
PSM can help to match observed pre-intervention assignment variables 
of individuals in the intervention group to those of a theoretical 

comparison group [25]. By matching observed pre-intervention vari-
ables of the intervention group and a comparison group, researchers and 
health care administrators may improve the likelihood that differences 
in outcome between intervention and comparison groups are due to the 
intervention alone and not unmeasured covariates. In other words, the 
more similar the intervention and comparison group are to each other on 
various characteristics before intervention, the more likely the 
researcher or administrator is confident that they can better infer causal 
inferences between intervention and outcomes [25]. 

Koepke et al. used surveys to identify provider and patient charac-
teristic that correlated with childhood immunization rates [20]. 
Following Koepke et al.’s work, the authors’ analyzed provider char-
acteristics such as practice size, provider specialty, participation in the 
VFC program on childhood vaccination rates, but found the strongest 
correlation with provider type [20]. For this research, PSM is oper-
ationalized by comparing the intervention group to the potential com-
parison group, scoring the likelihood to adopt CEHRT matching against 
data by each calendar year on: provider primary group affiliation (cal-
endar years 2010–2012), EPSDT certification status (calendar years 
2010–2012); provider specialization; participation in the VFC program, 
total Medicaid claims and encounter volume (calendar years 
2010–2012); percent of Medicaid claims and encounter volume for 
children under 2 years of age (calendar years 2010–2012); and, percent 
of Medicaid claims and encounter volume between the ages of 3 and 18 
(calendar years 2010–2012). 

Because we are interested in provider-level outcome measures, we 
conducted PSM at the individual provider level (controlling for group 
membership) instead of creating propensity scores at the provider-cross- 
group level. 

Fig. 2 depicts the propensity score’s distribution, pre- and post- 
matching. Each open circle is a unique provider. The closer the 
“Matched Intervention Units” scatter plot resembles the “Matched 
Comparison Units,” the better the match. As Fig. 2 shows, visually, the 
matched intervention and comparison groups seem well matched. 

A full-variable balance plot (“love plot”) provides a better visuali-
zation technique to assess the impact of PSM on creating a suitable 
comparison group for analysis. Fig. 3 shows the balance plot of our 
propensity score matching, comparing each variable pre- and post- 
matching. 

Fig. 3 depicts the study variables as ranked by order of improvement. 

Fig. 2. Propensity score distribution.  

P.J. Messino et al.                                                                                                                                                                                                                              



Journal of Biomedical Informatics 110 (2020) 103567

4

The dotted line is the 0.1 mean difference threshold. The closer each 
variable moves to the dotted line, the better the match (Fig. 3). Sup-
plementary Materials, Table 5, provides the exact values for each vari-
able in the intervention and comparison group, and the results of a 
statistical test of differences. 

3.6. Data sources 

This study used six data sets provided by three data stewards. Data 
stewards included: the Maryland Department of Health (MDH), the State 
of Maryland Board of Physicians (MD BoP), and the Maryland Health 
Care Commission (MHCC). Nearly all the data sources are administra-
tive and should be available to researchers and health-system adminis-
trators in other States. For this study, we controlled for programmatic 
confounders which may have impacted CEHRT acquisition or vaccine 
administration, such as Maryland’s state payor incentive program, 
which provided financial incentives to certain providers who adopted an 
EHR, and Maryland’s VFC and their EPSDT Program (also known as 
Healthy Kids). 

The study data sets included: (1) The primary administrative data set 
for Maryland Medicaid, Maryland’s Medicaid Management Information 
System (MMIS), which contains claims and encounters data and is used 
to calculate HEDIS measurements for the statewide Value-Based Pur-
chasing program and this study (Fig. 4, Ⓐ). (2) The administrative data 
set on the use of the health technology, in this study, Maryland’s elec-
tronic Medicaid Incentive Payment Program (eMIPP), which contains 
data related to the EHR Incentive Program, including participation, EHR 
type, and MU measures (Fig. 4, Ⓑ). (3) MDBoP, which contains 

licensure and survey data on all physicians licensed in Maryland and is 
used to obtain demographic information on providers who self-identify 
as possessing an EHR (Fig. 4, Ⓒ). (4) Maryland’s VFC, which contains 
data on provider immunization administration and participation in the 
VFC (Fig. 4, Ⓓ). (5) Maryland’s state payor incentive program, which is 
s state-specific program that offers incentives to primary care practices 
for adopting and using certified EHR technology, and whose data 
base includes data on provider participation and year of participation 
(Fig. 4, Ⓔ). And (6) Maryland’s EPSDT Program (also known as Healthy 
Kids), which certifies Maryland Medicaid pediatricians as meeting na-
tional EPSDT standards (Fig. 4, Ⓕ). Summary statistics for all variables 
extracted from these data sources are available in Supplementary Ma-
terials, Table 6. 

3.7. Data linking 

As shown in Fig. 4, the National Provider Identifier (NPI) – a unique, 
provider-specific identifier, self-attested to by every health care provider 
via the National Plan and Provider Enumeration System (NPPES) – is the 
primary key used to combine all data sets. All source records for each 
data set utilizes the NPI to track records except Maryland’s VFC pro-
gram. To ensure that only individual physicians with NPIs known to 
NPPES are included in the analysis, we used the NPPES Application 
Program Interface to validate provider type, status (active or inactive), 
and NPI type (Type I individual providers only). Additionally, we 
compared provider type and specialty codes across MCOs and with 
NPPES where necessary to confirm a single provider type and specialty 
for each provider. 

Fig. 3. Propensity score matching balance plot. Distance: A construct of the love plot, it measures the difference between the propensity score; EPSDT: Early and Periodic 
Screening, Diagnostic, and Treatment; PV: Patient volume for the individual provider for the given year; Provider Group: A unique ID coded for the group across years, with no 
practical meaning for PSM; and, VFC: Vaccines for Children. 
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Maryland’s VFC program uses an Organization Identifier, which 
tracks the practice location to which various vaccines are provided and 
stored. To incorporate provider VFC participation data into the master 
data set used for this analysis, we de-duplicated VFC participation by 
primary provider contact for each Organization Identifier. Then, using 

first and last name matches within Microsoft Access, we pulled NPIs 
from all other data sets. If, after leveraging current data sets, we could 
not find an NPI, we searched the NPPES registry using the search criteria 
of first and last name and participating state of Maryland. For each 
calendar year, we assigned a binary variable to designation participation 
in the VFC program. 

To calculate the outcome measure – the HEDIS immunization quality 
measure – we obtained the encounter and claims history for all re-
cipients who are linked to PCPs using Evaluation and Management 
codes. All recipients were tracked within MMIS using unique system 
keys. For Maryland, the unique key was the Medical Assistance Numbers 
(MA Numbers for providers or Recipient IDs for Medicaid beneficaries). 
Medicaid recipients may have more than one MA number; however, all 
MA Numbers are linked to the first MA Number received by a Maryland 
Medicaid recipient: a Legacy MA Number. Each time a recipient received 
a particular vaccine at the designed time interval, the PCP associated 
with that recipient is credited with administering the vaccination. By 
vaccine and by calendar year, the counts of recipients assigned to the 
PCP receiving the vaccine were summed, as are the total number re-
cipients assigned to the PCP. Using this process, we could obtain 
vaccination rates by provider by vaccination. To obtain vaccination 
combination scores, the appropriate vaccine counts were summed and a 
ratio of vaccination to total affiliated recipients by PCP was calculated. 

Eq. (1) details the vaccination combination score calculation. 

nPatient (PCP) is the number of patients associated with a particular 
PCPi, from j1-jn. nVaccines is the number of vaccines administered in the 
correct time interval, k, for each patient (ptj-ptjn). See Supplementary 
Table 3 for the appropriate time interval for each vaccination.  

Note: I(p) = 1 if p is true, 0, if false. 
All intervention and potential comparison group providers partici-

pate with multiple groups with a varying number of group members 
over time. This means that varying degrees of confounding exist among 
group members of the estimated effect of EHRs on quality. Thus, the 
analytic model chosen must account for group-based confounding. A 
“group” is defined as any provider who practices under and is affiliated 
with a Type 2 “Organization” NPI in Maryland Medicaid. To account for 
location-based confounding, the MA number was used in place of the 
NPI to establish group affiliation (data obtained as shown in Fig. 4). 

We linked all the data sources using Microsoft Access (Fig. 4, Ⓖ). 
After combining these data, we identified 78,922 children affiliated with 
a unique MCO network physician, 15,060 of whom were affiliated with 
one of the 147 intervention providers and 63,866 were affiliated with 
the cohort of 1253 potential comparison group providers (Fig. 4, Ⓗ). 

We restricted each provider in each calendar year to a primary group 
as providers practice with many groups, and because this analysis rec-
ognizes that the intervention group is comprised of providers who use an 
EHR at a physical practice location. For the intervention group, in cal-
endar year 2013, the group to which they are primarily affiliated is 
represented by the pay-to MA number to which they released their 
Medicaid EHR Incentive. For all other periods and for all comparison 
group periods, we used an iterative approach to identify primary group 
affiliation, based on data in the Fee-for-Service (FFS) MMIS file. 

eMIPP: electronic Medicaid Incentive Payment Program  MDBoP: Maryland Board of Physicians  MMIS: Medicaid Management Information System
EPSDT: Early Periodic Screening, Diagnosis, and Treatment MDH: Maryland Department of Health   NPPES: National Plan and Provider Enumeration System 
I: Intervention group     MHCC: Maryland Health Care Commission  PC: Potential comparison group 

Fig. 4. Data Aggregation Map.  

HEDIS Score (PCPi) =

∑nPatient(PCPi)
j=1

∑nVaccines
k=1 I

(
ptj received vaccine k in time interval (k)

)

nPatient (PCPi)
(1)   
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To identify all other primary group affiliations but those for the 
intervention group in calendar year 2013, we queried the FFS MMIS file 
for any group affiliations. Next, by calendar year, we counted the 
number of days a provider is affiliated with a group from the initial 
begin date of the group affiliation to the lesser of the date within the 
calendar year or the end of the calendar year. By calendar year, the 
group with the greatest number of days in which the provider is affili-
ated was marked as the provider’s primary group. If we could not 
identify a primary group in this way, we used earliest begin date. 

3.8. Model specification and analysis 

The essential causal model is shown in Fig. 5. In the absence of “back 
doors” or “colliders,” the desired relationship (EHR Adoption → Im-
munization) is identifiable [26]. 

The relationship between the data used for this analysis is complex 
due to its hierarchical structure (Fig. 4). The data includes three nested 
levels: groups, providers, and time. Providers administer vaccinations 
for each study year. Providers are nested within groups, which them-
selves adopting CEHRT. In practice, these relationships may be even 
more complex: over time, providers may move between primary groups, 
and thus have different group members. Furthermore, each level of the 
data has varying levels of uncertainty thus allowing for the integration 
of background information to inform the likelihood of an immunization 
status. For example, provider-level immunization rates are likely 
different than group-level immunization rates. 

To address the many relationships between and within the hierar-
chical nature of the data, we used a Bayesian-modeling method to 
address those relationships directly. This helped dealing with the: (1) 
complexity of the relationships between the data; (2) resulting uncer-
tainty at each level of the data; (3) relatively low sample size; and (4) 
greater generalizability of the posterior distribution. Bayesian statistics 
offer methodological benefits that address all four concerns [27]. 

We specified hierarchical models, expressed as Bayesian analysis 
Using Gibbs Sampling (BUGS) models and non-informative conjugate 
priors [28]. A non-informative conjugate prior is a higher-level prior 
distribution that is within the same family as the underlying distribution 
it is feeding within the model, but its distribution is specified to be vague 
[29]. Using BUGS, the model focused on provider vaccination rates as 
affected by base vaccination rates, behavior of the rest of the provider’s 
group, and other relevant covariates. The second “level” was the dif-
ference in vaccination rates across the years, which in turn is a function 
of CEHRT status. 

Likelihood was derived by Eq. (2), which states that the likelihood of 
theta, the parameter you care about, given y, the data you observed, is 
the product of each of the probabilities of y from y1 to yn, given theta, a 
probability whose expression is known (e.g, normal distribution): 

L(θ|y) = p(y1, ..., yn|θ) =
∏n

i=1
p(yi|θ) (2) 

The posterior distribution of p(θ|y) is derived from Bayes’ theorem or 
Bayes’ rule, where the posterior distribution of theta given y is propor-
tional to ("∝") the prior distribution of theta times the likelihood of theta 
given y, where p is the probability function for the data and L is the 

likelihood [20]. (Eq. (3)): 

p(θ|y) =
p(θ)L(θ|y)

p(y)
∝p(θ)L(θ|y) (3) 

We used the programming language R to calculate the posterior 
distribution [18]. The package rjags allows for BUGS models to run 
Markov Chain Monte Carlo (MCMC) simulations [30–32]. We used the 
Convergence Diagnosis and Output Analysis (CODA) package to calcu-
late outputs and diagnostics on MCMC samples [33]. We ran Bayesian 
models with 1000 adaptations, 20,000 iterations, 4 chains, and 1000 
burn-in. These settings are standard for a model of this size and mean. 
The final posterior distributions are evaluated at 20,000 samples in each 
of 4 chains to prevent local maximization, with adaptions and burn-in 
accounted for before initializing iterations. 

We specified multiple models in an iterative fashion, visually 
inspecting the sampling distributions for key nodes of the model to 
determine whether the samples are converging around a mean using 
trace and kernel density plots [34]. We also monitored the quality of 
chain mixing via the Gelman and Rubin diagnostic and the presence of 
autocorrelation through the Raftery and Lewis diagnostic and autocor-
relation diagrams [35]. We then used the Deviance Information Crite-
rion (DIC) and a modified χ2-like goodness-of-fit test as the measures of 
merit [36,37]. 

A tradition χ2-statistic compares the sum of squares of standardized 
residuals for the expected values under a particular model. A weakness 
in Gelman’s approach to developing a χ2-like statistic is that it does not 
have a χ2 distribution [37]. Having a χ2 distribution facilitates model 
comparison through p-values. One method of creating a χ2-like 
goodness-of-fit test compares the proportion of posterior means 
exceeding the 95th quantile of a χ2

9 distribution based on equally 
probable quantiles of a Poisson distribution derived at the base model’s 
mean [37]. Supplementary Materials, Table 7 shows the comparison 
model fit using the DIC and χ2-like goodness-of-fit. 

Fig. 6 is a visualization of the Bayesian model directed acyclic graph 
(DAG) displaying a hierarchical logit model (comparing the HEDIS im-
munization measure of CEHRT users to non-users) with a Poisson dis-
tribution at the provider (j,k) level. The key parameter is delta.delta. 
mean.EHR: the change in, the change in, immunization status score due 
to CEHRT use. 

The model incorporates fixed covariates for demographics, random 
effects at the provider (j) level, and data-derived group-mean data. Prior 
distributions used throughout the model specification process are all 
non-informative conjugate priors. A non-informative conjugate prior is a 
higher-level prior distribution that is within the same family as the 
underlying distribution it is feeding within the model, but its distribu-
tion is specified to be vague [20]. The details for each node are described 
in Table 1. 

4. Results 

To estimate the effect of CEHRT on HEDIS immunization measure, 
we monitored the mean change in the log-odds change in HEDIS im-
munization measure due to CEHRT use. The Bayesian model estimates 
the posterior sampling distribution mean log-odds of 0.20. See 

Fig. 5. Presumed causal models: (a) With propensity score (b) Without propensity score.* *This model is the basis of the Bayesian statistical model developed in this study.  
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Supplementary Materials, Fig. 1 for the trace and kernel density plots. As 
shown in Table 2, comparing the intervention group to its comparison 
group showed a 21% estimated improvement in the odds of meeting 
HEDIS immunization measure (Combination 7) due to EHR use. How-
ever, as the credible set – analogous to the confidence interval in fre-
quentist statistics – contains 1, this result implied no statistically 
significant difference between the intervention and comparison groups. 

Since EHR software may provide different methods for assisting 
providers with improving their immunization status scores (e.g., better 
user interface or more helpful CDS), we created binary variables for each 
EHR developer with ten or more users. Then, we re-ran our model while 
stratifying based on the underlying EHR. Table 3 lists these developers 
and the absolute group mean change in the HEDIS immunization mea-
sure. Estimates with credible sets not containing 1 are denoted with an 
asterisk. Only Epic EHR produced a credible set that did not contain 1, 
when comparing the group mean change in immunization score to that 
of the overall intervention group mean. 

In sum, comparing EHR users meeting Meaningful Use in Calendar 
Year 2013 (the “intervention” group) to a propensity-score matched 
provider population not adopting an EHR (the “comparison” group) 
within two-years during pre- and post-implementation, revealed no 
statistically significant difference in the odds of meeting the HEDIS 
immunization measure. 

5. Discussion 

As CEHRT becomes more commonplace within the health care sys-
tem, EHRs will continue to evolve and mature [38]. As EHRs mature 
over time, their value should continuously be assessed in assisting pro-
viders to meet value-based care outcomes requirements and future 
quality measure reporting needs. However, an established methodology 
to measure the impact of CEHRT adoption, including new features that 
may be added to improve CEHRT functionality, is lacking. And, as 
concerns over the usability of CEHRT continue to grow, providers and 

their technology vendors should aggressively assess and adapt their 
technology to meet user needs. 

This research highlights that, although providers may choose to be 
measured on a particular quality metric due to their specialization and 
patient population (PCPs administering vaccinations to children), just 
because they have adopted an EHR does not mean that EHR will improve 
their quality score or that the EHR itself is designed to improve that 
specific measure’s score. Thus, the flexibility in measure selection for 
various quality and value-based programs may not be as important as 
EHR functional flexibility in driving quality improvement. Unfortu-
nately, just at a time when CEHRT has made it easier for providers to 
select technology with certain baseline functionality, it has also made it 
difficult for providers to obtain EHRs that are tailored to their needs, 
which is where EHR use will actually be more meaningful [39,40]. 

Medicaid agencies, as they continue to leverage federal funding to 
modernize their information systems, will soon integrate clinical data 
with administrative data to measure quality. The linking of this data 
may supplant the need to do resource intensive medical records review 
that occurs with hybrid HEDIS measures. In the near future, Medicaid 
agencies will likely use quality scores as calls-to-action, revealing trends 
in patient health status to providers and MCOs as a means to target in-
terventions to improve quality for the individual before health declines, 
instead of using quality scores as a posterior, population-based summary 
statistic. 

Our research shows that it is possible to leverage available admin-
istrative data, coupled with a Bayesian analytic framework and patient- 
attribution methodology, to estimate provider-specific immunization 
rates for CEHRT users. In this study, we used several methodologic ap-
proaches that may be of use to researchers and administrators, 
including: the linking of multiple administrative datasets using National 
Provider Identifiers; the use of nearest neighbor (1:1) propensity score 
matching to compare primary care physicians who met the HEDIS im-
munization measure and used CEHRT to matched comparisons from 
network physicians who provided immunizations but did not adopt 

Fig. 6. Directed acyclic graph for a hierarchical Poisson distribution for HEDIS immunization measure, without propensity score covariate adjustment.* *Single ovals: 
stochastic nodes (random variables with probability distributions); Double ovals: deterministic nodes (variables functionally dependent on parents); and, Rectangles: deter-
ministic nodes from the data. See Table 1 for explanations of the variable names. 
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EHR; the binding of patients to primary care physicians using first- 
presence, claims-based childhood visit information; and, the use of a 
Bayesian hierarchical model to measure the change in immunization 
status score due to EHR use. Moreover, this study showed that in our 
Medicaid target population, acquiring and using CEHRT for immuni-
zation status reporting was not sufficient to create a differential impact 
on immunization rates. 

Our methodology can be used to evaluate the impact of CEHRT’s new 
and maturing functionalities in achieving value-based quality measures 
and improving population health outcomes [41–43]. New CEHRT 
functionalities and data types captured in EHRs by PCPs are increasingly 
used to risk stratify and manage patient populations on a health system 
or community level [44–47]. However, the value of such CEHRT func-
tionalities, data types (e.g., social determinants of health) [48–50] and 
potential data challenges in improving population health quality mea-
sures requires additional research [51,52]. The methodology used in this 
study can inform such studies in effectively controlling various 
population-level moderators and mediators while measuring the net 
effect of EHR features on population-level quality measures [53]. 

Finally, findings generated by our methodology offer a reusable 
approach for researchers and health system administrators to estimate 
the impact of health information technology on individual, provider- 

level, process-based, though outcomes-focused, quality measures. This 
method is an alternative to current approach of assessing the value of 
CEHRT features through questionnaires and item response theory [54]. 
For example, CEHRT functionality may be particularly important for 
public health crisis [55–57], such as the current novel corona virus 
disease (COVID-19) pandemic, when health care systems focused their 
attention on emergency care and individuals may have participated in 
shelter-in-place requirements. Indeed, the CDC has reported lower 

Table 1 
List and description of nodes.  

Node Description Notes 

Data-Derived Deterministic Nodes 
p.preexp[j] The probability of successfully meeting Immunization Status Score Combo 7 pre- 

intervention (pooled years 2010 and 2011)  
covariates[j] State Regulated Payor EHR Incentive Program participation, each of 2011–2013 and 2014 

and licensure survey data for prior EHR use in years 2009 and 2010*  
2013GrpProp[k] The total group Immunization Status Score Combo 7 group rate by group for 2013  
2014GrpProp[k] The total group Immunization Status Score Combo 7 group rate by group for 2014  
n.provider[j] The number of providers in the analysis (294)  
indicator.EHR[j] A binary variable indicating whether provider is in the intervention group  
PSM[j] Provider-specific propensity score   

Stochastic Nodes 
delta.noEHR[j] The change in the probability of successfully meeting Immunization Status Score for non- 

EHR users  
delta.mean. 

noEHR 
Population mean change in Immunization Status Score Non-informative normal conjugate prior, mean 0, precision 

<0.001 
delta.noEHR.prec Variance of population mean change in Immunization Status Score Non-informative gamma conjugate prior, mean 0.5, precision 0.5 
delta.delta.EHR 

[j] 
The change in the probability of successfully meeting Immunization Status Score, comparing 
EHR users to non-EHR users.  

delta.delta.mean. 
EHR 

Population mean change in Immunization Status Score for EHR users Non-informative normal conjugate prior, mean 0, precision 
<0.001 

delta.EHR.prec Variance of population mean change in Immunization Status Score for EHR users Non-informative gamma conjugate prior, mean 0.5, precision 0.5 
r.observed[j] The observed number of successes (Immunization Status Score numerators) Inferred by p.provider, but fed directly from r.expected[j] as a 

Poisson distribution 
Error[j] Provider-level random-effects  
mean.error Population-level random effects Non-informative normal conjugate prior, normal distribution 

with mean 0 and precision defined using tau.error 
tau.error Population-level random effects variance Non-informative gamma conjugate prior, gamma distribution 

with mean and precision 0.001  

Deterministic Nodes 
Delta1[j]§ The primary node estimating the change in the probability of successfully meeting 

Immunization Status score. 
Delta1[j] = delta.delta.EHR[j]*indicator.EHR[j] + delta.noEHR[j] + PSM[j]  

p.provider[j,k] The success rate for provider [j] in group [k].  
r.expected[j] The expected number of successes for provider [j].   

* The authors’ removed calendar year 2012 from the analysis to account for various unknown time periods in which EHR Incentive Program participants may have 
installed their EHRs. 

§ Delta1[j] = delta.noEHR + PSM for non-EHR users; Delta1[j] = delta.delta.EHR[j] + delta.noEHR + PSM for EHR users. 

Table 2 
Mean change in the change in odds of increasing HEDIS immunization measure 
due to CEHRT adoption.  

Variable Mean SD 95% Credible Set 

delta.delta.mean.EHR  1.21  4.50 (0.88–1.73)  

Table 3 
Effect of EHR developer on HEDIS immunization measure.  

EHR vendor Number of 
users 

Absolute difference in odds of meeting the 
HEDIS immunization measure, comparing 
EHR developer to all EHR users 

Allscripts 13 − 0.34 
Aprima Medical 

Software, Inc. 
10 0.02 

eClinicalWorks, LLC 38 0.87 
Epic Systems 

Corporation 
16 − 0.88* 

GE Healthcare 17 0.59 
Sage 10 0.43 

Note 1: Welch, two-sample t-test, comparing EHR developer user change in 
group mean odds to EHR developer overall change in mean odds (1.21). 
Note 2: Excluded EHR vendors with group membership less than 10: Acrendo 
Software, Inc., Amazing Charts, athenahealth, Inc., Bizmatics, Inc., Connexin 
Software, Inc., drchrono, Inc, Enable healthcare, Inc., Glenwood Systems, LLC., 
Greenway Health, LLC, MedPlus, Practice Fusion, and Viteria Healthcare Solu-
tions, LLC. 

* Credible Set not containing 1. 
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ordered doses and administration of non-influenza vaccine doses during 
and surrounding the peak of COVID-19 outbreak [58]. Our approach can 
be used to estimate the impact of effective CEHRT functionalities to limit 
pandemic-related actions that has reduced preventative and non- 
emergent care. 

5.1. Limitations 

This study has some limitations: (1) As with all studies that utilize 
PSM to develop comparison groups, this study assumes non-ignorability 
or selection-on-observables to define covariates for propensity score 
matching. The authors attempted to mitigate this weakness by using 
data supported by immunization research [20]. The finding of an odds 
close to one of change in the immunization measure could have been due 
to unwarranted controlling of confounding variables. However, our 
causal analysis obviates that concern (Fig. 5). (2) This study compares 
data 2 years before and 2 years after implementation of the Medicaid 
EHR Incentive Program and expects to see a noticeable change in quality 
after EHR implementation within 1 year. Although it is reasonable to 
assume that a change in the HEDIS immunization measure may occur 
within a year, it may not be accurate to assume that every provider who 
self-selected as implementing an EHR in 2013 did so at the same time 
and at the same level. It is possible that EHR implementation may take 
different providers different amounts of time and once implemented, 
different providers may take longer to fully integrate the system into 
their practice workflow. However, we looked at 2 years of immuniza-
tions after the index year. (3) This study also assumes that a provider’s 
primary group is the group from which most of their claims and en-
counters derive. This assumption is plausible, as claim volume attributed 
to and time spent with a group likely stand for a proxy for the amount of 
physical time spent delivering care at the particular practice. (4) This 
research did not control for particular group and provider characteristics 
such as how a group implemented their EHR, how an individual pro-
vider used the EHR, and whether or not providers are aware of the 
immunization schedule and will administer vaccines according to the 
schedule. (5) Finally, most likely due to small sample size, the results of 
the absolute mean difference in the change in immunization status score 
for Epic CEHRT might be unreliable. 

6. Conclusion 

This research has provided evidence for using Bayesian analysis of 
propensity-score matched provider populations to estimate the impact 
of CEHRT on outcomes-based quality measures. This method can be re- 
used to assess the impact of provider-level CEHRT on various quality 
measure outcomes. 
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