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ABSTRACT
tRNA-derived small RNAs (tsRNAs) are a novel class of small noncoding RNAs,
precisely cleaved from tRNA, functioning as regulatory molecules. The topic of
tsRNAs in injuries has not been extensively discussed, and studies on tsRNAs are
entering a new era. Here, we provide a fresh perspective on this topic. We
systematically reviewed the classification, generation, and biological functions of
tsRNAs in response to stress, as well as their potential as biomarkers and therapeutic
targets in various injuries, including lung injury, liver injury, renal injury, cardiac
injury, neuronal injury, vascular injury, skeletal muscle injury, and skin injury. We
also provided a fresh perspective on the association between stress-induced tsRNAs
and organ injury from a clinical perspective.
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INTRODUCTION
Since their discovery in 1958, transfer RNAs (tRNAs) have been fundamental in decoding
genetic information by translating messenger RNAs (mRNAs) into proteins (Hoagland
et al., 1958). Our understanding of tRNAs has advanced significantly, allowing us to
categorize their effects into canonical and non-canonical roles. In their canonical role,
tRNAs are tightly regulated, and even minor alterations can lead to disease states
(Orellana, Siegal & Gregory, 2022). In their non-canonical role, tsRNAs, precisely cleaved
from tRNAs, have emerged as a fascinating research area (Orellana, Siegal & Gregory,
2022). tsRNAs constitute a novel class of small noncoding RNAs (snoRNAs) with
functional fragments ranging from 18 to 40 nucleotides. A comprehensive review
illuminates the intricate biology of tsRNAs, covering tRNA and tsRNA sequences,
modifications, structures, and interactions with RNA-binding proteins (Kuhle, Chen &
Schimmel, 2023). Furthermore, tsRNAs hold promise as potential therapeutic targets and
diagnostic biomarkers for various conditions, including cancer (Mao et al., 2023; Yu et al.,
2021), neurological diseases (Fagan, Helm & Prehn, 2021), viral infections (Yu et al., 2021),
and cardiovascular disorders (Cao, Cowan &Wang, 2020;Wang et al., 2023). However, the
topic of tsRNAs in injuries has not been systematically reviewed, to the best of our
knowledge.
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Stress conditions, including oxidative stress, nutritional deprivation, and hypoxia, play
crucial roles in tissue and organ injuries. The cleavage of tRNAs at the anticodon loop in
response to amino acid starvation was first discovered in Tetrahymena thermophila using
Northern blotting and RNA cloning in 2005 (Lee & Collins, 2005). This phenomenon has
since been observed in heat shock, hypothermia, hypoxia, and oxidative stress (Fu et al.,
2009; Thompson et al., 2008). The production of tsRNAs can be induced by angiogenin
(ANG), a secreted ribonuclease (Fu et al., 2009; Yamasaki et al., 2009). Additionally,
ANG-generated tRNA-derived stress-induced RNAs (tiRNAs) can inhibit protein
synthesis (Yamasaki et al., 2009; Ivanov et al., 2011) and apoptosis (Saikia et al., 2014).
These early studies highlighted the crucial roles of tsRNAs during stress. However,
traditional research methods used in early studies cannot accurately quantify tsRNAs due
to an average of 13 modifications per tRNA molecule (Pan, 2018). Recently, advanced
next-generation sequencing techniques have been used to detect tsRNAs by removing
RNA chemical modifications (Li et al., 2022b; Shi et al., 2021). Li et al. (2022b) used an
AlkB-facilitated methylation sequencing technique to reveal cellular and extracellular
tsRNA abundances across various cell types during different stress responses. Stress is
closely related to various injuries, and tsRNAs also play a role in these injuries. For
instance, tRF-Gln-CTG-026 shows robust functionality in mitigating liver injury (Ying
et al., 2023). In terms of vascular injury, tiRNA-Glu-CTC induces vascular injury through
mitochondrial damage (Zhang et al., 2024). Similarly, tRF-Glu-CTC expression increases
after vascular injury and inhibits fibromodulin expression in vascular smooth muscle cells
(Jiang et al., 2024).

While the topic of tsRNAs in injuries remains largely unexplored, this review provides a
fresh perspective. This review will interest readers studying injuries, such as lung, liver,
renal, cardiac, and neuronal injuries. Additionally, researchers studying tsRNAs and stress
may find this review valuable. This review will help researchers in tsRNA biology or injury
diseases fully understand the role of tsRNAs in various injuries.

SURVEY METHODOLOGY
We searched related literature on PubMed using the keywords: (“tRFs” OR “tsRNAs” OR
“tDRs”) AND (“injury” OR “cell stresses”). We excluded studies unrelated to injury and
stress. Articles that were not research articles or reviews were also excluded. Reference lists
of related studies were screened to identify additional articles not found in the online
search.

AN OVERVIEW OF THE CLASSIFICATION OF TSRNAS
Firstly, we introduced the generation, structure, and function of tRNAs, as tsRNAs are
cleaved from tRNAs. RNA Polymerase III actively transcribes tRNA genes into pre-tRNAs.
Pre-tRNAs then undergo additional processing steps before maturation, including
cleavage of the 5′ PPP-leader and 3′ trailer-UUU sequence, and the addition of the -CCA
triplet at the 3′ end (Hu et al., 2022b; Orellana, Siegal & Gregory, 2022). Mature tRNAs
typically consist of 70 to 90 nucleotides (nt) and adopt a cloverleaf secondary structure
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with four loops: the dihydrouracil loop (D-loop), anticodon loop, variable loop, and
pseudouridine loop (TψC loop) (Fig. 1) (Hu et al., 2022b; Orellana, Siegal & Gregory,
2022). Furthermore, tRNAs undergo numerous chemical modifications crucial for their
function and the biogenesis of tsRNAs (Di Fazio & Gullerova, 2023; Pan, 2018). Mature
tRNAs are key molecules in mRNA decoding and protein translation (Fig. 1). Specifically,
tRNAs recognize mRNA codons using the anticodon and accurately deliver the
corresponding amino acid to the ribosome via their 3′ end. tRNAs are transcribed from
multiple genes, and tsRNAs can be generated from various tRNA sources (Li, Xu & Sheng,
2018).

The production of tsRNAs involves a regulated cleavage process from both pre-tRNAs
and mature tRNAs (Magee & Rigoutsos, 2020). Specific nucleases cleave tRNA at distinct
sites, resulting in five major types of tsRNAs: tRF-1, tRF-3, tRF-5, i-tRF, and tiRNA (Fig. 1)
(Hu et al., 2022b). tRF-1 molecules originate from the 3′-trailer sequence of pre-tRNA
molecules, which includes the termination signal for RNA Pol III transcription (Mao et al.,
2023). During tRNA maturation, the 3′-trailer sequence of pre-tRNA is removed, and the
CCA sequence is added simultaneously. tRF-3 molecules span from the 3′ end to the T
loop of mature tRNAs. tRF-3 can be further classified into tRF-3a and tRF-3b based on

Figure 1 Biogenesis and classification of tsRNAs. RNA Polymerase III actively transcribes tRNA genes
into pre-tRNAs, which then undergo additional processing steps before maturation. Mature tRNAs are
key molecules in mRNA decoding and protein translation. Specific nucleases cleave tRNA at distinct sites,
resulting in five major types of tsRNAs: tRF-1, tRF-3, tRF-5, i-tRF, and tiRNA. tRF-1 molecules originate
from the 3′-trailer sequence of pre-tRNA molecules. Full-size DOI: 10.7717/peerj.18348/fig-1
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their length (18 or 22 nucleotides). tRF-5 molecules begin at the 5′-end of tRNA and end at
either the D-loop or the anticodon loop. tRF-5 molecules are further categorized as tRF-5a
(14–16 nt), tRF-5b (22–24 nt), and tRF-5c (28–30 nt). i-tRFs originate from internal
regions of mature tRNAs, excluding the termini. tiRNAs, ranging from 30 to 40
nucleotides in length, result from cleavage at the anticodon region of mature tRNAs,
yielding two fragments: 5′ tiRNAs and 3′ tiRNAs (Di Fazio & Gullerova, 2023; Lee et al.,
2023; Mao et al., 2023).

GENERATION OF TSRNAS IN RESPONSE TO STRESS
Stress can impact tRNA abundance through processes such as tRNA transcription,
stability, chromosomal arrangement, transport, modifications, and fragmentation
(Aswathi et al., 2023). These factors may influence the generation of tsRNAs. Here, we
focus on how tRNA molecules are cleaved into tsRNAs under stress.

Several types of stress can cause the cleavage of tRNAs, as identified by Northern
blotting: nutritional deficiency, heat shock, hypothermia, hypoxia, and oxidative stress
(Lee & Collins, 2005; Fu et al., 2009; Thompson et al., 2008). These studies revealed that the
cleavage of tRNAs in response to stress, not specific to individual tRNAs, is a conserved
phenomenon across different life forms. Specific ribonucleases can induce the cleavage of
tRNAs in response to stress. ANG, a member of the RNase superfamily, was found to
produce tiRNAs (Fu et al., 2009). Yamasaki et al. (2009) reported that knockdown of
angiogenin inhibits arsenite-induced tiRNA production. Mechanistically, ANG is
located in the nucleus under growth conditions but relocates to the cytoplasm under
oxidative stress, remaining enzymatically active for tiRNA production (Pizzo et al., 2013).
However, a study using a global short RNA-Seq approach under ANG knockout or
overexpression demonstrated that the majority of stress-induced tRNA halves can be
generated by an ANG-independent pathway (Su et al., 2019). tsRNA production also
depends on other enzymes, including RNase T2, Dicer, and RNase Z/ELAC2
(Magee & Rigoutsos, 2020), but the relationship between these enzymes and stress requires
further research.

tRNA modification can affect the production of tsRNAs. NSUN2 methylates tRNAs
site-specifically at either the anticodon or variable loop, protecting them from ANG
cleavage. Under oxidative stress, the cytosine-5 RNA methyltransferase NSUN2 is
significantly down-regulated, leading to reduced methylation at specific tRNA sites, which
significantly impacts the biogenesis of tsRNAs (Gkatza et al., 2019). This study used
quantitative mass spectrometry and RNA bisulfite sequencing to confirm remethylation of
NSUN2-specific sites. Additionally, the tRNA methyltransferase TRMT2A induces
m5U54 tRNA hypomodification. TRMT2A knockdown in human cells induces m5U54
tRNA hypomodification, followed by overexpression of ANG, which cleaves tRNAs near
the anticodon, resulting in the accumulation of 5′ tiRNAs (Pereira et al., 2021). On the
other hand, the dysregulation of tRNA modifications under hypobaric hypoxia increased
the sensitivity of tRNA to RNases, affecting the molecular stability of tissue total
tRNA-enriched fragments (Guo et al., 2023). This study used an RNA modification
detection platform based on liquid chromatography-tandem mass spectrometry.
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BIOLOGICAL FUNCTIONS OF TSRNAS IN RESPONSE TO
STRESS
Translation regulation
Yamasaki et al. (2009) discovered that transfection of ANG-induced tiRNAs promotes
phospho-eIF2a-independent translational arrest. The same group found that transfection
of natural or synthetic 5′-tiRNAs induces the assembly of stress granules (Emara et al.,
2010). They also found that 5′ tiRNA-Ala and 5′tiRNA-Cys possess terminal oligoguanine
motifs (4–5 guanine residues) at their ends, allowing them to fold into G-quadruplex-like
structures. These structures can interact with the translational repressor Y-box binding
protein 1, replacing eukaryotic initiation factor 4F, leading to stress granule assembly and
translation inhibition (Ivanov et al., 2011, 2014). However, recent literature revealed that
neither physiological nor non-physiological copy numbers of tsRNAs induced the
formation of stress granules (Fricker et al., 2019; Sanadgol et al., 2022), challenging the
established role of tsRNAs in stress granule assembly. In summary, 5′tiRNAs can inhibit
protein synthesis by interfering assembly of the pre-initiation complex and inducing stress
granule assembly. The role of tsRNAs in stress granule assembly should be reconfirmed in
future studies.

tsRNAs can bind to ribosomes to regulate translation. In the simple eukaryotic
organism Saccharomyces cerevisiae, 3′tsRNAs and 5′tsRNAs directly bind to ribosomes in
vitro filter-binding assays (Fig. 2). The binding position of tsRNAs within ribosomes differs
from classical A- and P-tRNA binding sites, resulting in protein biosynthesis inhibition
during specific environmental stress (Bąkowska-Żywicka, Kasprzyk & Twardowski, 2016).

Figure 2 Generation and functions of tsRNAs in respond to stress. tRNA modification and ribonu-
cleases, such as ANG, affect the production of tsRNAs. tsRNAs function in translation regulation,
apoptosis regulation, and gene silencing. Full-size DOI: 10.7717/peerj.18348/fig-2
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Similarly, Gebetsberger and colleagues confirmed that 5′tsRNA-Val is produced during
specific stress in the halophilic archaeon Haloferax volcanii. This tRF-Val can bind to the
small ribosomal subunit, displacing mRNA from the initiation complex and leading to
global translation attenuation (Fig. 2) (Gebetsberger et al., 2017). In Trypanosoma brucei, 3′
tiRNA-Thr enhances translation by associating with ribosomes and facilitating mRNA
loading once starvation conditions ceased (Fricker et al., 2019). tsRNAs not only
downregulate translation but can also upregulate it, suggesting a diverse role in translation
regulation.

Apoptosis regulation
During cellular stress, cytochrome c is released from the mitochondria into the cytosol. It
then interacts with apoptosis-activating factor-1, resulting in the formation of the
heptameric apoptosome. This complex activates downstream caspases and initiates the cell
death process (Kalpage et al., 2019). During hyperosmotic stress, ANG-induced tiRNAs
can bind cytochrome c, forming a novel ribonucleoprotein complex. This complex inhibits
apoptosome formation, thereby increasing cell survival (Fig. 2) (Saikia et al., 2014). In
cancer, tsRNA-26576 and tRF-Val were found to inhibit cellular apoptosis and enhance
cellular proliferation and migration (Cui et al., 2022; Zhou et al., 2019).

Gene silencing
Similar to miRNAs, tsRNAs achieve gene silencing by assembling the RNA-induced
silencing complex, resulting in post-transcriptional gene silencing (Di Fazio & Gullerova,
2023; Jonas & Izaurralde, 2015). In addition to post-transcriptional gene silencing, tsRNAs
can downregulate target genes by targeting introns through nascent RNA silencing in the
nucleus (Di Fazio et al., 2022). Mechanistically, various types of tsRNAs can bind to
Argonaute (AGO)1–4, including tRF-1s, tRF-3s, and tRF-5s (Kumar et al., 2014; Maute
et al., 2013; Rosace, López & Blanco, 2020). When tsRNAs load onto AGO proteins, key
members of the RNA-induced silencing complex, they guide the degradation of
sequence-matched targets (Fig. 2) (Kuscu et al., 2018). For example, tRF5-GluCTC binds
AGO4 to form a complex, and AGO1 carries mRNA to provide a target for the AGO4-
tRF5-GluCTC complex to silence related genes (Choi et al., 2020). Under stress conditions
in Arabidopsis thaliana, tsRNA-AGO1 complex specifically targets and cleaves
endogenous transposable element mRNAs, which is detrimental to host fitness (Martinez,
Choudury & Slotkin, 2017). In a lymphoma cell line, tRF3-Gly (CU1276) binds AGO1-4,
suppressing proliferation and modulating the molecular response to DNA damage (Maute
et al., 2013). However, only a limited number of tsRNAs combined with AGO have been
identified, and many tsRNAs exhibit weak interactions with AGO proteins (Lee et al.,
2023).

Molecules mechanism of organ injury
Multiple mechanisms are involved in organ injury, including oxidative stress,
metabolic stress, programmed cell death pathways, and inflammatory immune responses
(Wang et al., 2024). Oxidative stress plays a crucial role in various injuries, including
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ischemia-reperfusion injury (Wang et al., 2024), traumatic brain injury (Frati et al., 2017),
and radiation injury (Yamaga et al., 2024). Therefore, we will use myocardial ischemia/
reperfusion injury as an example to discuss organ injury. The pathophysiology of
myocardial ischemia/reperfusion injury is shown in Fig. 3. The lack of oxygen and energy
substrates during ischemia leads to cellular acidosis and subsequent accumulation of
cytosolic Ca2+ due to the reverse activity of the sodium-calcium exchanger (Bugger & Pfeil,
2020; Comità et al., 2023). Reperfusion can exacerbate ischemia-induced injury in severely
ischemic cells by releasing reactive oxygen species (ROS) generated by damaged
mitochondria and NADPH oxidase (Monsel et al., 2014). Oxidative stress results from an
imbalance between the production of ROS and their removal (Frati et al., 2017). Excessive
ROS production reduces membrane fluidity, increases calcium permeability, releases
pro-apoptotic proteins, disrupts protein functions, and damages nucleic acids and
chromosomes (Galeone, Grano & Brunetti, 2023). These ischemia/reperfusion-induced
pathways can lead to various forms of cell death (Davidson et al., 2020) (Fig. 3).

Figure 3 Myocardial ischemia/reperfusion injury. During the ischemia phase, myocardial cells pri-
marily undergo anaerobic metabolism, resulting in reduced ATP generation. This metabolic shift impairs
the function of ion pumps, disrupting membrane ion gradients and mitochondrial membrane potential
(ΔΨm). Intracellular conditions manifest as low pH, high sodium and calcium ions, and cellular swelling
due to increased osmolarity. Intracellular calcium overload during hypoxia induces the opening of the
mitochondrial permeability transition pore (MPTP) activation of phospholipases and calcium-dependent
proteases, and contraction band necrosis. During the reperfusion phase, myocardial cells experience the
restoration of oxygen and nutrient supply, triggering the production of ROS. The sustained increase in
calcium permeability further exacerbates calcium overload, leading to the continued opening of the
mitochondrial permeability transition pore and subsequent mitochondrial damage.

Full-size DOI: 10.7717/peerj.18348/fig-3
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TSRNAS: NEW POTENTIAL MARKERS AND THERAPEUTIC
TARGETS IN INJURIES
Lung injury
Lung injury encompasses a spectrum of conditions, including acute and chronic lung
injury, bronchopulmonary dysplasia, ventilator-induced and ventilator-associated lung
injury, radiation-induced lung injury, acute respiratory distress syndrome, chronic
obstructive pulmonary disease, asthma, pulmonary fibrosis, and cystic fibrosis
(Vishnupriya et al., 2020). These injuries can be fundamentally triggered by exposure to
stressors such as hypoxia, oxidative stress (ischemia-reperfusion), and xenobiotics
(Vishnupriya et al., 2020). The etiology of lung injury includes pneumonia, infections,
trauma, shock, burns, acute pancreatitis, radiation exposure, and blood transfusion (Lan
et al., 2023). At the cellular and molecular levels, the mechanism of lung injury involves
autophagy (Vishnupriya et al., 2020) and ferroptosis (Yu & Sun, 2023). Wang et al. (2022)
performed RNA sequencing in bronchoalveolar lavage fluid exosomes of
lipopolysaccharide induced acute lung injury mice and discovered that alveolar
macrophage-derived exosomal tRF-22-8BWS7K092 contributes to the pathogenesis of
acute lung injury by inducing ferroptosis through the Hippo signaling pathway (Wang
et al., 2022). Another study demonstrated that tRF-Gly-GCC inhibits cell proliferation,
promotes ROS production, and triggers apoptosis in radiation-induced lung injury (Deng
et al., 2022). Furthermore, Lin et al. (2022) established that dexmedetomidine ameliorates
pulmonary injury, reduces inflammation, pulmonary edema, and ferroptosis in acute lung
injury, resulting in alterations in the tsRNA expression profile. Changes in tsRNA not only
reflect lung injury but also have the potential to serve as therapeutic targets for lung injury.

Liver injury
Liver injury can result from conditions such as viral hepatitis, ischemia-reperfusion injury,
and drug-induced damage (Liang et al., 2024). Pathological manifestations include
necrosis, apoptosis, hepatic steatosis, liver inflammation (Payus et al., 2022), hepatocyte
pyroptosis (Xie & Ouyang, 2023), ferroptosis (Liang et al., 2024), and mitochondrial
dysfunction (Arumugam et al., 2023). Ying and colleagues knocked down NSun2, a tRNA
methyltransferase, to generate tsRNAs, highlighting tRF-1s as essential products capable of
mitigating liver injury. Through further screening, they found that tRF-Gln-CTG-026
exhibits robust functionality by suppressing global protein synthesis through the weakened
interaction between TSR1 (a pre-rRNA-processing protein homolog) and the pre-40S
ribosome (Ying et al., 2023). In alcohol-induced liver injury and steatosis, complement C3
activation products contribute to hepatosteatosis by regulating the expression of tRF-Gly.
Mechanistically, tRF-Gly binds with AGO3 to downregulate Sirt1 expression, subsequently
impacting downstream lipogenesis and β-oxidation pathways (Zhong et al., 2019). tsRNAs
can not only alleviate liver injury but also cause liver injury, indicating their multiple roles
in liver injury.
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Renal injury
Oxidative stress emerges as a critical pathogenic mechanism in renal diseases (Mishima
et al., 2014; Nørgård & Svenningsen, 2023). Ischemia-reperfusion injury can damage
mitochondria, leading to decreased mitochondrial DNA, increased ROS, and reduced ATP
generation, thus triggering oxidative stress and cell injury (Zhang et al., 2023a). An early
study found that circulating tRNA derivatives increased rapidly in various models of tissue
damage, even in humans under acute renal ischemia, by detecting tRNA-specific modified
nucleoside 1-methyladenosine antibody (Mishima et al., 2014). This study indirectly
suggests tsRNAs as potential biomarkers for acute kidney injury. Furthermore, Li and
colleagues investigated the tsRNA profiles in healthy controls and moderate/severe
ischemia-reperfusion injury kidney tissues in mouse models using tRFs/tiRNAs
sequencing. They found that 152 tsRNAs were differentially expressed in the moderate
ischemic injury group compared with the normal control group (47 upregulated and 105
downregulated), and 285 tsRNAs in the severe ischemic injury group were differentially
expressed (157 upregulated and 128 downregulated) (Li et al., 2022a). tsRNAs serve as
promising candidates for biomarkers and therapeutic targets for acute kidney injury, but
more studies are needed in the future.

Cardiac injury
Ischemic heart disease is the most prevalent cardiovascular disease. During myocardial
ischemia, cardiomyocytes are exposed to nutrient deprivation and hypoxia, ultimately
leading to cell death. Timely interventional procedures and thrombolytic agents facilitate
the rapid restoration of blood and oxygen following temporary interruption, thereby
mitigating myocardial ischemia-reperfusion injury (Peng et al., 2023). The detailed
mechanism of myocardial ischemia-reperfusion injury is depicted in Fig. 3. Hu et al.
(2022a) identified that tRF-Gln-UUG from ginseng can maintain cytoskeletal integrity and
support mitochondrial function. They found that tRF-Gln-UUG targets the lncRNA
MIAT/VEGFA pathway. Although the tsRNA profiles of myocardial ischemia-reperfusion
injury have not been reported, tsRNAs in myocardial ischemia change significantly. Liu
and colleagues reported tsRNA expression patterns in isoproterenol-induced myocardial
ischemia and caloric restriction pretreatment. They found that 302 tsRNAs were
significantly changed in myocardial ischemia and 55 tsRNAs were significantly regulated
by caloric restriction pretreatment, which are potential therapeutic targets for myocardial
ischemic injury (Liu et al., 2020). tsRNA expression profiles in different cardiomyocyte
injuries may exhibit different changes. For cardiomyocyte injury caused by high glucose,
only specific tsRNAs were differentially expressed. Specifically, inhibition of tRF-5014a
alleviated cardiomyocyte injury by regulating autophagy under high glucose conditions
(Zhao et al., 2022). tsRNAs can be potential therapeutic targets for myocardial injury, and
the roles of tsRNAs in different myocardial injuries may vary.

Neuronal injury
The literature on neurological injury mainly focuses on the expression profiles of tsRNAs
in various models through RNA sequencing, including traumatic spinal cord injury (Qin
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et al., 2019), traumatic brain injury (Xu et al., 2022), and therapeutic targets of traditional
Chinese medicines like Xuefu Zhuyu Decoction for experimental traumatic brain injury
(Yang et al., 2022). In traumatic spinal cord injury, bioinformatics analyses revealed that
tiRNA-Gly-GCC-001 might be involved in the MAPK and neurotrophin pathways by
targeting BDNF, thereby regulating the pathophysiological processes following spinal cord
injury (Qin et al., 2019). For traumatic brain injury, differentially expressed tsRNAs are
associated with inflammation and synaptic function (Xu et al., 2022). Yang et al. reported
that tsRNAs treated with traditional Chinese medicines could contribute to regulating
insulin resistance, the calcium signaling pathway, autophagy, and axon guidance through
bioinformatics analysis (Yang et al., 2022). These models exhibit significantly different
expressions of tsRNAs in neuronal injury, providing potential therapeutic targets for
neuronal injury. Additionally, tiRNAs are associated with cerebral ischemia-reperfusion
injury in cell and rat models (Elkordy et al., 2019; Sato et al., 2020).

Vascular injury
Vascular injury encompasses multiple types, involving different mechanisms of cell
damage. Here, we discuss the roles of tsRNAs in vascular ischemia injury, diabetes-induced
retinal microvascular injury, nanoplastics-induced vascular injury, and vascular trauma. A
study found that tiRNA-Val-CAC and tiRNA-Gly-GCC increased in a rat brain ischemic
model, a mouse hindlimb ischemia model, and a cellular hypoxia model. These tsRNAs
can inhibit cell proliferation, migration, and tube formation in endothelial cells (Li et al.,
2016). A tsRNA had a similar function in diabetes-induced retinal microvascular
complications. tRF-1020 expression was downregulated in diabetic retinal vessels and
retinal endothelial cells of mice during high glucose or H2O2 stress (Ma, Du & Ma, 2022).
Additionally, tRF-1020 levels were downregulated in aqueous humor and vitreous samples
of patients with diabetic retinopathy (Ma, Du & Ma, 2022). Furthermore, overexpressing
tRF-1020 decreased endothelial cell viability, proliferation, migration, and tube formation,
and alleviated retinal vascular dysfunction by targeting Wnt signaling (Ma, Du & Ma,
2022). However, tsRNAs can increase the proliferation and migration of endothelial cells
in neurovascular dysfunction caused by diabetes. A study reported that tRF-3001a is
significantly upregulated under diabetic conditions and in aqueous humor samples of
diabetic retinopathy patients (Zhu et al., 2023). Downregulation of tRF-3001a ameliorates
retinal vascular dysfunction, suppresses retinal reactive gliosis, improves retinal ganglion
cell survival, and preserves visual function and visually guided behaviors by targeting
GSK3B (Zhu et al., 2023). tsRNAs can also increase the proliferation and migration of
vascular smooth muscle cells in vascular injury, but the mechanisms are different. tiRNA-
Gly-GCC is upregulated in the synthetic phenotype of human aortic smooth muscle cells,
atherosclerotic vascular tissues and plasma, and the balloon-injured carotid artery of rats
(Rong et al., 2023). Inhibiting tiRNA-Gly-GCC effectively represses human aortic smooth
muscle cell proliferation, migration, and reversed dedifferentiation by downregulating
chromobox protein homolog 3 (Rong et al., 2023). Similarly, tRF-Gln-CTG was found to
be overexpressed in the injured rat common carotid artery (Zhu et al., 2021). tRF-Gln-
CTG increased the proliferation and migration of rat vascular smooth muscle cells by

Wang et al. (2024), PeerJ, DOI 10.7717/peerj.18348 10/22

http://dx.doi.org/10.7717/peerj.18348
https://peerj.com/


negatively regulating the expression of the FAS cell surface death receptor (Zhu et al.,
2021). tRF-Glu-CTC can also inhibit the expression of fibromodulin to inhibit the TGF-
β1/Smad3 signaling pathway, resulting in the promotion of neointimal hyperplasia in
vascular injury (Jiang et al., 2024). In vascular injury caused by polystyrene nanoplastics
exposure, tiRNA-Glu-CTC induces vascular smooth muscle cells to convert from
contractile to synthetic phenotypes and causes vascular injury through mitochondrial
damage by targeting Cacna1f (Zhang et al., 2024).

Skeletal muscle injury and skin injury
Skeletal muscle injury can be caused by mechanical trauma, thermal stress, myotoxic
agents, ischemia, and neurological damage (Yang & Hu, 2018). In a cardiotoxin-induced
skeletal muscle injury model, Shen and colleagues found that 5′tiRNA-Gly-CCC was
significantly upregulated after muscle injury through small RNA sequencing (Shen et al.,
2023). Mechanistically, 5′tiRNA-Gly-CCC promotes muscle regeneration by facilitating
early inflammatory response, satellite stem cell activation, and myoblast differentiation
(Shen et al., 2023). It does this by binding AGO1 and AGO3 to directly target Tgfbr1,
thereby regulating the TGF-β signaling pathway (Shen et al., 2023). Using the same model,
Chen and colleagues found that tRF-Gln-CTG was overexpressed in high abundance and
inhibited angiogenesis by directly targeting Antxr1 (Chen et al., 2023). These two research
results seem contradictory, as tsRNAs promote muscle regeneration but inhibit
angiogenesis, indicating the complex regulatory role of tsRNAs.

Currently, tsRNAs in irradiation-induced skin injury and diabetic wounds have been
reported. A study showed expression profiles of tsRNAs in an animal model of ultraviolet
irradiation-induced skin injury and found that 10 tsRNAs had significantly different
expression levels. They speculated that tRF-Gly-CCC-019 is an important target for
regulating the ras-related C3 botulinum toxin substrate 1 gene in the WNT signaling
pathway (Fang et al., 2021). For diabetic wounds, Zhang et al. (2023b) performed small
RNA sequencing of skin tissues from patients with diabetic foot ulcers and confirmed that
tRF-Gly-CCC-039 expression was upregulated in the diabetic model and impaired
HUVEC function.

CLINICAL VALUE OF TSRNAS IN ORGAN INJURY-
ASSOCIATED DISEASES
To date, a proportion of tsRNAs in organ injury-associated diseases have been identified,
and the mechanisms of organ injury have been validated. tsRNAs are expected to be
developed as RNA therapeutics in the future. RNA interference is a common RNA therapy
technology that can reduce the activity and levels of various RNA species, such as miRNA,
mRNA, and lncRNA (Robinson & Port, 2022). In theory, this strategy is an invaluable RNA
therapeutic to knock down tsRNAs, as most currently verified tsRNAs are harmful in
organ injury-associated diseases. However, few studies in this review employ this strategy
as investigational interventions. Moreover, it is still unknown whether this strategy will
interfere with the tRNA pool. RNA mimetics were often used in the cited studies in this
review to overexpress tsRNAs. Nevertheless, their pharmacokinetic properties have
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Table 1 Functions of tsRNAs in injuries.

Injury
types

tsRNA tsRNA types Expression
in injury

Mechanism Reference

Lung
injury

tRF-22-8BWS7K092 tRF-3
(tRF-Gln-TTG)

Up Alveolar macrophage-derived exosomal tRF-22-
8BWS7K092 contribut to ALI by inducing ferroptosis
through the Hippo signaling pathway.

Wang et al. (2022)

tRF-Gly-GCC-1 tRF-5
(1–28) bases

Up tRF-Gly-GCC inhibits cell proliferation and promotes
ROS production, and apoptosis in RILI.

Deng et al. (2022)

Liver
injury

tRF-Gln-CTG-026 tRF-1 __ Ameliorates liver injury by suppressing global protein
synthesis through the weakened association between
TSR1 and pre-40S ribosome.

Ying et al. (2023)

tRF-Gly 5′tiRNA Up tRF-Gly contributes to hepatosteatosis in alcoholic fatty
liver disease by binding with AGO3 to downregulate
Sirt1 expression to affect downstream lipogenesis and
β-oxidation pathways.

Zhong et al.
(2019)

Cardiac
injury

tRF-Gln-UUG
(HC83)

22 mer tRF-3 __ HC83 protects cardiac function and maintains both
cytoskeleton integrity and mitochondrial function of
cardiomyocytes by targeting the lncRNA MIAT/
VEGFA pathway.

Hu et al. (2022a)

Vascular
injury

tRNAVal

tRNAGly
5′tiRNA Up Inhibit cell proliferation, migration, and tube formation

in endothelial cells when exposed to ischemic injuries.
Li et al. (2016)

tRF-GlnCTG i-tRF Up Increase the proliferation and migration of rat vascular
smooth muscle cells through negatively regulating the
expression of FAS cell surface death receptor.

Zhu et al. (2021)

tRF-1020 tRF-1
(tRF- Phe-GAA)

Down Decrease endothelial cell viability, proliferation,
migration, and tube formation and, meanwhile,
decrease retinal acellular capillaries, vascular leakage,
and inflammation by targeting Wnt signaling.

Ma, Du & Ma
(2022)

tRF-22-8BWS72092 tRF-3
(tRF-Gln-CTG)

Down Improve choroidal vascular dysfunction by interacting
with METTL3 and then blocking m6A methylation of
Axin1 and Arid1b mRNA transcripts to increased
expression of Axin1 and Arid1b

Liu et al. (2023)

tRF-3001a tRF-3 (tRF-Leu) Up Alleviate retinal vascular dysfunction, suppress retinal
reactive gliosis, improve retinal ganglion cell survival,
and preserve visual function and visually guided
behaviors by targeting GSK3B

Zhu et al. (2023)

tiRNA-Gly-GCC 5′tiRNA Up Inhibition of tiRNA-Gly-GCC can alleviate vascular
intimal hyperplasia by repressing human aortic smooth
muscle cell proliferation, migration, and reversed
dedifferentiation via downregulating chromobox
protein homolog 3.

Rong et al. (2023)

Skeletal
muscle
injury

5’tiRNA-Gly-CCC 5′tiRNA Up Promotes muscle regeneration by facilitating early
inflammatory response, satellite stem cell activation,
and myoblast differentiation via binding AGO1 and
AGO3 to directly target Tgfbr1 to regulate the TGF-β
signaling pathway.

Shen et al. (2023)

tRF-Gln-CTG-027 (Length 19 nt) Up Inhibites angiogenesis by directly targeting Antxr1 Chen et al. (2023)

Skin
injury

tRF-Gly-CCC-039 tRF-5 Up Impair HUVECs function by the suppression of
proliferation, migration, tube formation, and the
expression of Coll1a1, Coll4a2, and MMP9.

Zhang et al.
(2023b)
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hindered their progress to clinical trials compared with RNA interference (Robinson &
Port, 2022).

Our review revealed that tsRNAs are dysregulated in various types of organ injury.
tsRNAs are better indicators of different stress responses than miRNAs (Li et al., 2022b).
Therefore, tsRNAs can be promising candidates for biomarkers in organ injury-associated
diseases. The exploration of the potential of tsRNA-based liquid biopsy is at an early stage
(Li et al., 2022c). A study investigated the comprehensive expression profiles of plasma

Figure 4 miRNA-like mechanism of tsRNAs in different injuries. MicroRNAs (miRNAs) can
assemble with AGO proteins into miRNA-induced silencing complexes to direct post-transcriptional
silencing of complementary mRNA targets. tsRNAs have a similar function of gene silencing by
assembling the RNA-induced silencing complex. Full-size DOI: 10.7717/peerj.18348/fig-4
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tsRNAs in children with fulminant myocarditis. They identified a target, tiRNA-Gln-TTG-
001, which was overexpressed during the acute phase. This particular tsRNA was positively
associated with highly sensitive cardiac troponin T, C-reactive protein, and procalcitonin
(Wang et al., 2021). Li et al. (2022c) conducted a multicenter prospective study and found
that exosomal tsRNAs have the potential for diagnosis, prognosis, and pre-operative
biomarkers for esophageal carcinoma. A large number of studies on tsRNAs as biomarkers
in organ injury-associated diseases are needed in the future. Prediction models of different
organ injuries based on tsRNAs may be developed in the future.

CONCLUSIONS
In this review, we systematically discuss the classification of tsRNAs, their generation, and
biological functions in response to stress, and their potential as biomarkers and therapeutic
targets in various injuries, including lung, liver, renal, cardiac, neuronal, vascular, skeletal
muscle, and skin injuries. We provide a fresh perspective on the biogenesis of
stress-induced tsRNAs and their functions in cell behavior under stress. We establish the
association between stress-induced tsRNAs and organ injury from a clinical perspective.
We also summarize the functions of tsRNAs in injuries in Table 1 and the miRNA-like
mechanisms of tsRNAs in different injuries in Fig. 4.

Currently, the literature on tsRNAs is rapidly increasing, gradually unveiling their
mysteries. However, a knowledge gap still exists regarding the relationship between
tsRNAs, stress, and injury, and tsRNA research is in its infancy. Stress conditions can
activate cellular protective responses, including stress neutralization, cell cycle pausing,
translation alterations, and damage repair. When the damage is too great for cellular
survival, the response to stress results in death pathways (Thompson et al., 2008). The most
well-known types of tsRNAs in response to stress are tiRNAs, which conserve energy for
repairing stress-induced damage (Yamasaki et al., 2009) and inhibit apoptosis (Saikia
et al., 2014). However, recent research suggests modifying current experimental stress
paradigms to separate the function of tsRNAs during the acute stress response from their
role as a consequence of ongoing cell death (Sanadgol et al., 2022). More work is needed to
explore the association between tsRNAs and various types of cell death, such as apoptosis,
pyroptosis, autophagy, necroptosis, and ferroptosis. Other aspects of the injury mechanism
are also worth exploring, such as the relationship between tsRNAs and inflammatory
immune responses.

Although several reviews (Kuhle, Chen & Schimmel, 2023; Magee & Rigoutsos, 2020;
Aswathi et al., 2023) have summarized research methods for tsRNAs, we will supplement
some points about tsRNAs in organ injury-associated diseases as follows. Firstly, the
development of sequencing technology, especially when combined with artificial
intelligence, will advance tsRNA research. Secondly, we can study the function of tsRNAs
by artificially generating them. Some studies manipulate ribonucleases to generate tsRNAs,
such as ANG (Ivanov et al., 2014) and Dicer (Di Fazio et al., 2022). One study generated
tsRNAs by altering tRNA modification through the knockdown of NSun2, a tRNA
methyltransferase (Ying et al., 2023). Thirdly, miRNA-like effects and research methods
are often used in studies focusing on the functions of tsRNAs in injury. Other mechanisms,
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such as translation regulation, are rarely studied in tsRNA research. This may be due to the
extensively researched functions of miRNAs and the mature tools for target prediction
based on sequence complementarity. Nevertheless, future studies need to supplement the
research on other mechanisms in injury.
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