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Abstract

Attention deficit hyperactivity disorder (ADHD) is a global behavior illness among children

and adults. To investigate the effects of taurine on resting-state fMRI activity in ADHD, a

spontaneously hypertensive rat (SHR) animal model was adopted. Significantly decreased

serum C-reactive protein (CRP) was detected in rats of Wistar Kyoto (WKY) high-taurine

group and significantly decreased interleukin (IL)-1β and CRP were detected in rats of SHR

low-taurine and high-taurine groups. Moreover, significantly higher horizontal locomotion

was detected in rats of WKY low-taurine and SHR low-taurine groups than in those of con-

trols. In contrast, significantly lower horizontal locomotion was detected in rats of the SHR

high-taurine group than in those of the SHR control group. Additionally, significantly lower

functional connectivity (FC) and mean amplitude of low-frequency fluctuation (mALFF) in

the bilateral hippocampus in rats of WKY high-taurine and SHR high-taurine groups was

detected. Notably, the mALFF in rats of the SHR low-taurine and high-taurine groups was

significantly lower than in those of the SHR control group. These findings suggest that the

administration of a high-dose taurine probably improves hyperactive behavior in SHR rats

by ameliorating the inflammatory cytokines and modulating brain functional signals in SHR

rats.

Introduction

Attention deficit hyperactivity disorder (ADHD) is a very common developmental disorder in

both children and adults worldwide, with prevalences of 5–10% [1] and 3–5% [2], respectively.

Although the exact etiology of ADHD is still unclear, various causes of the pathogenesis of

ADHD have been suggested. Inflammation has been associated with various neuropsychiatric

illnesses, including ADHD. Elevated pro-inflammatory cytokines such as interleukin (IL)-1,

IL-6, CRP and tumor necrosis factor alpha (TNF-α), are known as common pathogenic parts
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of schizophrenia, ADHD and autism [3]. Children with extremely prematurely birth, recur-

rent, or persistently inflammation during the first 14 postnatal days are strongly associated

with attention deficiency [4]. Accordingly, a systematic review article regarding inflammation

among young people with neuropsychiatric diseases reveals that elevated inflammatory mark-

ers play critical roles in the development of ADHD [5].

Magnetic resonance imaging (MRI) has been utilized to evaluate the anatomic differences

in brain areas between ADHD children and their controls [6–7]. Overall reductions in total

brain volume have been reported in ADHD children than those of age- and gender-matched

controls [8]. Indeed, evidences consistently show that the average brain volume in ADHD chil-

dren is significantly smaller than in healthy controls [9]. Brain areas of particular interest in

this regard are the prefrontal regions, basal ganglia, corpus callosum, and cerebellum. For

instance, differences in distributions of grey and white matter in children with ADHD and

healthy controls have been reported [10]. Since specific executive function impairments in par-

ticular brain areas of ADHD patients have been associated with the impaired behavioral phe-

nomena [11], functional MRI (fMRI) was employed herein has been used as the method of

choice to provide superior spatial resolution in ADHD cases. Based on fMRI measurement,

the pathogenesis of ADHD is likely to involve a reduction in volume or function in specific

brain areas, resulting in various behavioral problems such as abnormal cognitive processing,

attention, motor planning, and speed of processing responses [12].

Taurine, which is known to be the richest amino acid in the central nervous system, per-

forms various functions in the body, including antioxidant, anti-inflammation, osmoregula-

tion, neuromodulation, membrane stabilization, embryogenesis and immune regulation [13–

15]. Increasing wariness has recently been paid to the role of taurine in neuro-regulation. Tau-

rine is an endogenous ligand for the glycine receptor in the nucleus accumbens, elevating the

dopamine level in this area [16]. Additionally, taurine is reported to induce anti-anxiety effects

in an animal model probably owing to its association with GABA and has been used as a natu-

ral anxiolytic, or anti-anxiety compound, although some studies reveal mixed results [17–19].

These findings strongly associate taurine with various ADHD-related neurotransmitters.

Therefore, we intend to study the effects of taurine on serum inflammatory factors, horizontal

locomotion and brain functional activity in an ADHD-like animal model.

Materials and methods

Animals and diets

As a valid and accepted animal model for ADHD, the spontaneously hypertensive rat (SHR)

and its control, the Wistar-Kyoto (WKY) rat, were used in this study [20–21]. Three week-old

male SHR/NCrlCrlj and WKY/NCrlCrlj rats (with a body weight of approximately 180g) were

purchased from the National Laboratory Animal Center, Taipei, Taiwan. Rats of each the two

species were separated into control (Control), low taurine (Low Tau) and high taurine (High

Tau) groups (eight rats /group) and housed in an animal room at 22±2˚C with a 12/12 h light-

dark cycle. All protocols were followed under the supervision of the Institutional Animal Care

and Use Committee at Chung Shan Medical University (IACUC approval number: 1671),

following the Guide for the Care and Use of Laboratory Animals that was published by the

United States National Institutes of Health. The dosage of taurine used in this study is accord-

ing to a previous study [19]. All animals were provided with chow diets (Laboratory Rodent

Diet 5001, PMI Nutrition International/Purina Mills LLC., USA) and water for one week for

acclimation. Subsequently, the rats in the Control, Low Tau and High Tau groups were fed a

chow diet, a low taurine diet (22.5 mmol/kg taurine), and a high taurine diet (45 mmol/kg tau-

rine) for four weeks, respectively. Before the animals were sacrificed, horizontal locomotion
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and rs-fMIR was performed. Subsequently, the animals were sacrificed at an age of eight weeks

by CO2 asphyxiation. Blood was obtained from the heart and stored at -80˚C before analysis.

Measurement of horizontal activity in an open-field assay

Horizontal activity was detected as described elsewhere [22]. All rats were set in an open-field

device (acrylic cylinder; 40 cm diameter × 40 cm height) for two consecutive days prior to the

test day to diminish any influences of the treating process. Briefly, each rat was put in the mid-

dle of the apparatus under ambient lighting, and then allowed to explore the open field for 90

minutes in the first two days. On day three, the rat was placed in the same open-field device.

Horizontal activity was measured for 90 minutes as the total number of interruptions of the

beam of a horizontal sensor (SCANET MV-10; Melquest Co., Ltd, Toyama, Japan). All behav-

ioral evaluations were performed between 08:00 and 15:00 h.

ELISA estimations for IL-1β and CRP

Serum CRP and IL-1β concentrations were measured in triplicate with a commercially avail-

able enzyme-linked immunosorbent assay kit (BD Pharmingen, San Diego, CA, USA) accord-

ing to the instruction of manufacturer.

Functional MRI acquisition

Whole brain images were acquired from all subgroups mentioned above and scanned by 7T

MRI (Bruker BioSpin, Ettlingen, Germany). In preparation, each rat was anesthetized with

3.5% isoflurance mixed with 800 ml/min air. Before MRI experiments a short-acting tranquil-

izer and synthetic medicine, Domitor (0.1 ml/500 g), was injected. The sedation effect of

Domitor was about half hour to one hour. It is commonly used in animal surgery and fMRI

study to avoid BOLD signal contamination by isoflurance. During experiments, the tempera-

ture was maintained at around 37˚C using hot pad. All functional images were acquired by

gradient echo based echo planar imaging (EPI) with the following parameters: repetition time/

echo time (TR/TE) = 2000ms /20 ms, resolution (voxel size) = 3.12 x 3.12 x 1 mm3, slice num-

ber = 12, number of repetition = 300, and the scan time = 10 min.

Functional image pre-processing

The raw data were first converted into ANALYZE format. The preprocess was then performed,

including slice timing, realignment, denoise, detrending and filtering, using Statistical Para-

metric Mapping (SPM8, Wellcome Department of Cognitive Neurology, London, UK) and

Resting-State fMRI Data Analysis Toolkit (REST1.8, Lab of Cognitive Neuroscience and

Learning, Beijing Normal University, China) [23]. For motion correction, all EPI images in

each run were realigned to first image. To reduce the noise, all data were spatially smoothed by

a Gaussian kernel with full width at half maximum (FWHM) of [0.6 mm, 0.6 mm, 2 mm]. To

cut down the influences of low-frequency linear and quadratic drifts and physiological signals,

detrending and band-pass temporal filtering (0.01–0.12 Hz) were adopted on the time series of

each voxel.

Functional connectivity

Functional connectivity analysis is a seed-based analysis that can observe the connectivity

between brain regions that share functional properties. It indicates selecting regions of interest

(ROIs) and correlating the average blood oxygenation level dependent (BOLD) time course of

voxels within these ROIs with each other as well as with the time courses of all other voxels.

Effects of taurine in ADHD animal model
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Using the rat brain in stereotaxic coordinates as a reference, seed region was prescribed for

each choosing brain area center, then extract a spherical region with a 0.5mm radius. Spherical

seeds were prescribed for each network. We used the posterior cingulate cortex (PCC) as the

seed region to identify the default mode network (DMN) [24]. In addition, we used the bilat-

eral amygdala, hippocampus, thalamus and motor as seed points to construct the functional

connectivity map. To assess bilateral connectivity, we calculated the correlation between seed

point and other sides. A circular ROI was selected on the contralateral side of the seed regions,

with the shortest axis of the brain area as the radius; the ROI size in each group was controlled

to be the same. We used Functional Magnetic Resonance Imaging of the Brain Software

Library (FMRIB Software Library, FSL, Oxford, UK) with FSL-View to make the 3D mask for

calculating the correlation between seed points and other sides, and the mean signals in the

functional connectivity map. Finally, the average z-scores of the two groups were determined.

Amplitude of low frequency fluctuations

The amplitude of low frequency fluctuations (ALFF) calculates low-frequencies spectral power

(0.01–0.12 Hz) of BOLD signal voxel-by-voxel [25]. The ALFF measures the correlation of low

frequency fluctuations of BOLD signal at each brain region, which is used to proxy the abso-

lute intensity of spontaneous brain activity [26]. The ALFF have numerous similarities with

fluctuations in neural metabolic, hemodynamic, and neurophysiological parameters [27].

Therefore, the ALFF during resting state is considered to be physiologically meaningful and

reflective of spontaneous neural activity [28]. For calculating mALFF, the time series was first

converted to the frequency domain using a Fast Fourier Transform for a given voxel. The

square root of the power spectrum was measured, averaged and normalized across a prede-

fined frequency interval, which was termed the ALFF at the given voxel [28]. To reduce the

global effects of variability across rats, the ALFF of each voxel was divided by the global mean

ALFF value for each subject, resulting in a relative ALFF, mALFF. We then performed two-

sample t-tests with FDR correction to assess the difference in mALFF between the SHR and

WKY rats.

Statistical analysis

All data are presented as mean ± standard error. Two-way analysis of variance (ANOVA) fol-

lowed by Dunnett’s test was performed to evaluate the horizontal activity data. The compari-

sons among groups were performed using GraphPad Prism 5 software (GraphPad Software,

Inc., La Jolla, CA, USA) by one-way analysis of variance (One-way ANOVA) followed by

Tukey multiple comparisons test. A value of P<0.05 was considered statistically significant.

Additionally, to investigate the associations between fMRI indices (FC and mALFF) and

behavior/biochemical measures (horizontal activity, IL-1β and CRP), the scatter plots were

performed.

Results

Effects of taurine on horizontal locomotion in WKY and SHR rats

The effect of taurine on locomotion of SHR and WKY rats was examined by detecting their

horizontal locomotion. Rats of the SHR control group exhibited significantly higher horizontal

locomotion than those of the WKY control group (Fig 1). Significantly higher horizontal

locomotion was detected in rats of WKY low-taurine than in those of WKY control group (Fig

1). Similar result was observed that SHR rats that were fed with low-dose taurine exhibited

significantly higher horizontal locomotion than in those of the SHR control group (Fig 1).

Effects of taurine in ADHD animal model
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Conversely, the SHR rats that were fed with a high dose of taurine exhibited significantly less

horizontal locomotion than in those of the SHR control group (Fig 1).

Effects of taurine on serum IL-1β and CRP levels in WKY and SHR rats

Elevation of inflammatory factors induces the development of neurological and mental pathol-

ogies, including ADHD. This study further investigates the effects of taurine on inflammatory

factors, including IL-1β and CRP, in both SHR and WKY rats. Significantly higher level of

serum IL-1β was detected in rats of the SHR control group than in those of the WKY control

group (Fig 2A). No significant difference between serum IL-1β levels was detected among

WKY rats that were fed with low or high dose of taurine and those of the control group (Fig

2A). A significantly lower serum IL-1β levels were detected in SHR rats that were fed with low

or high dose of taurine that in those of the SHR control group (Fig 2A). Significantly higher

level of serum CRP was detected in rats of the SHR control group than in those of the WKY

control group (Fig 2B). Significantly lower serum CRP level was detected in rats of the WKY

high-taurine group than in those of the WKY control group (Fig 2B). Notably, the serum CRP

level in rats of SHR low and high taurine groups were significantly lower than in those of the

SHR control group (Fig 2B).

Effects of taurine on functional connectivity

To investigate the effects of taurine on functional signals in various brain regions of SHR

and WKY rats, the signal of functional connectivity (FC) was detected using resting-state

Fig 1. Horizontal locomotion of WKY and SHR rats. Both WKY and SHR rats were divided into three

subgroups, including control group (Control), low dose taurine group (Low Tau), and high dose taurine group

(High Tau). The data are expressed as the mean ± standard error. The symbols, * (WKY Control vs. SHR

Control), # (WKY Low Tau vs. WKY Control; SHR Low Tau vs. SHR Control), & (SHR High Tau vs. SHR

Control) indicate statistically significant (P<0.05).

https://doi.org/10.1371/journal.pone.0181122.g001
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Fig 2. Serum (A) IL-1β and (B) CRP levels in WKY and SHR rats. Both WKY and SHR rats were divided into three

subgroups, including control group (Control), low dose taurine group (Low Tau), and high dose taurine group (High Tau). The

data are expressed as the mean ± standard error. The symbols, * (WKY Control vs. SHR Control), # (SHR Low Tau or SHR High

Tau vs. SHR Control) and & (WKY High Tau vs. WKY Control), indicate statistically significant (P<0.05).

https://doi.org/10.1371/journal.pone.0181122.g002
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functional magnetic resonance imaging (rs-fMRI). The FC maps are presented as individual

animals, which were composed of six individual representative rat brain maps, respectively.

The color bar represents z-scores. In Fig 3, the FC of the bilateral hippocampus in rats of the

SHR control group was significantly higher than in those of WKY control group. The FC of

the bilateral hippocampus in rats of the WKY high-taurine group was significantly lower than

in those of the WKY control group (Fig 3B). However, no significant variation of the FC in the

bilateral hippocampus was detected in rats of the SHR low-taurine and high-taurine groups

than in those of the SHR control group (Fig 3B). No significant variation in the FC of the other

brain regions was detected among the groups (data not shown).

Effects of taurine on mean amplitude of low-frequency fluctuations

The signal of mean amplitude of low-frequency fluctuation (mALFF) was detected to clarify

the effects of taurine in various regions of rat brain. The mALFF maps are presented as indi-

vidual animals, which were composed of six individual representative rat brain maps, respec-

tively. The color bar represents z-scores. In Fig 4, the mALFF of the bilateral hippocampus in

rats of the SHR control group was significantly higher than that in rats of the WKY control

group. The mALFF of the bilateral hippocampus in rats of the WKY high-taurine group was

significantly lower than in those of the WKY control group (Fig 4B). After treatment with a

low or high dose of taurine, the mALFF of the bilateral hippocampus in rats of the SHR low-

taurine and high-taurine groups was significantly lower than in those of the SHR control

group (Fig 4B). No significant variation in mALFF in the other brain regions was detected

among groups (data not shown).

Correlative analysis of fMRI indices biochemical measures

To investigate the correlation between fMRI indices, including FC and mALFF, and biochemi-

cal measures, including horizontal activity, IL-1β and CRP, the scatter plots were performed.

Accordingly, positive correlation between FC and IL-1β (r = 0.85), FC and CRP (r = 0.90),

mALFF and IL-1β (r = 0.98), and mALFF and CRP (r = 0.99) were detected (Fig 5). However,

no significant correlation was found between FC and horizontal activity or mALFF and hori-

zontal activity (data not shown).

Discussion

Accumulating evidence suggests a strongly pathophysiological relationship between inflam-

mation and attention-deficit hyperactivity disorder (ADHD) [5]. Elevated levels of pro-inflam-

matory cytokines such as interleukin (IL)-1 and C-reactive protein (CRP) are known to be

diagnostic markers and crucial pathogenic factor of ADHD [3, 29–30]. When cell damage

occurs, CRP binds to phosphocholine on cell membranes and promotes the binding of com-

plements [31]. Evidence reveals that IL-1 has both neuromodulatory and neurodevelopmental

functions that involve turnover neurotransmitters in various brain regions [32]. Interleukin-1

(IL-1α and IL-1β), IL-1Ra, and IL-1 receptors are found to be expressed in the brain [33].

Especially in relation to ADHD, IL-1β induces changes in dopamine (DA) and norepinephrine

(NE) in the prefrontal cortex. Various studies have also shown that the systemic administra-

tion of IL-1β enhances DA and NE utilization in the prefrontal cortex (PFC) in both mice and

rats [32, 34]. In this work, serum CRP and IL-1β levels were significantly lower in SHR rats

that were administered a low dose or high dose of taurine. These results suggest that taurine

can ameliorate inflammatory factors, resulting in ameliorating ADHD-like behaviors, such as

hyperactivity, in SHR rats.

Effects of taurine in ADHD animal model
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Fig 3. The functional connectivity of bilateral hippocampus in WKY and SHR rats. The (A) representative images of functional

connectivity (FC) in bilateral hippocampus of (a-c) WKY and (d-f) SHR rats. Both WKY and SHR rats were divided into three

subgroups, including (a, d) control group (Control), (b, e) low dose taurine group (Low Tau), and (c, f) high dose taurine group (High

Effects of taurine in ADHD animal model
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Functional magnetic resonance imaging (fMRI) is a specialized MRI method that is used to

measure hemodynamic responses; it provides images of the brain microvasculature in which

the image contrast reflects blood oxygen level [35]. The signals of blood-oxygen-level-depen-

dent (BOLD) dominate the mechanism that gives rise to functional connectivity in the resting

human brain [36]. Low-frequency temporal components (<0.1Hz) in resting-state BOLD

fMRI reflect spontaneous fluctuations in brain physiology and metabolism, which regards as

imaging markers of brain function [37]. Several indices of spontaneous low-frequency fluctua-

tions of BOLD fMRI, including the amplitude of low-frequency fluctuations (ALFF) [38],

regional homogeneity (ReHo) and functional connectivity (FC) [39], have been introduced to

evaluate resting brain function in patients with various psychiatric disorders, such as ADHD

[40]. Evidence suggests that increased hippocampus volume may reflect neural activities such

as temporal processing and delay aversion within the hippocampus in ADHD [8]. However,

these findings are not very stable among samples from different ADHD patients and the con-

tradictory findings may be related to the different locations of alterations in the complex cir-

cuits that are responsible for the various symptoms of ADHD [41–42]. A previous study

reported that ADHD patients exhibited higher ALFF values in the left superior frontal gyrus

and sensorimotor cortex (SMC) and suggested irregular frontal activities in the resting state

that are associated with the underlying physiopathology of ADHD [43]. Other evidence indi-

cates that ADHD patients exhibit impaired executive function and abnormal fMRI indices,

such as increased ALFF in both left and right globus pallidus and right dorsal superior frontal

gyrus, and increased FC in the frontostriatal circuit, relative to healthy controls [44]. Notably,

the SHR rats that were fed with taurine exhibited significantly lower mALFF values than those

in SHR control group in the hippocampus, as well as less horizontal locomotion and lower lev-

els of inflammatory proteins. These findings suggest that taurine mitigates mALFF in SHR rats

and probably result in reduced ADHD-like behavior in SHR rats. However, further investiga-

tions are required to elucidate the precise associations between fMRI indices and ADHD

symptoms.

An interesting result was observed in this study. The horizontal locomotion of SHR rats that

were fed with a low dose of taurine was significantly higher than that of rats of the SHR control

group. However, the SHR rats that were fed with a high dose of taurine exhibited significantly

less horizontal locomotion, owing to the effect of the dose of taurine. Accordingly, a recent study

found that glycine receptors were activated by administrating a low-dose taurine (0.5mM),

whereas a higher dose of taurine (3mM) induced both glycine and gamma-aminobutyric acid A

(GABAA) receptors in preoptic hypothalamic area (PHA) neurons [45]. Another study reported

that taurine supplementation increases locomotor activity and anxiety whereas taurine injection

suppressed locomotor activity and anxiety [18]. It indicates that taurine could induce opposite

effects through different ways of adminstration. However, investigations are needed to clarify

whether high-dose taurine supplemation is similar to the effect of lower-dosage taurine injec-

tion. Although further works are required to elucidate the influences of different dosages of tau-

rine as well as its administrative methods, these findings may provide a possibie explanation of

why taurine has ameloriate effects on ADHD-like behaviors in SHR rats.

Although the cause of ADHD remains unclear, impaired prefrontal cortex (PFC) circuits

plays crucial roles in the pathogenesis of ADHD [46]. Pharmacotherapy to treat ADHD is

based on evidence that norepinephrine and dopamine are extensively involved in various

Tau). The color bar represents z-scores. (B) The FC of bilateral hippocampus in WKY and SHR rats. The data are expressed as the

mean ± standard error. The symbols, * (WKY Control vs. SHR Control) and & (WKY High Tau vs. WKY Control), indicate statistically

significant (P<0.05).

https://doi.org/10.1371/journal.pone.0181122.g003

Effects of taurine in ADHD animal model

PLOS ONE | https://doi.org/10.1371/journal.pone.0181122 July 10, 2017 9 / 15

https://doi.org/10.1371/journal.pone.0181122.g003
https://doi.org/10.1371/journal.pone.0181122


Fig 4. The mALFF of bilateral hippocampus in WKY and SHR rats. The (A) representative images of mALFF in hippocampus of

(a-c) WKY and (d-f) SHR rats. Both WKY and SHR rats were divided into three subgroups, including (a, d) control group (Control),

Effects of taurine in ADHD animal model
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functional brain regions such as motor control, working memory, attention, and executive

function [47]. Therefore, a reduced GABA concentration was detected in cases of ADHD and

associated with its pathogenesis [48]. Taurine is the second most abundant neurotransmitter

in the central nervous system, which plays important roles in brain neuronal proliferation,

stem cell proliferation, and differentiation [49]. Clinically, taurine can be directly used in the

treatment of brain development because it has no toxic effects on humans [49]. Also, taurine

can interact with dopamine in the striatum [50] and induces the activation of extrasynaptic

GABA A receptors in the thalamus [51], taurine can elevate dopamine levels in the nucleus

accumbens [16, 52]. The above findings suggest diverse roles of taurine in modulating ADHD-

related neurotransmitters. Although further investigations are needed to confirm the precise

(b, e) low dose taurine group (Low Tau), and (c, f) high dose taurine group (High Tau). The color bar represents z-scores. (B) The

mALFF of bilateral hippocampus in WKY and SHR rats. The data are expressed as the mean ± standard error. The symbols, *
(WKY Control vs. SHR Control), # (SHR Low Tau or SHR High Tau vs. SHR Control) and & (WKY High Tau vs. WKY Control),

indicate statistically significant (P<0.05).

https://doi.org/10.1371/journal.pone.0181122.g004

Fig 5. The correlation between fMRI indices and inflammatory-cytokine levels in SHR rats. The scatter plots were performed to

evaluate the correlation between (A) FC and IL-1β (r = 0.85), (B) FC and CRP (r = 0.90), (C) mALFF and IL-1β (r = 0.98), and (D) mALFF and

CRP (r = 0.99).

https://doi.org/10.1371/journal.pone.0181122.g005
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effect of taurine on neurotransmitters in cases of ADHD, and the multiple modulatory effects

of taurine, especially in activating the GABA A receptor and elevating dopamine levels, this

study may provide a rational explanation of taurine’s amelioration of ADHD-like symptoms

in SHR rats by modulating neurotransmitters, such as GABA, dopamine and glutamate or

their receptors, in the brain.

Conclusion

This study is the first to reveals the beneficial effects of taurine on an ADHD animal model.

The treatment of SHR rats with a high dose of taurine significantly reduces the levels of pro-

inflammatory cytokines and horizontal locomotor activity. Treatment with a low or high dose

of taurine caused the FC of the bilateral hippocampus in SHR rats to return to the levels in rats

of the WKY control group. Taurine significantly reduces the mALFF of bilateral hippocampus

in SHR rats. Although no significant correlation was found between FC and horizontal activity

or mALFF and horizontal activity, this study still disclosers the ameliorative effect of high-dose

taurine on hyperactivity in SHR rats and suggests that taurine may be an alternative treatment

for ADHD. However, further animal and clinical studies are required to determine the effi-

cacy, safety, optimal dosage and precise mechanism of taurine for clinical purposes.
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