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Noradrenergic neurons of the brainstem extend projections throughout the neuraxis to

modulate a wide range of processes including attention, arousal, autonomic control and
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sensory processing. A spinal projection from the locus coeruleus (LC) is thought to regulate

nociceptive processing. To characterize and selectively manipulate the pontospinal

noradrenergic neurons in rats, we implemented a retrograde targeting strategy using a

canine adenoviral vector to express channelrhodopsin2 (CAV2-PRS-ChR2-mCherry). LC

microinjection of CAV2-PRS-ChR2-mCherry produced selective, stable, transduction of

noradrenergic neurons allowing reliable opto-activation in vitro. The ChR2-transduced LC

neurons were opto-identifiable in vivo and functional control was demonstrated for 46

months by evoked sleep-wake transitions. Spinal injection of CAV2-PRS-ChR2-mCherry

retrogradely transduced pontine noradrenergic neurons, predominantly in the LC but also

in A5 and A7. A pontospinal LC (ps:LC) module was identifiable, with somata located more

ventrally within the nucleus and with a discrete subset of projection targets. These ps:LC

neurons had distinct electrophysiological properties with shorter action potentials and

smaller afterhyperpolarizations compared to neurons located in the core of the LC. In vivo

recordings of ps:LC neurons showed a lower spontaneous firing frequency than those in

the core and they were all excited by noxious stimuli. Using this CAV2-based approach we

have demonstrated the ability to retrogradely target, characterise and optogenetically
3
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manipulate a central noradrenergic circuit and show that the ps:LC module forms a

discrete unit.

This article is part of a Special Issue entitled SI: Noradrenergic System.

& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The noradrenergic (NAergic) innervation of the brain and the
spinal cord arises from several clusters of neurons in the pons
and medulla (Dahlstrom and Fuxe, 1964). The locus coeruleus
(LC), the largest of these cell groups, extends axonal projec-
tions throughout the neuraxis (Aston-Jones, 2004; Samuels
and Szabadi, 2008). As a consequence, it has been considered
to be a global effector system causing brain-wide state
changes. However, the LC is involved in a diverse range of
functions including attention, memory, sleep-wake, auto-
nomic control and modulation of sensory input. This range
of roles of the LC raises the question of how discrete functional
specificity can be achieved at particular targets. This is the
subject of active investigation with contrasting viewpoints: for
example recent elegant tracing studies have demonstrated

widespread and divergent projections from the LC to the

forebrain (Schwarz et al., 2015) yet other investigators have

provided evidence for regional specificity in the organization

of the LC projection neurones and their electrophysiology

(Chandler et al., 2014). An example of the striking functional

contrasts in the role of the LC is apparent in the comparison

between the role of the LC in salience detection-improving

resolution in cortical signal processing (Aston-Jones and

Cohen, 2005; Berridge and Waterhouse, 2003; Sara and

Bouret, 2012) contrasted with its role in endogenous analgesic

circuits – projecting to the spinal cord to selectively suppress

the onward transmission of sensory information (Jones and

Gebhart, 1986; Millan, 2002; Pertovaara, 2006).
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Changes in the activity of the descending NAergic pain

control system have been implicated in the pathology of

chronic pain-particularly in neuropathic sensitization

(Hayashida et al., 2012; Jasmin et al., 2003; Rahman et al.,

2008; Viisanen and Pertovaara, 2007). A spinal segmental

deficit in NAergic control is seen after peripheral nerve injury

allowing localized nociceptive sensitization (Hughes et al.,

2013). However, intrathecal pharmacological blockade with

α2-adrenoceptor antagonists shows the descending NAergic
Direct injection
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projection is still partially limiting sensitization (De Felice
et al., 2011; Hughes et al., 2013; Xu et al., 1999). Conversely
augmentation of the descending NAergic system with
intrathecal NA re-uptake inhibitors reverses sensitization
indicating the potential benefit from restoration (Hughes
et al., 2015).

Given the importance of this descending NAergic projection
in the regulation of nociception and in the pathology of
neuropathic pain, we sought to develop a means to target this
control pathway to delineate mechanisms with spatial and
temporal precision. Recent optogenetic targeting approaches
have allowed specific activation of the NAergic neurons of the
LC (Carter et al., 2010; Vazey and Aston-Jones, 2014). However,
because of the widespread projections of the LC and the
emerging evidence for the heterogeneity of these neurons
(Chandler et al., 2014; Howorth et al., 2009a), it is perhaps not
surprising that direct activation of the LC using an optogenetic
approach uncovered both pro- and anti-nociceptive effects-
potentially reflecting actions on distinct subgroups of LC neu-
rons (Hickey et al., 2014).

Retrograde targeting of subsets of neurons offers a means to
differentiate the functional roles of neuronal subgroups on the
basis of their anatomical projections. Vectors based on human
adenovirus type 5 (hAdV-C5) with the catecholaminergic selective
synthetic promoter (PRS, (Hwang et al., 2001)), have previously
been used to retrogradely target the pontospinal NAergic neurons
and chronically explore their role in the regulation of nociception
(Howorth et al., 2009a, 2009b). However hAdV-C5 vectors lose
efficacy for retrograde transduction at high titres (Howorth et al.,
2009a), so we explored a different strategy tomaximize expression
instead employing canine adenovirus type 2 (CAV2) vectors that
preferentially transduce neurons, are readily taken up at axon
termini and transported to the cell body (Hnasko et al., 2006;
Kremer et al., 2000; Salinas et al., 2009), and lead to stable
expression (Bru et al., 2010). We show that CAV2 vectors contain-
ing the PRS promoter allow efficient transduction of LC neurons
(both direct and retrograde) enabling reliable opto-activation. This
approach permitted the anatomical and electrophysiological char-
acterization of LC neurons projecting to the spinal cord showing
that they form a specialized discrete module.
Fig. 1 – Selective, functional expression of ChR2-mCherry in
the Locus Coeruleus. (A) Direct injection of CAV2-PRS-ChR2-
mCherry efficiently transduced the LC neurons. Inset
demonstrating co-localization of mCherry and DBH (1 lm
confocal slice). (B) (i) Transduced LC neurons expressing
ChR2-mCherry in acute pontine slices. (ii) Whole cell
recording from LC neuron whose spontaneous firing is
entrained by light pulses at 40 Hz (blue bar, 10 ms�10 mW,
473 nm, inset expanded). This high frequency evoked
discharge is followed by a refractory period. (iii) Inward
currents characteristic of ChR2 induced by light
(500 ms�10 mW) at Vh �40 to �90 mV and plotted below as
normalized steady state current (relative to Vh �70 mV,
mean7SD, n¼17). (C) Extracellular recording in vivo from a
transduced LC neuron. Light pulses (473 nm;
15 mW�20 ms) entrained 1:1 neuronal firing at a frequency
of 5 Hz (shown expanded on right with overlay of 10 spikes).
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2. Results

2.1. Efficacy of direct LC transduction with CAV2-PRS-
ChR2-mCherry

Direct injections of CAV2-PRS-ChR2-mCherry efficiently
transduced the LC; fluorescence was restricted to dopamine
β-hydroxylase (DBH)-immunoreactive somata (Fig. 1A, 498%
of mCherryþ neurons double labeled) indicating that the
selectivity for NAergic neurons of the PRS promoter (Hwang
et al., 2001) is retained in this vector. Native mCherry-ChR2
fluorescence was seen in the somatic membrane within
7 days and expression remained stable for over 6 months
post-injection. Given this pattern of transgene expression,
whole cell patch clamp recordings were made in vitro 1–2
weeks post-transduction and behavioral/in vivo experiments
commenced 3–4 weeks post-injection.

2.2. Optogenetic control of LC neurons using CAV2 vectors

Whole cell recordings of transduced LC neurons were made
to determine the utility of the CAV2 vector for optogenetic
studies. After direct LC injection of CAV2-PRS-ChR2-mCherry
in vivo, there was strong fluorescent labeling of neurons in
pontine slices (slices cut 7–14 days post injection). Whole cell
recordings from mCherryþ LC neurons (Fig. 1Bi, n¼24)
showed light-evoked (λ¼473 nm) action potential discharge,
and trains of brief light pulses could drive one-for-one action
potentials at up to 40 Hz (Fig. 1Bii). Following such bursts of
driven discharge there was a prolonged refractory phase,
typical of LC neurons (Cedarbaum and Aghajanian, 1978b).
The light pulses elicited inward currents in voltage clamped
neurons (Fig. 1Biii) that were characteristic of ChR2, with a
rapidly inactivating component and a sustained steady state
response. The steady state currents averaged 311775pA
(n¼17, Vh�60 mV, measured 200 ms after light onset) and
showed an I–V relationship expected for ChR2 (non-selective
cation conductance, Fig. 1Biii). All cells with mCherry fluor-
escence responded to light, while no fast inward current was
Table 1 – Pontospinal LC neurons have distinct electrophysiolo

Naïve LC Injected non
N¼ 9 14

Resting Potential (mV) �58.971.0 �59.471.3
Firing rate (Hz) 2.270.3 2.370.3
Threshold (mV) �46.171.3 �48.171.0
AP amplitude (mV) 68.271.3 71.871.4
AP duration (ms) 1.5170.06nnnn 1.6670.05nnnn

AHP Amplitude (mV) �27.871.2nnn �26.471.1nn

AHP Duration (ms) 194720 177721
Input resistance (MΩ) 222714 22379
Time constant (ms) 36.273.7 35.572.3

Electrophysiological properties for whole cell patch clamp recordings of
not associated with any change in electrophysiological properties of th
potentials and smaller AHPs than control LC neurons recorded from the
Neurons recorded 7-14 days after vector injection to either LC or to lum
nn Po0.01; nnn Po0.001; nnnn Po0.0001 compared to ps:LC neurons – none
seen in non-fluorescent LC neurons. These findings con-

firmed robust functional expression of ChR2 allowing opto-

genetic control of LC neurons.
Neurons transduced with CAV2-PRS-ChR2-mCherry showed

the characteristic electrophysiological properties of the LC

(Williams and Marshall, 1987). However, to detect any discrete

changes in intrinsic properties following transduction their

electrophysiological properties were compared with non-

transduced LC neurons in the same slices and also to LC

neurons of naïve rats. There was no significant difference

between transduced versus non-transduced or naïve LC neu-

rons for any of the intrinsic electrophysiological properties

(Table 1). Prolonged periods of action potential discharge

induced by light pulses (20–30 Hz for 41min) did not affect

the intrinsic neuronal properties and it was possible to repeat-

edly opto-stimulate the neurons at high frequencies for periods

of over 1 h with no evidence of phototoxicity. Thus, neither

CAV2 transduction, expression of ChR2 nor opto-activation

produced any detrimental effects on LC neuronal properties.
2.3. Opto-identification of LC neurons in vivo

Extracellular recordings were made from LC neurons in

anaesthetized rats to assess whether direct CAV2-PRS-

ChR2-mCherry transduction would allow optogenetic control

in vivo. Opto-activatable units (n¼9) were identified in adult

rats (n¼5) at a depth of 5.370.1 mm from brain surface. Light

activation of these LC neurons resulted in an immediate 3 to

4-fold increase in action potential discharge rate (single pulse

increased firing from 3.770.8 to 12.873.6 Hz, Po0.05, n¼8

neurons stimulated (1 s�20 mW), Fig. 1C). A majority of the

LC neurons showed tight 1:1 spike coupling to short light

pulses (5–100 ms, n¼5/9, Fig. 1C), although the remaining

neurons required a longer light pulse (�0.2–1 s). Presumably

this reflects a variability in the level of intrinsic excitability of

the recorded cell balanced against density of expression of

ChR2 seen in vivo (see supplemental Fig. 1). The majority of

identified LC neurons were noci-responsive showing an

initial increase in firing to hindpaw pinch (5/6 cells tested).
gical properties.

transduced LC Injected transduced Ps:LC
24 10

�58.270.6 �59.170.8
2.470.2 2.370.3

�46.470.8 �48.771.1
70.571.2 75.172.0
1.6370.05nnnn 1.0570.04

�26.870.7nnn �21.371.0
195715 212720
243710 216716
36.172.0 36.772.6

LC neurons. Direct transduction with CAV2-PRS-ChR2-mCherry was
e LC neurons. The ps:LC neurons have significantly shorter action
core of the nucleus (both LC transduced/non-transduced or naive).

bar dorsal horn (P28-35). MANOVA with Tukey post hoc tests.
of the other across group comparisons were significant.
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2.4. LC transduction by CAV2 allows stable, reproducible
opto-assay of behavior

The demonstration of reliable opto-activation of LC neurons
in vivo raised the question of whether this activation could
produce changes in behavior that were stable over time. We
used the ability of LC activation to promote sleep-wake
transitions as an assay (Carter et al., 2010). Unilateral LC
activation reliably produced brief sleep-wake transitions in
response to short periods of stimulation (Fig. 2, 5 Hz train for
5 s). Electroencephalogram monitoring showed that LC sti-
mulation produced a loss of delta power and cessation of
spindle activity. The ability to produce arousal from sleep
was maintained for 46 months indicating that the functional
expression of ChR2 was stable (Fig. 2C, n¼3 rats). Robust,
maintained ChR2-mCherry expression was confirmed on post
hoc histological examination (shown in Fig. 1A).

2.5. Retrograde transduction of brainstem NA neurons
after LC injection

Unilateral LC injection of CAV2-PRS-ChR2-mCherry (n¼3)
induced mCherry expression at distant sites in the pons
(Fig. 3). This transduction was restricted to DBHþ neurons,
which were found in the contralateral LC and bilaterally in A5
and A7 cell groups (Fig. 3A). This expression is consistent
with retrograde transduction by CAV2 given that it occurred
over distances of several millimeters (labeling was also noted
more distally in the medullary A1/C1 and A2 cell groups).
CAV2 transduction also produced strong anterograde axonal
labeling with dense bundles of mCherry containing fibers
running ipsilaterally from the LC (Fig. 3A) to pass rostrally
through the midbrain in the dorsal NAergic bundle; axons
were also seen extending to the cerebellum and caudally to
both sides of the spinal cord.

2.6. Transduction of pontospinal NAergic neurons

Given that retrograde transduction was found within the
brainstem, the next step was to test whether the vector could
transduce pontine NAergic neurons over longer distances
from the spinal cord. Two weeks after lumbar spinal injection
of CAV2-PRS-ChR2-mCherry (titre 0.9�1010 TU/ml), retro-
grade labeling of NAergic neurons was seen in the pons
(4797161 neurons, n¼3 rats, Fig. 4). The majority of pontosp-
inal neurons were in the ventral LC (75%) with the remainder
in A5 and A7 cell groups (Table 2). Equivalent injections
containing �100-fold more CAV2-PRS-ChR2-mCherry
(1.2�1012 TU/ml) produced �50% increase in the number of
retrogradely labeled NAergic neurons in the pons (7337170,
n¼3) with a similar distribution across the cell groups
(Fig. 4D, Table 2). No labeling was seen in brainstem when
the same quantity of CAV2 vector was injected intrathecally
at the lumbar level (n¼3) indicating that transduction
requires intra-parenchymal injection and reflects retrograde
transport. Examination of the spinal cord in the region of the
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CAV2-PRS-mCherry-ChR2 to the LC transduced NAergic
neurons locally and also retrogradely transduced neurons in
the contralateral LC and in the A7 and A5 cell groups both
ipsilaterally and contralaterally. Additionally axon fibers
were anterogradely filled with mCherry seen ascending
through the pons from the LC through to the midbrain (in
the Dorsal noradrenergic bundle (DNB) and also descended
to reach the spinal cord. (B) Shows numbers of retrogradely
transduced neurons across the noradrenergic cell groups
(n¼3 rats, mean 7SEM, cell counts Abercrombie corrected).
All photomicrographs show native mCherry fluorescence
converted to inverted grayscale for clarity.
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intraparenchymal injection sites showed no local labeling of

neuronal somata (consistent with the specificity of the PRSx8

promoter) and we found little evidence of local scarring,
unlike our experience with the highest titres of a hAdV-C5

vector (Howorth et al., 2009a).
Dual injections with CAV2-PRS-ChR2-mCherry and CAV2-

PRS-EGFP-2A-PSAM into the dorsal horn of the lumbar spinal

cord and prefrontal cortex (CG1) demonstrated a spatial

segregation of the retrogradely labeled neurons into ventral

(spinal) and dorsal (PFC) groups evident in coronal (Fig. 5) and

para-sagittal sections (Fig. 6). Only a small proportion of the

ps:LC neurons were double labeled from the PFC (5.871.9%

double labeling, n¼3 rats, Fig. 5). This approach also revealed

contrasting distributions of the anterogradely filled axonal

projections seen from each cell group (Figs. 6 and 7 and

Table 3). The ps:LC neurons showed the expected projections

to the spinal cord (unlike the pfc:LC, Fig. 6) but also projected

to the medullary raphe, periaqueductal grey, cerebellum,

inferior olive and anteroventral nucleus of the thalamus, all

regions which received little or no input from the pfc:LC

(Fig. 7). In contrast areas like the hippocampus showed little

innervation from the ps:LC while labeling was clearly visible

from the pfc:LC. A small number of double-labeled axonal

fibers were seen in the ascending noradrenergic bundle with

a few sparsely distributed in the cortex and the spinal cord

consistent with the 5% of neurons showing somatic double

labeling (Fig. 7). These data indicate successful targeting of a

demarcated subgroup of LC neurons with a distinct sets of

axonal projection targets.
2.7. Optogenetic activation of pontospinal LC neurons

Recordings of spinally transduced LC neurons in pontine

slices showed light-evoked ChR2 inward currents

(147772 pA steady state current at Vh �60 mV, n¼8, p28–

35) that allowed action potential generation in current clamp

recordings (Fig. 8). The delay to first spike after the onset of

illumination and the jitter around that value showed a clear

relationship to the magnitude of the ChR2 current. Strongly

transduced neurons fired reliably within several milliseconds

of pulse onset whereas neurons with lower levels of trans-

duction required longer light pulses (often 450 ms) and

showed more variation in the latency (Supplemental Fig. 1).

A similar phenomenon was also noted in the directly trans-

duced neurons. Nonetheless the level of ChR2 transduction in

the ps:LC neurons was still sufficient to produce a substantial

8.3272.4 fold increase in action potential discharge with

longer light pulses (4100 ms). These observations led us to

use longer pulses of illumination to opto-identify ps:LC

neurons in vivo (Section 2.8).
On electrophysiological grounds, these transduced neu-

rons appeared healthy in vitrowith normal spontaneous firing

activity. In comparison to LC neurons transduced after direct

injection (located in the core of the nucleus) they showed

many similarities (see Table 1) but with markedly shorter

action potentials (1.0570.04 vs 1.6370.05 ms, Po0.0001) and

smaller AHPs (�21.371.0 vs �26.8710.7 mV, Po0.001,

Fig. 8C). This indicates an electrophysiological specialization

of spinally projecting LC neurons, like that reported for

subgroups of cortically projecting LC neurons (Chandler

et al., 2014).
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2.8. Opto-activation of the ps:LC module in vivo

In vivo extracellular recordings from the LC in spinally
injected rats (n¼6, 3–4 weeks after transduction) allowed
the identification of ps:LC neurons by opto-activation (see
Fig. 9). The majority of the recorded ps:LC neurons (n¼6,
located 6.070.2 mm deep to the pial surface) were sponta-
neously active in vivo 1.470.6 Hz (n¼5/6). The firing rate of ps:
LC neurons was significantly slower than that seen in directly
transduced LC neurons (3.770.8 Hz, po0.05) that were
located more dorsally in the LC (5.370.12 vs 6.070.2 mm,
Po0.05). The firing frequency of the ps:LC neurons was
increased 5–6 fold by a single light pulse (8.072.8 Hz,
Po0.05, n¼6, 20 mW�1 s). Of the cells tested, over half
showed a 1:1 entrainment by short pulses (n¼4, Fig. 9B) and
the remainder required longer pulse durations (4100 ms) to
increase their firing. The ps:LC neurons were all excited by
noxious stimuli e.g. pinch applied to the contralateral hind-
paw (Fig. 9D). Therefore the ps:LC neurons can be driven to
fire in vivo by optical stimulation and they have distinctive
patterns of ongoing activity.
3. Discussion

Through the use of retrograde optogenetics, we show that the
spinally projecting LC neurons form a topographically and
functionally distinct subset of the nucleus. These are distin-
guishable from a pool of LC neurons projecting to the pre-
frontal cortex on the basis of their location and distinctive
pattern of output projections. As such, this indicates a
modular output organization of the LC neurons with a
particular functional specialization of the NAergic neurons
involved in the regulation of nociception.
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Table 2 – Quantitation of retrograde labeling of pontosp-
inal noradrenergic neurons by CAV2-PRS-ChR2-mCherry.

Cell count in
each pontine
nucleus

Medium titre CAV2
(0.9�1010 TU/ml)

High titre CAV2
(1.2�1012 TU/
ml¼2.6�1012 pp/ml)

LC 3607115 (75%) 546780 (74%)
A5 31710 (7%) 102766 (14%)
A7 87748 (18%) 85726 (12%)
Total in Pons 4797161 7337170

Vector injections (4� 500 nl, two per side) made to lumbar dorsal
horn in segments L3/4. (Mean7SEM, n¼3 rats per titre, proportion
of the total number of retrogradely labeled NA neurons given per
nucleus in brackets).
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In undertaking this study we faced an issue common to
the study of all long-range neuromodulator systems that
require the influence of a specific projection circuit to be
independently manipulated. This specificity of functional
control can be achieved through the use of viral vectors
capable of retrograde transport (Hnasko et al., 2006;
Howorth et al., 2009a, 2009b). The introduction of optoge-
netics has widened the scope for such functional manipula-
tion, however, reliable retrograde optogenetic control is still
challenging as the small conductance of the ChR2 pore
requires a high level of protein expression (Boyden et al.,
2005). In the current study we employed CAV2 vectors for
retrograde transduction of LC neurons (over distances of
4100 mm) which produced sufficient expression of ChR2 to
allow opto-activation. Retrogradely transduced LC neurons
had smaller light-evoked ChR2 currents (�30%) than directly
transduced cells, but this was still sufficient to allow spikes to
be reliably evoked. The transduction of LC neurons by CAV2
appeared to have no effect on cellular health based on
electrophysiology and on the ability to evoke sleep-wake
transitions for periods 46 months.

CAV2 vectors transduced 3–4 fold more pontospinal NAer-
gic neurons than an equivalent hAdV-C5 with the same
PRSx8 promoter element and fluorophore (Howorth et al.,
2009a). Given that CAV2 and hAdV-C5 gain access to neurons
by a common cellular pathway (a coxsackievirus adenovirus
receptor); this increased efficacy is likely due to the selectivity
of CAR use on neurons by CAV (Salinas et al., 2009), and other
capsid characteristics such as the global charge and flexibility
of the fibers (Bru et al., 2010). The pattern of pontospinal
NAergic transduction seen with CAV2 across the three cell
groups LC, A5 and A7 was similar to that previously seen with
hAdV-C5 (Howorth et al., 2009a). However, these data revise
upwards the estimate of the proportion of LC neurons with
spinal projection to �15% (based on 3,268 LC neurons
(Loughlin et al., 1986)) a similar number to that seen with
fluorogold labeling from the spinal cord (Howorth et al.,
2009a). The spinal injection of CAV2 also transduced �25%
of the A7 neurons and �5% of A5 cells (based on total counts
from (Howorth et al., 2009a)). The low proportion of A5
neurons likely relates to the lumbar injection site below their
major projection targets in the sympathetic cell column
(Bruinstroop et al., 2012).

Although LC neurons possess long, extensively ramifying
axons there is some evidence of organizational specificity
with groups of LC neurons projecting to specific targets that
process particular sensory signals (Berridge and Waterhouse,
2003). An exemplar of this principle is that the LC directly
suppresses the spinal transmission of nociceptive informa-
tion by a descending projection to the spinal dorsal horn
(Howorth et al., 2009a; Jones, 1991; Millan, 2002; Pertovaara,
2006; Yoshimura and Furue, 2006) but these neurons also
project to the thalamus and to cortical territories indicating
the potential for multilevel modulation of sensory input.
Using the CAV2 vector for retrograde transduction, we found
a similar pattern of targeting by fibers from the ps:LC neurons
to supraspinal structures. However, and notably, ps:LC axonal
terminals were found in several regions that were non-
overlapping with the distribution of fibers belonging to LC
neurons labeled from the PFC. Specifically fibers in the
medullary raphe, PAG, cerebellum and inferior olive origi-
nated almost exclusively from ps:LC neurons whereas the
hippocampus had no fibers from the ps:LC neurons but an
innervation was seen from the pfc:LC neurons. In turn the
spinal cord had almost no innervation from pfc:LC neurons;
although the pfc does get a weak innervation from the ps:LC
(hence the 5% of double labeled LC neurons). This distinctive
distribution of axons argues in favor of a degree of anatomi-
cal specificity of the output projections from the LC.



Fig. 6 – The LC innervation of the spinal cord originates from ps:LC module rather than pfc:LC. (A) Paired injections of CAV2-
PRS-mCherry-ChR2 and CAV2-PRS- EGFP-2A-PSAM to the lumbar spinal dorsal horn and prefrontal cortex (CG1), respectively,
labeled distinct subsets of LC neurons shown in parasagittal section – note larger numbers of somata labeled from pfc.
(B) Examination of spinal cord sections (L2 dorsal horn shown) demonstrated the presence of numerous mCherry-ir axons (B2)
originating from transduced ps:LC neurons with a complete absence of EGFP-ir fibres (B3) indicating that the pfc:LC neurons do
not contribute to the spinal innervation. Note the increased density of axons seen in the superficial dorsal horn. Red arrows
indicate mCherry-filled axons.

Table 3 – Projection patterns of LC neurons retrogradely
labeled from lumbar spinal cord and pre-frontal
(CG1) areas.

Region ps:LC pfc:LC Double
labeled

Prefrontal cortex
(CG1)

þ þþþ Sporadic

Insular cortex þ þþ None
Piriform cortex þ þþ None
Hippocampus þ/� þ None
Thalamus þþ (AV

thalamus)
þþþ (reticular
thalamus)

None

Periaqueductal grey þþ þ/� None
Dorsal noradrenergic
bundle

þ þþþ Sparse

Cerebellum þþ þ/� None
Inferior Olive þþ – None
Spinal cord þþþ – Very

sporadic

Distribution of axonal projection fibers seen in each region after
retrograde transduction of PFC (CAV2-PRS- EGFP-2A-PSAM) and
spinal (CAV2-PRS-ChR2-mCherry) LC modules (n¼3). Projection
fibers revealed after immunocytochemistry for mCherry and EGFP
respectively. All brainstem and forebrain sections examined con-
tained both mCherry and EGFP positive fibers in ascending fiber
tracts like the dorsal noradrenergic bundle or the medial forebrain
bundle. Quantification on arbitrary scale: no fibers � ; very low
density þ/� , low density þ; Moderate density þþ; High density
þþþ. AV – Anteroventral thalamus.
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It is also apparent from our results that the pfc:LC neurons
also supply collaterals to many other cortical and subcortical
territories in agreement with a recent set of elegant studies of
LC input-output organization (Schwarz et al., 2015). Intrigu-
ingly, the medullary projecting LC neurons reported in that
study had a distinct set of synaptic inputs that were different
from the rest of the LC suggesting that this may be a
functionally distinct population. We posit that these LC
neurons retrogradely labeled from the medulla are likely to
be drawn from the distinctive population of ps:LC neurons
given that they also have a ventral location in the nucleus.
Therefore a parsimonious interpretation of our apparently
contrasting findings is that there are at least two subsets of
LC neurons, one group projecting to the spinal cord and
selected brainstem and supratentorial structures and a sec-
ond larger component innervating much of the forebrain (the
degree of sub-division within this population is currently an
area of active debate (Chandler et al., 2014)).

The ps:LC neurons had distinctive electrophysiology with
shorter action potentials and smaller afterhyperpolarizations.
Although in all other respects their properties were similar to
transduced neurons recorded in the core of the LC, the
differences in their action potential morphology are likely to
increase their ability to transduce high frequency synaptic
drives – as seen with noxious inputs to the LC. This specificity
of intrinsic properties has parallels with the recent studies by
Chandler and colleagues (2014) who have found



Fig. 7 – Selective projection targets of ps:LC and pfc:LC neurons. Rats (n¼3) received dual injections to the lumbar spinal cord
(bilateral to dorsal horn, CAV-PRS-ChR2-mCherry) and prefrontal cortex (unilateral to CG1, CAV-PRS-EGFP-2A-PSAM) allowing
the comparison of the projection targets of the filled axons (after immunohistochemistry). This showed as expected that the
spinal cord (A) and prefrontal cortex (B) are selectively innervated by axons originating from ps:LC or pfc:LC neurons
respectively with only sporadic axons from the other module. The cerebellum (C) was predominantly innervated by the ps:LC
neurons again with only sporadic fibers from the pfc:LC neurons. Examination of midbrain sections (D) showed that the dorsal
noradrenergic bundle contained axons from both the pfc:LC and the ps:LC modules with some co-localization (D2, shown as
overlaid GFP and mCherry). However, in the nearby PAG (D3) the large majority of the axons were from the ps:LC module
indicting a specificity of innervation. Green and red arrows indicating GFP- or mCherry-filled axons. All scalebars¼500 lm
(except D2, D3¼250 lm). DH – Dorsal horn, CG2 Cingulate cortex, ML – molecular layer; PC purkinje cell layer; GL – granule cell
layer; vl-PAG – ventrolateral PAG, 4V – 4th Ventricle.
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electrophysiological and synaptic distinctions between LC
neurons projecting to different cortical territories.

We identified ps:LC neurons in vivo on the basis of the
ability to increase their firing rate on illumination with blue
light (445 nm). We used longer duration light pulses (1
second) to effectively excite the LC neurons a similar protocol
to our previous in vivo optogenetic study of LC neurons
directly transduced with a lenti-viral vector (Hickey et al.,
2014). This light pulse duration is longer than that previously
used to identify neurons in the forebrain in vivo (Lima et al.,
2009) and only around half of our identified neurons showed
reliable, phase-locked discharge to short pulses (o50 ms). We
had previously noted from slice recordings that the latency to
spike discharge and the jitter about this value were strongly
dependent upon the magnitude of the ChR2 current in
individual neurons and although all neurons showed a robust
increase in firing in many this could not be generated by
pulses of duration o50 ms. This characteristic likely also
reflects in part the slow membrane time constant and
presence of strong rectifying conductances in LC neurons.
The use of long pulses and the lack of precise phase locking
of spike discharge raises the question of whether these
excitations could be indirectly mediated. However, given the
selectivity of transduction of NA neurons seen with CAV-PRS-
ChR2-mCherry then this would have to be mediated by an
excitatory adrenoceptor within the LC. In all of our in vitro
recordings from non-transduced LC neurons we never found
evidence of such effects when optoexciting transduced
neighbours (n¼82 non-transduced LC neurons) but fre-
quently observed inhibitions (paper in preparation). On this
basis we feel justified in describing these neurons as being
opto-identified in vivo.

The ps:LC neurons in adult rats in vivo had slower ongoing
firing rates than LC neurons identified in the more dorsal core
of the nucleus (1.4 vs 3.7 Hz; in close agreement with Guyenet
(1980) who found 1.2 vs 2.6 Hz for coerulospinal versus coer-
ulocortical neurons) consistent with the notion that they have
distinct afferent drives (as we found no difference in their
spontaneous discharge in vitro). The ps:LC neurons were noci-
responsive as previously suggested on the basis of c-fos
expression (Howorth et al., 2009a) and had been reported
electrophysiologically (Guyenet, 1980) and in line with that
reported for LC neurons as a whole (Cedarbaum and
Aghajanian, 1978b; Guyenet, 1980). Such noci-responsiveness
is a requirement for these neurons to play a role in regulating
responses to noxious stimuli. Taken together with the in vitro
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findings the distinctions between subsets of LC neurons further

challenge the notion of the LC as a homogenous cluster of

neurons and instead indicates functional specialization.
The findings of ps:LC modularity may also help account

for the recent observation that after direct transduction of the

LC with ChR2 there was bidirectional modulation of nocicep-

tion with an analgesic effect evoked from a ventral portion of

the nucleus (Hickey et al., 2014)-the site of the pontospinal

somata. Whereas pro-nociceptive effects of LC stimulation

were evoked from the more dorsal part of the nucleus where

the forebrain projection arises (Swanson, 1976) – which may

be acting to promote attention to the stimulus (Berridge and

Waterhouse, 2003). Therefore targeting the pontospinal LC

projection to produce analgesia may minimize the side-

effects associated with conventional systemic pharmacologi-

cal intervention (Hughes et al., 2015)
This study identifies CAV2 vectors as useful tools for

retrograde optogenetics facilitating functional deconstruction

of long-range neuromodulator circuits. Our data support the

principle that the locus coeruleus is functionally organized

into modules; with the pontospinal module having distinc-

tive properties – perhaps reflecting a different developmental

origin as suggested for some ventral LC neurons in mice

(Robertson et al., 2013). The application of such retrograde

optogenetic approaches may enable the functional discrimi-

nation of the roles of the LC modules to be determined in

behaving animals as well as at a cellular level.
4. Experimental procedures

All procedures conformed to the UK Animals (Scientific
Procedures) Act 1986 and were approved by the University
of Bristol local Ethical Review Panel. Experiments were
performed on male Wistar rats. Animals were housed, with
an enriched environment, under a standard 12 h light/dark
cycle, with ad libitum access to food and water.

4.1. CAV2 vector construction

A transgene cassette containing PRS-ChR2(H134R)-mCherry-
WPRE was excised from p-Le-PRS-ChR2(H134R)-mCherry (gift
from Dr Ruth Stornetta, University of Virginia) with PacI/KpnI
double digestion and was blunt-ended with T4 DNA poly-
merase (New England Biolabs). This transgene cassette was
then ligated into a pre-cut (EcoRV/KpnI) and blunt-ended
CAV2 shuttle vector pTCAV2-12a to generate pTCAV2-PRS-
ChR2-mCherry. The internal NotI site between ChR2 and
mCherry was removed by site-directed mutagenesis (Quick-
change, Agilent Technologies). The transgene unit PRS-ChR2
(H134R)-mCherry-WPRE was then transferred into the CAV2
genome through homologous recombination between the
shuttle vector pTCAV2-PRS-ChR2-mCherry and the CAV2
genomic construct pTG5412 in BJ5183 cells (Agilent Technol-
ogies) following the manufacturer's protocol. A second CAV2
vector (CAV-2-PRS-EGFP-2A-PSAM) was designed and used
for the double vector injection experiments. This vector



Fig. 9 – In vivo recording from ps:LC neurons. (A) Spinally transduced LC neurons were identifiable in vivo on the basis of their
response to light pulses (recording position in LC shown post hoc in A1) (B) ps:LC neurons could be entrained to discharge
action potentials by light flashes (445 nm, 2 Hz, 7 ms pulses, 7 mW) and could also be driven to fire at a sustained higher rate
by more prolonged illumination (C, 500 ms). (D) In this same recording four LC units were individually discriminable by
wavemark templating and shown here separated by principle component analysis (D1, ovoids mark 2SD from mean). The four
units shown D2 all showed excitatory-inhibitory responses to contralateral hindpaw pinch but only two were identified as
being spinally projecting by their excitatory response to light pulses (445 nm, 5 Hz, 11 mw, 20 ms).
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contained a cassette for the expression of EGFP with a 2A
linker peptide and the engineered chemogenetic receptor
PSAML141F,Y115F-5HT3HC (Magnus et al., 2011). A plasmid con-
taining CMV-EGFP-2A-PSAM was custom synthesized by
GeneArt AG. The expression cassette EGFP-2A-PSAM was
excised by AgeI/HpaI digest and ligated into pTCAV-PRS-
ChR2-mCherry that was cut with AgeI/EcoRV to remove
ChR2-mCherry. The resulting pTCAV-12a-PRS-EGFP-2A-PSAM
was purified, then digested with BamHI/NotI for homologous
recombination of PRS-EGFP-2A-PSAM into the SwaI linearized
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CAV2 genome (pCAVΔE3Sce) as above. CAV2 vectors expres-
sing mCherry or EGFP under the control of the CMV promoter
were used in control experiments. CAV2 vector generation
and amplification employed previously described methods
(Ibanes and Kremer, 2013).

4.1.1. Vector titration
Vector stock titre was determined by an immuno-assay of
functional transduction similar to that detailed previously for
hAdVs (Howorth et al., 2009a). Briefly, serial dilutions of vector
were used to transduce DKZeo cells seeded in a 12-well-plate
24 h earlier (1 ml/well). Two days post-inoculation cells were
fixed with methanol at �20 1C for 20min. After PBS washes
the cells were probed with a mouse anti-CAV2 primary anti-
body (Investcare-Vet; 1: 1000 in PBS with 0.3% BSA for 2 h at
37 1C). After PBS washes the cells were incubated with anti-
mouse-horseradish peroxidase secondary antibody (1:1000;
Abcam) for 1 h at room temperature. The cells were stained
with an enhanced DAB Substrate kit (Pierce, Thermo Scientific)
according to manufacturer's protocol. The number of DAB
positive cells/well was counted and titre was calculated as
transducing units/ml of viral solution (TU/ml). A second assay
of physical particles (pp/ml) was also performed for the vector
(Kremer et al., 2000) allowing comparison of titres with pre-
vious CAV2 studies.

4.2. Stereotaxic injection

Vector injections followed the methods previously described
(for LC (Hickey et al., 2014)) and the lumbar dorsal horn
(Howorth et al., 2009a, 2009b). Briefly, rats were anesthetized
for recovery surgery with ketamine (5 mg/100 g body weight i.
p, Vetalar, Pharmacia, UK) and medetomidine (30 mg/100 g
body weight i.p, Domitor, Pfizer, UK).

4.2.1. Direct LC injections
A burr hole (∅ 1.0 mm) was made over the LC (300 g rats) at
stereotaxic coordinates from lambda, AP: �2.1 mm, ML:
1.2 mm. A glass micropipette was advanced with a 101 rostral
angulation to a depth of 5.5 mm from brain surface. Three
vector injections (0.3 ml/each, at a speed of 0.25 ml/min) were
made at 5.3, 5.5 and 5.8 mm depths. To transduce LC neurons
in weaner rats (p21) prior to in vitro brain slice recordings a
burr hole was made at AP: �1.0 mm; ML: �1.0 mm (relative
to lambda). Four vector injections (0.25 ml each) were made at
depths of 4.6, 4.9, 5.2 and 5.5 mm along the track with 101
rostral angulation.

4.2.2. Lumbar spinal injections
The spinous processes of T13 and L1 were located and a
laminectomy was performed through a midline skin incision
to access spinal segments L3–L4. The vertebrae were clamped
in a spinal clamp (Narishige, Japan) to ensure stability. For
each injection site, 0.4 ml CAV2 vector was injected into the
dorsal horn 400 mm lateral to the midline and 400 mm deep
from the dorsal surface at a rate of 0.25 ml/min, using a
calibrated micro-capillary pipette with a tip diameter of
�20 mm. Two pairs of bilateral injections, 500 mm apart
rostrocaudally, were made into the L3–4 spinal segments.
For experiments where recordings from pontine slices were
planned, injections were made at age P21 into L3–L4, 250 mm
lateral to the midline and 250 mm deep.

4.2.3. Prefrontal cortical injections
Direct injections of the vector into Cg1 were performed
through a limited craniotomy over prefrontal cortex. A series
of eight injections were made (150 nl/injection, 4�1011 TU/
ml) down four tracks (two injections per track at 1 and
1.5 mm deep to cortical surface) each 0.6 mm lateral to mid-
line and at 0.8 mm intervals from þ1.8 to �0.6 mm relative to
bregma.

4.3. Guide cannula/ferrule implant

To allow insertion of an optical fiber-ferrule for opto-
activation during behavioral experiments in vivo a 22G stain-
less steel guide cannula (C313G, Plastics-one, Roanoak, USA)
was implanted unilaterally through a burr hole to sit above
the LC (4.0 mm deep to brain surface, angled with the tip
facing 101 rostral) and was secured to the skull surface with
dental cementþskull screw (Zhang et al., 2010). The guide
cannula was closed with a dummy cap until the time of the
experiment. Alternatively for subsequent in vivo cell record-
ings under anaesthesia a skull screw (0–80�1/16, Plastics-
one, Roanoak, USA) was inserted into the burr hole and
removed leaving an access route for cell recordings (2–3
weeks post-transduction).

4.4. Sleep-wake studies: pre-frontal cortex local field
potential recordings

These studies used Long-Evans rats (400 g, males, n¼3) as
these are the strain currently employed in related sleep-wake
studies in our groups. The rats were anaesthetized with
isoflurane and had direct stereotaxic injections of CAV2 to
their left LC (as detailed above). They were then implanted
with either screws (M1.2�3 mm) above the frontal cortex
(with reference and ground over cerebellum), connected to an
EEG electrode interface board (EIB 18, Neuralynx, MT; see
Fig. 2) or a custom built tetrode-microdrive targeting the
medial prefrontal cortex (þ3.2 mm from bregma, 0.6 mm
lateral, 1.5–3.0 mm ventral to brain surface; see Fig. 2 and
methods after (Gardner et al., 2013)). The assembly also
contained an independent optical fiber ferrule lowered via a
guide cannula to the LC. Tetrodes were fabricated from
twisted bundles of 13 μm polyimide-insulated nichrome wire
(Kanthal, Sweden).

Electrophysiological data were acquired using Digital Lynx
hardware and Cheetah software (Neuralynx) while rats were
at rest or asleep in their home cage inside a dimly lit, sound-
attenuating chamber. Local field potential recordings were
made from a single tetrode wire in the mPFC referenced to a
silent wire in the motor cortex and sampled at 2 kHz and
band-pass filtered at 0.1–600 Hz. Behavior was continuously
monitored via four video cameras. The optical fiber ferrule
(Thorlabs) was connected via a rotary joint (Doric) for opto-
activation of the LC (445 nm diode laser, Omicron Phoxx,
20 mW, 50 ms, 1–8 Hz). The fiber was lowered towards the LC
from 5 mm deep and stimuli were applied until it was
possible to reliably evoke sleep wake transitions with short
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periods (r30 s) of opto-activation (after (Carter et al., 2010)).

All analyses were performed in MATLAB (MathWorks, MA).

Multitapered spectral analyses (Mitra and Pesaran, 1999) were

performed using the Chronux toolbox (www.chronux.org).

Delta and spindle power were measured using the absolute

value of the Hilbert transform over the ranges of 0.4– 4 Hz and

10–16 Hz respectively.
4.5. Pontine slice preparation

Brainstem slices were prepared as previously described

(Hickey et al., 2014) from rats 7–14 days after vector injections

(aged 28–35 days post-natal). In brief, rats were terminally

anesthetized with halothane 5% before decapitation. The

brainstem was removed and bathed in ice-cold dissection

artificial cerebrospinal fluid (aCSF) (composition identical to

the recording aCSF except NaCl was reduced to 85 mM and

substituted with 58.4 mM sucrose). The brainstem was

blocked, glued to the vibratome stage (Dosaka LinearslicePro,

DSK, Japan) ventral surface down and 300 mm thick horizontal

slices were cut. These were transferred to a holding chamber

at room temperature and allowed to recover for a minimum

of 1 h in carbogen bubbled aCSF (in mM: NaCl (126), KCl (2.5),

NaHCO3 (26), NaH2PO4 (1.25), MgCl2 (2), CaCl2 (2) and D-

glucose (10), pH 7.3, osmolality 290 mOsm/L).
4.6. Patch clamp electrophysiology

For recordings slices were transferred into the chamber of an

upright fluorescence microscope (DMLFSA, Leica Microsystems,

Heidelburg, Germany) and superfused with aCSF (2–3ml/min) at

a temperature of 35 1C. Patch pipettes (resistances of 4–7MΩ)

pulled from borosilicate glass (GC120, Harvard Apparatus) were

filled with an internal solution (in mM: K Gluconate (130), KCl

(10), Na-HEPES (10), MgATP (4), EGTA 0.2 and Na2GTP (0.3)).

Transduced neurons were identified under epifluorescence illu-

mination (Chroma filter set 41034) by the presence of

membrane-bound mCherry fluorescence. Neurons were targeted

for whole cell recordings under gradient contrast illumination

(Dodt and Kuba, 1990) and the pipette was maneuvered onto the

cell surface using a 3D-manipulator (SM5, Luigs and Neumann,

Germany). Recordings from LC neurons were made in current

and voltage clamp modes (Axon Multiclamp 700A, Molecular

Probes, USA). All membrane potentials were corrected for a

junction potential of 13mV. Signals were low pass filtered

(3 kHz cut off), digitized at a sampling frequency of 10 kHz

(power1401, Cambridge Electronic Design, UK) and stored on PC

using Spike2 software (CED).
The threshold for action potential discharge was deter-

mined as the point at which the rate of change of membrane

potential exceeded 7.5 V/s and all spike parameters were

measured with reference to this point (using a custom Spike2

script). Light was pulsed onto the cells (10 mW) using a focally

placed optical fiber (∅400 um in diameter, pigtailed to a

473 nm LED source; Doric Lenses, Quebec, Canada) positioned

close to the LC.
4.7. Optostimulation of LC neurons in vivo

The methods for cell recording were similar to those reported
previously (Hickey et al., 2014). In brief, Wistar rats which had
been LC (n¼5) or spinally (n¼6) transduced (3–4 weeks
previously) were anaesthetized with isoflurane (1.5–3%) until
loss of paw withdrawal reflex. The external jugular vein was
cannulated and the animal was switched to intravenous
anaesthetic (Alfaxalone, 10 mg/ml, 7.5–15 mg/hr, Vetoquinol,
UK) before being placed in a stereotaxic frame. Body tem-
perature was maintained using a homeothermic mat (37 1C)
and anaesthetic was titrated to a stable, light plane of
anesthesia where a moderate withdrawal reflex could be
evoked by pinch of the forepaw. A cell recording optrode
was fabricated by attaching a tungsten microelectrode (5 MΩ,
parylene-c insulated, A–M systems, WA, USA) parallel to an
optical fiber (150 mm core, Thorlabs, UK, after (Abbott et al.,
2009)) with its tip 250–500 mm ahead of the fiber end. This
optrode was lowered using a hydraulic Microdrive (Narishige,
Japan) along a track angled 101 rostral into the LC (5.2–6.5 mm
deep to the brain surface). The electrode was referenced
against a sintered silver chloride pellet placed under the
scalp. The signal was amplified (Axon Multiclamp 700A,
Molecular devices, USA), filtered (100 Hz to 2–3 kHz), digitized
at 10 kHz (micro1401, Cambridge Electronic Design, UK) and
stored on a PC for analysis with Spike2 software. In record-
ings with multiple units then individual spike waveforms
were templated and discriminated in Spike2 and confirmed
as being independent using principal component analysis.

Recordings were considered to be from LC neurons if they
fitted several criteria: (1) large amplitude action potential
waveform; (2) duration of action potential (Z1 ms); and
(3) spontaneous firing (Cedarbaum and Aghajanian, 1978a;
Hickey et al., 2014; Sugiyama et al., 2012). Following identifi-
cation of cell with LC characteristics they were illuminated
with light pulses (445 nm diode laser, Omicron Phoxx, 0.5–
25 mW, 1 ms–10 s, fiber calibrated prior to insertion). The
change in LC firing rate was compared to the baseline firing
rate before onset of illumination.

4.8. Tissue fixation

Rats were culled with an i.p. overdose of pentobarbital (20 mg/
100 g body weight, Euthatal, Merial Animal Health, UK) and
perfused transcardially with saline (0.9%, 1 ml/g), followed by
4% formaldehyde (Sigma) in 0.1 M phosphate buffer (PB, pH7.4,
1 ml/g). The brain7spinal cord were removed and post-fixed
overnight in 4% formaldehyde/0.1 M PB before cryoprotection
in 30% sucrose at 4 1C. Coronal tissue sections were cut at
40 mm intervals using a freezing microtome (Leica) and either
serially mounted on glass slides or left free floating in PB for
fluorescence immunohistochemistry (IHC).

4.9. Immunohistochemistry

Tissue sections were washed 3 times in 0.01 M PB and
permeabilized in 50% ethanol for 30 min at room tempera-
ture. After further washes, sections were incubated with
primary antibodies (on a shaking platform, room temp)
against dopamine β-hydroxylase (Mouse anti-DBH, 1:10,000

http://www.chronux.org
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(100 ng/ml); Millipore (Chemicon), MAB308) and/or mCherry
(Rabbit anti-mCherry, 1: 2000; catalog # 5993, Biovision, USA)
in PB containing 5% horse serum (HS) and 0.3% Triton X-100
for 12–24 hours. Tissue sections were thoroughly washed
after removal of primary antibodies and incubated with
appropriate secondary antibodies conjugated to fluorophores
(Alexa Fluor488 donkey anti-mouse and Alexa Fluor 594
donkey anti-rabbit, both at 1:1000 dilution; Invitrogen and
AMCA donkey anti-mouse at 1:100–1:250 dilution, Jackson
ImmunoResearch labs, USA) in PB with 2% HS and 0.3% Triton
X-100 at room temperature for 3–4 h. Sections were mounted
on glass slides and coverslipped with FluorSave (7DAPI;
Calbiochem, UK) mounting medium. The specificity of the
anti-DBH antibody has previously been validated by our lab
(Howorth et al., 2009a). The anti-mCherry antibody has been
shown to be specific by Western blot (Biovision manufac-
turers datasheet) and showed an overlapping distribution
with mCherry positive cell bodies and amplified the signal in
contiguous distal processes; no staining was seen in control
tissues without mCherry. Negative controls were routinely
run by omitting the primary antibodies.

4.10. Fluorescence microscopy

Images were acquired using a Zeiss Axioskop 2 fluorescence
microscope (Oberkochen, Germany) and Axiocam camera
(Carl Zeiss, Hertfordshire, UK) in combination with a pE-2
LED excitation system (CoolLED, UK). Excitation LEDs and
excitation-emission filter cubes used for the specific fluor-
ophores were: Alexa 488/EGFP – excitation LED 490 nm/filter
cube #10 (Zeiss); mCherry/Alexa594 – excitation LED 565 nm/
custom filter cube (excitation 560/40 nm, dichroic 585 nm,
emission 630/75 nm); DAPI/AMCA – excitation LED 365 nm/
filter cube #02 (Zeiss). Fluorescent NAergic neurons were
counted in 1:3 serial sections and Abercrombie corrected as
previously described (Howorth 2009). All images were initially
processed using Zeiss AxioVision 4.7 software (Carl Zeiss,
Germany).

Confocal image stacks were captured using a Leica SP5-
AOBS confocal laser-scanning microscope. Red (Alexa 594)
and green (Alexa 488) fluorescent labeling was visualized
using a 2 mW orange HeNe 594 nm laser and a 100 mW Ar
laser respectively. Sections were imaged were taken using an
oil immersion objective (Leica x63, NA 1.4) at 0.5 um step
intervals and captured using Leica software. Parameters were
set to optimize z-resolution and a line average of 4 was used
to reduce background noise. Stacks were visualized and
projected in Volocity 4 (Improvision). Figures were prepared
for presentation using Adobe Photoshop/Illustrator CS5 for
optimization of contrast/brightness and addition of annota-
tion respectively.

4.11. Data analysis

All data are presented as mean7standard error of mean
(SEM) or median [interquartile range] as appropriate. The
normality of data was assessed using the D'Agostino-Pearson
test. Subsequent statistical testing was undertaken using
paired and unpaired t-tests, one and two way ANOVA (with
Bonferroni's post tests), MANOVA (with Tukey's post test)
and Mann Whitney/Kruskal-Wallis (with Dunn's post test)
tests as appropriate. Data were analyzed using Prism (Graph-
pad Prism 5, San Diego, CA, USA) or SPSS (v21, IBM) and
differences were considered significant at Po0.05.
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