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Abstract

Many systems in various scientific fields like medicine, ecology, economics or climate sci-

ence exhibit so-called critical transitions, through which a system abruptly changes from

one state to a different state. Typical examples are epileptic seizures, changes in the climate

system or catastrophic shifts in ecosystems. In order to predict imminent critical transitions,

a mathematical apparatus called early warning signals has been developed and this method

is used successfully in many scientific areas. However, not all critical transitions can be

detected by this approach (false negative) and the appearance of early warning signals

does not necessarily proof that a critical transition is imminent (false positive). Furthermore,

there are whole classes of systems that always show early warning signals, even though

they do not feature critical transitions. In this study we identify such classes in order to pro-

vide a safeguard against a misinterpretation of the results of an early warning signal analysis

of such systems. Furthermore, we discuss strategies to avoid such systematic false posi-

tives and test our theoretical insights by applying them to real world data.

Introduction

Critical transitions are an important feature in many systems, in which the state of a system

changes abruptly and a return to the previous state becomes difficult or even impossible. Such

transitions can be observed in medicine [1–3], climate science [4, 5], economics [6] and ecol-

ogy [7–9].

For each of those systems it is important to predict an imminent critical transition in order

to prevent it or adapt to it in time [10]. A prominent approach to this problem is to analyze

time series. In this context, a time series is defined as a discrete-time series of data points in

time order. Examples of such time-series are the average global temperature each year, the cur-

rent value of a certain stock each day or brain activity each second. Such time series are then

analyzed for statistical anomalies or similar markers that hint at a change on the micro-scale

that is not yet visible on the macro-scale. Such markers are called early warning signals

(EWSs) [11]. EWS analysis can be performed on measured data [12], data coming from equa-

tion-based simulations [13] and also data originating from agent-based models [14].

Unfortunately, the detection of such EWSs is not always straightforward. Sometimes the

signals are hidden or obscured by topological effects [15] or the system shows a total lack of
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EWSs, despite featuring critical transitions [16]. This is called a false negative, since no signal

can be detected, even though a critical transition is immanent. On the other hand, it is also

possible to find EWSs in systems that will not show a critical transition. This is called a false

positive and is especially problematic when used on statistical data in order to predict critical

transitions in the future. In that case it is impossible to differentiate between a true and a false

positive, since no data from future points in time are available to verify whether a critical tran-

sition follows the EWS or not. Various reasons can be responsible for the appearance of false

positives: They can appear randomly, they can be caused by some microscopic system behavior

that is not yet fully understood and sometimes the appearance of false positives is an inherent

property of the system itself. Naturally, the last case is the most problematic one, because it

means that such systems are unfit for traditional EWS analysis and one would need a different

method to be able to predict critical transitions. In this paper we identify the classes of systems

which are susceptible for such systematically false positives and find ways to overcome this

challenge.

This paper is organized as follows: The section “Methods” gives a short introduction into

the mathematical apparatus of EWS. Additionally, the investigated systems are introduced.

Finally, possible solutions to the problem of systematic false positives are discussed. The sec-

tion “Results” reports on the discovered EWS and showcases some of the performed EWS

analyses in more detail. Also the effect of the proposed solutions is investigated. Furthermore,

we test our findings by analyzing real world data of the global surface temperature change. In

the “Discussion” section we comment on the relevance of the gained insights and how they

can be used to improve state-of-the-art detection methods for critical transition, but also on

the limitations of this study. Numeric details on the investigated systems can be found in

Appendix A.

Methods

Early warning signals

Many systems have a so-called attractive stable state, i.e. a state that the system does not leave,

even under small perturbations [17]. Most complex systems have several such states and due to

internal or external dynamics, the system can change from one stable state to a different stable

state. When this change is sudden, the transition is called a critical transition [18]. The most

interesting point during such a transition is the tipping point, where the system is influenced

by the attraction of two ore more stable states and could evolve into either one. Even though

the proximity to a tipping point is not sufficient for a critical transition to occur (the system

could as well bounce back to its original state) it is a necessary requirement for a critical transi-

tion. In order to identify if a system is close to such a tipping point, EWS analysis can be used.

Systems close to a tipping point show slightly different behavior than systems far away from

it. When perturbed their recovery time increases: They need longer to evolve back to their

original state. This effect is called critical slowing down (CSD) [19]. CSD leaves different statis-

tical markers that can be detected by EWS analysis. On the one hand, the variance of the data

increases, which is a direct effect of the increased recovery time: If the system needs more time

to return to its stable state, it will spend more time away from this state, increasing the variance

when compared to a system that instantly returns to its stable state. Furthermore, the slow

recovery also leads to a higher autocorrelation. Systems close to a tipping point can also

become less symmetric, which shows in the skewness of a time series. Skewness can be seen as

a measure of the degree of asymmetry of a given distribution. In the context of EWS, the ana-

lyzed data points do not originate from a distribution, but are small sections of a given time

series [20]. Nevertheless, calculating skewness is done in the usual way, see Eq (3). Also single
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values that are further away from the mean become more frequent near a tipping point. This

phenomenon is called flickering [21] and can be detected in the kurtosis [22] of a time series.

In order to perform an EWS analysis we will look at the following four properties of a time

series:

• Standard deviation SD

• Autocorrelation at lag 1 AC(1)

• Skewness S

• Kurtosis K

For the time series X containing N elements labeled xi, these properties are calculated using

the following equations:

sðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ðxi � �xÞ2

N � 1

r

ð1Þ

ACð1ÞðXÞ ¼
1

N � 1

XN
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xi � �x
sx

� �
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 !

ð2Þ
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1

N
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN
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r
3 ð3Þ

KðXÞ ¼

1

N

XN

i¼1
ðxi � �xÞ4

1

N

XN

i¼1
ðxi � �xÞ2

� �
2
� 3 ð4Þ

Here �x denotes the mean of x and yi are the elements of a time series that is generated by

shifting X by 1, so to that yi = xi−1.

Investigated systems

In order to generate results that are not specific to individual systems, but rather universal

properties of EWS analysis, we focus our investigation on generic systems. To cover a broad

range of possible applications we simulate the most common forms of growth and decay. An

overview of the investigated systems is given in in Table 1. Numerical details on how the time

series were produced can be found in Appendix A. By this choice of example functions, many

common systems can be described. Linear systems are, for example, often encountered in ecol-

ogy and economics [23, 24]. Economic growth and population growth can be described as an

exponential growth, as long as we are far away from the maximal capacity [25, 26] or with a

logistic function when the effect of the maximal capacity becomes relevant [27]. Also the more

exotic investigated functions, like the trigonometric ones, have scientific applications. The

Table 1. Investigated systems and their abbreviations.

linear quadratic exponential logarithmic trigonometric logistic

growth LG QG EG LNG TG LOG

decay LD QD ED LND TD LOD

https://doi.org/10.1371/journal.pone.0211072.t001
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solar cycle [28] as well as many climate oscillations [29, 30] are sine-like. Although not all sys-

tems of interest to EWS analysis can be described or approximated by the chosen systems or

linear combinations thereof, we hope that essential features identified for these generic systems

can also be translated to specific ones.

Note, that by design none of the investigated systems are capable of having critical transi-

tions. That way the distinction between false positives and correct positives becomes trivial,

since all detected EWS must be false positives. This property makes the systems ideal for iden-

tifying systematically false positives.

All systems are simulated with statistical noise, so that they resemble real measurements or

simulations more closely. This noise can be absolute (i.e. independent of the value xi) or rela-

tive to xi. We produce time series of 10000 time steps and calculate the previously defined

properties relevant for EWS analysis in rolling windows of size 500. Then we search for signifi-

cant EWSs: an increase in both σ and AC(1), a change in S or an increase in K. The simulations

were performed using Python. After initialization of each system their time development is cal-

culated from the equations given in Appendix A. As a next step artificial noise is added. For

absolute noise a Gaussian-distributed random number is added, while for relative noise each

data point is multiplied by a Gaussian-distributed random number. Details on the random

numbers are also given in Appendix A. The generated time series can be downloaded from

https://figshare.com/articles/falseEWS_rar/7472099.

Scaling and detrending

In systems that show systematic false positives we look at strategies for removing those signals.

Different approaches are thinkable and it is not a priori clear which are suitable and which are

not. We use methods related to scaling and detrending, commonly used in data preparation

[31–34]. The effect of five distinct methods is investigated:

• Local scaling

• Global scaling

• Detrending by local first-order polynomial fits

• Detrending by global higher-order polynomial fits

• Detrending by moving averages

For local scaling, we calculate the mean of every rolling window and subtract it from every

data point. That way, the average value of each rolling window is zero, thus the absolute value

of the original data point has no influence on the EWS analysis, possibly reducing the chance

for false positives.

Global scaling is not done for each rolling window individually, but for the investigated

time series as a whole. In addition to subtracting the global average, we also use a multiplicative

factor on the whole time series to fix the standard deviation to 1. This can only be done on a

global scale, since scaling the data for each rolling window individually would eliminate any

EWS originating from standard deviation.

One possible way for detrending is to calculate a linear fit for the data of each rolling win-

dow using linear regression [35, 36]. We then subtract this fit from the data to find the residu-

als. These residuals are then the input signals for the EWS analysis. In addition to setting the

mean of each rolling window to 0, this process also filters out macroscopic linear trends, so

that the investigated data is more directly related to the micro-scale. Note, that this process

only filters out the linear trend. This means that higher order trends remain in the detrended
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data and can be analyzed. In this sense, linear regression is not performed for the usual reason:

Traditionally, linear regression is used to approximate a time series by a linear function as best

as possible. Here on the other hand, the regression line is subtracted from the data. Thus the

goal is not to approximate the data, but to remove the linear part to focus on the nonlinear

effects.

A different approach to detrending works on a global scale, i.e. the whole time series, not

just the investigated window. We calculate a fit using a 5th order polynomial. This order is

high enough to satisfyingly describe the investigated systems. Subtracting this global fit should

completely filter out macroscopic changes of the system and thus reduce false positives in

EWS analysis.

The computationally inexpensive, and therefore most prominent way, of detrending data is

using moving averages. For this technique the average value of the previous x time steps is sub-

tracted from each data point. It is also possible to define an exponential weight factor, to

increase the weight of closer data points. In any case, subtracting the moving average removes

the macroscopic trend of a time series and we can investigate microscopic fluctuations in the

form of residuals. For this study, we used x = 50, but the actual value of x does not change

whether an EWS can be detected or not, but only influences the smoothness of the data and

resulting signals.

Results

The results of the performed EWS analysis are shown in Tables 2 and 3. Systems in which both

σ as well as AC(1) increase are highlighted, since this behavior could be interpreted as an EWS.

Of the 22 investigated systems 11 show clear signals, namely the systems quadratic growth

(QG), exponential growth (EG) and logistic growth (LOG) with absolute noise and the systems

quadratic decay (QD), logarithmic decay (LND), trigonometric decay (TD) and logistic decay

(LOD) with both absolute as well as relative noise. Here, a clear signals is constituted by a

simultaneous increase in both σ and AC(1) that goes beyond the usual fluctuation and stays

that high until the end of the time series. Figs 1 to 4 show detailed results for some of the sys-

tems that showed EWS. A counterexample is given in Fig 5, where no EWS was detected. The

first panel of those plots always shows the complete time series that was analyzed. The second

panels zooms in on a smaller part of the data, in order to visualize finer structures and the ran-

dom fluctuations. In the panels below, one can see the four analyzed properties of the time

Table 2. EWSs for systems with absolute noise.

System σ AC(1) S K
LG no no no no

QG yes yes no no

EG yes yes no no

LNG no no no no

TG no no no no

LOG yes yes no no

LD no no no no

QD yes yes no no

ED no no no no

LND yes yes no no

TD yes yes no no

LOD yes yes no no

https://doi.org/10.1371/journal.pone.0211072.t002
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series: standard deviation, autocorrelation, skewness and kurtosis, calculated as detailed in

Eqs (1) to (4).

In order to filter out the obtained false positives, we tried scaling and detrending with a

local as well as with a global scope. Scaling, both local and global, did not result in the desired

effect: all systems that showed false positives originally also showed them after scaling.

Detrending, however, was well suited to remove false positives. An example can be seen in

Table 3. EWSs for systems with relative noise.

System σ AC(1) S K
LG yes no no yes

QG yes no no yes

EG yes no no no

LNG no no no yes

TG no no no yes

LOG yes no no yes

LD no yes no no

QD yes yes no no

ED no no no no

LND yes yes no no

TD yes yes no no

LOD yes yes no no

https://doi.org/10.1371/journal.pone.0211072.t003

Fig 1. System QG with absolute noise. Both standard deviation (center row, left) and autocorrelation (center row, right) show a significant positive

trend.

https://doi.org/10.1371/journal.pone.0211072.g001
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Fig 6, where the data from system LOD that showed false EWSs in the previous analysis, shows

no EWSs after detrending. The qualitative result did not depend on the chosen method for

detrending: All residuals were completely free of false positives for all investigated systems.

Application to real-world data

In order to test the insights we obtained from investigating abstract systems, we now perform

an EWS analysis on real-world data. As an example time series we use the global surface tem-

perature change. Statistical data was provided by the Goddard Institute for Space Studies Sur-

face Temperature Analysis (GISTEMP) [37]. From looking at the raw data, we see that the

temperature change has absolute fluctuations of roughly 0.25 ˚C. We also detect an increase in

temperature change that is similar to a quadratic growth. Thus, the time series resembles the

previously investigated system QG. Because of these similarities between the temperature

change data and one of the investigated systems, we expect that also the temperature change

data behave similar to the system QG, i.e. we suspect that an EWS analysis of the raw data will

show an increase in autocorrelation as well as an increase in standard deviation (see Table 2).

Results of the EWS analysis are presented in Fig 7. As expected, we detect a rise in autocor-

relation and standard deviation. However, we suspect that this rise should not be interpreted

as an EWS, but rather as a general feature of a system resembling the abstract system QG.

To check this hypothesis, we detrend the data using moving averages and repeat the EWS

analysis.

The global surface temperature change shows exactly the same behavior as the abstract sys-

tem QG: After detrending the increase in autocorrelation and standard deviation vanishes and

Fig 2. System LOG absolute noise. Both standard deviation and autocorrelation show a significant positive trend.

https://doi.org/10.1371/journal.pone.0211072.g002
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we are unable to detect any EWS. The previously detected EWS was indeed a false positive,

meaning that our insights from abstract, generic systems can be translated to real-world

systems.

Discussion

In this study we were able to show that many different systems are prone to false positives in

EWS analysis, when investigating raw data. Large classes of systems, among them exponen-

tially growing systems, systems featuring logistic growth and systems experiencing logarithmic

decay, can inherently show an increase in standard deviation as well as autocorrelation at lag

1, which is usually interpreted as an EWS [11]. This means, that especially in systems that

resemble such behavior, a traditional EWS analysis is not viable, since it is susceptible to false

positives.

We also investigated strategies to circumvent such false positives. While scaling of the ana-

lyzed data was not able to remove the false positives, detrending of the data was successful.

When looking at the residuals, all false positives disappeared in the investigated systems. All

investigated methods of detrending (local first-order polynomial fit, global higher-order poly-

nomial fit and moving averages) lead to the same result. However, using moving averages has

some advantages, since it is numerically more efficient and its effect is independent on the cho-

sen window size. Application to real world data of the global surface temperature change sub-

stantiated that these findings can be translated from generic to real-world systems. However,

there are also some limitations to our study. In order to investigate many different systems

within the same framework we rely on data from a model. Although this study suggests that

Fig 3. System LND with relative noise. Standard deviation shows a sharp increase, while autocorrelation increases more slowly.

https://doi.org/10.1371/journal.pone.0211072.g003
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this computer-generated data can be used to gain insight to the properties of data measured in

the real world, as substantiated by the analysis of the global temperature change data, this is of

course no proof that all the understanding we gain from simulated data can be directly trans-

lated to real-life data. Also not all real-life systems can be approximated by the 12 abstract sys-

tems we investigated. Systems with more complicated behavior or fluctuations that are neither

absolute nor relative are not within the scope of this investigation. Nevertheless, the studied

systems can always serve as a starting point for a more thorough analysis of an arbitrary

system.

This study also raises an interesting question: How does detrending affect true positives?

Is it possible to have systems with critical transitions that show EWS only in undetrended

data? A lot of recent studies use detrending for EWS analysis and to our knowledge none of

them report on such a phenomenon, where detrending removes the EWS [38–43]. However,

to further substantiate this, one would need to rigorously investigate time series from sys-

tems with guaranteed critical transitions that show no EWS after detrending and see if they

show EWS if no form of detrending is used. Since studies that fail to find EWS in systems are

rarely published because of publication bias, it might be necessary to collect or simulate such

data in order to perform such a study, which would be an interesting direction for further

investigations.

In conclusion, we showed that systematic false positives in EWS analysis are quite common

in many systems which makes it difficult to make accurate predictions about critical transi-

tions in such cases. In order to remove those false positives, data must always be detrended

and the EWS analysis performed on the resulting residuals. That way, also systems prone

to systematic false positives can be investigated with the usual EWS analysis techniques.

Fig 4. System TD with relative noise. Both standard deviation and autocorrelation show a significant positive trend.

https://doi.org/10.1371/journal.pone.0211072.g004
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Appendix A—Numerical details of the investigated systems

The time series xi of length N that were analyzed for EWS were calculated from the following

equations:

xi ¼
i
N

ðLGÞ

xi ¼
i
N

� �2

ðQGÞ

xi ¼ exp
i
N
� 1

� �

ðEGÞ

xi ¼ ln 1þ
i
N

� �

ðLNGÞ

xi ¼ sin
i p
2 N

� �

ðTGÞ

xi ¼ xi� 1 þ a xi� 1 ð1 � xi� 1Þ; x1 ¼ 0:01; a ¼ 5=N ðLOGÞ

Fig 5. System LNG with absolute noise. For this system no EWS were detected. Standard deviation as well as autocorrelation decrease over time, while

skewness and kurtosis show random fluctuations, but no clear trend.

https://doi.org/10.1371/journal.pone.0211072.g005
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xi ¼ 1 �
i
N

ðLDÞ

xi ¼ 1 �
i
N

� �2

ðQDÞ

xi ¼ exp
� i
N
� 1

� �

ðEDÞ

xi ¼ ln 2 �
i
N

� �

ðLNDÞ

xi ¼ cos
i p
2 N

� �

ðTDÞ

xi ¼ xi� 1 � a xi� 1 ð1 � xi� 1Þ; x1 ¼ 0:99; a ¼ 5=N ðLODÞ

For absolute noise Gaussian-distributed random numbers with mean 0 and standard devia-

tion 0.01 were added to each data point. For relative noise each data point was multiplied by a

Gaussian-distributed random number with mean 1 and standard deviation 0.01.

Fig 6. System LOD with relative noise after global detrending. Detrending successfully removes the false positive: The standard deviation now

decreases, while the autocorrelation only shows random fluctuations.

https://doi.org/10.1371/journal.pone.0211072.g006
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14. Hofer C, Jäger G, Füllsack M. Critical transitions and Early Warning Signals in repeated Cooperation

Games. Journal of Dynamics & Games. 2018;p. 531–540.
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