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A B S T R A C T   

Coronavirus Disease 2019 (COVID-19), caused by the novel virus SARS-CoV-2, is often more severe in older 
adults. Besides age, other underlying conditions such as obesity, diabetes, high blood pressure, and malignancies, 
which are also associated with aging, have been considered risk factors for COVID-19 mortality. A rapidly 
expanding body of evidence has brought up various scenarios for these observations and hyperinflammatory 
reactions associated with COVID-19 pathogenesis. Advanced glycation end products (AGEs) generated upon 
glycation of proteins, DNA, or lipids play a crucial role in the pathogenesis of age-related diseases and all of the 
above-mentioned COVID-19 risk factors. Interestingly, the receptor for AGEs (RAGE) is mainly expressed by type 
2 epithelial cells in the alveolar sac, which has a critical role in SARS-CoV-2-associated hyper inflammation and 
lung injury. Here we discuss our hypothesis that AGEs, through their interaction with RAGE amongst other 
molecules, modulates COVID-19 pathogenesis and related comorbidities, especially in the elderly.   

1. Introduction 

Coronavirus Disease 2019 (COVID-19) is a novel communicable 
disease caused by severe acute respiratory syndrome-coronavirus-2 
(SARS-CoV-2), with remarkably heterogeneous and protean manifesta-
tions, from asymptomatic to life-threatening severe pneumonia. In some 
patients, especially the elderly, COVID-19 infection causes acute respi-
ratory distress syndrome (ARDS), multiorgan failure, and death[1-3]. 
Various predisposing factors and comorbidities, such as aging, sex, 
ethnicity, obesity, diabetes, high blood pressure, malignancies, kidney 
and liver disorders, have been identified as COVID-19 risk factors of 
mortality [4]. Among these variables, age confers a substantial risk to 
COVID-19 mortality. A recent cohort study with a large sample volume 
showed that aging was substantially associated with increased death risk 
among people aged 80 by 20-fold compared to 50–59-year-old age group 
people [5]. Cardiovascular disease, metabolic disorders, malignancies, 
neurodegeneration, and autoimmune diseases, and age-related inflam-
matory conditions or inflammaging are among age-associated medical 

conditions that can enhance morbidity and mortality of COVID-19 
infection (Fig. 1) [6,7]. Finding aging-related mechanisms that under-
pin COVID-19 fatality and putting in place preemptive measures 
potentially may help to mitigate the overwhelming effects of the COVID- 
19 pandemic on health care systems. COVID-19, in essence, is a hyper-
inflammatory reaction, considering that the cytokine storm plays a 
substantial role in its pathogenesis, any pre-existing inflammatory 
condition, including inflammaging, may exacerbate COVID-19- associ-
ated morbidity and mortality [8,9]. 

Nevertheless, the exact mechanism of inflammaging and its potential 
adverse effects on health outcomes remain unrecognized [7]. Advanced 
glycation end products (AGEs), a highly heterogeneous group of com-
pounds produced by glycation of amino acids, lipids, and DNA mole-
cules, have been shown to contribute to the age-associated increase in 
inflammation or ‘‘inflammaging’’[10]. Both aging and hyperglycemia 
accelerate the formation of AGEs, which serve as ligands to several 
cellular receptors, including the receptor for advanced glycation end-
products (RAGE), which is expressed mainly by the alveolar epithelial 
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cells and macrophages, that have a central role in the lung inflammation 
caused by COVID-19 [11-14]. Furthermore, increased levels of AGEs are 
associated with conditions, including diabetes, obesity, and cardiovas-
cular disease, which increase COVID-19 related morbidity and mortality 
[15]. Thus, we hypothesize that AGEs may contribute to several aspects 
of COVID-19 pathogenesis in the elderly. Considering the importance of 
the RAGE pathway as a novel therapeutic target for COVID-19 man-
agement [14,16,17] here, for the first time, we reviewed the RAGE re-
ceptor with an emphasis on its ubiquitous ligands, AGEs, and its 
probable association with severe COVID-19 risk factors, including aging, 
hypertension, obesity, and hyperglycemia (Fig. 1), in the following, we 
propose potential treatments interfere with AGE-RAGE interaction. 

2. Ages formation and contribution to inflammation and 
oxidative stress through RAGE signaling 

AGEs are the principal product of the sequential non-enzymatic 
glycation of protein by sugars such as glucose and fructose [18]. The 
production of AGEs is primarily driven by the metabolism of glucose and 
fructose and, to a lesser extent by threonine and lipid peroxidation. 
These reactions result in the generation of highly reactive alpha dicar-
bonyl groups, which propagate the generation of AGEs [10]. Methyl-
glyoxal (MGO) is potentially the most crucial propagator molecule for 
AGEs generation, primarily produced as a byproduct in glycolysis during 
the conversion of dihydroxyacetone phosphate to glyceraldehyde-3 
phosphate [19]. The AGEs are created through the alteration of lipids, 
nucleotides, or amino acids (lysine or arginine) by propagators such as 
MGO [10]. 

The RAGE is a single receptor for multiple ligands first identified and 
isolated from the bovine lung [20]. RAGE belongs to the heterogeneous 
group of pattern recognition receptors (PRRs) that can recognize a 
typical pattern within diverse ligands, including S100 proteins with 
calcium-binding properties and cytokine-like functions, High mobility 
group box-1 protein (HMGB1), β2-Integrin, Macrophage 1 antigen (Mac- 
1), or CD11b and various other ligands [21]. RAGE has three 

immunoglobulin-like domains, with the transmembrane and cyto-
plasmic domains. The two other forms of RAGE: dominant-negative 
RAGE (DN-RAGE) and endogenous secretory RAGE (esRAGE), are 
alternative splicing products. The DN-RAGE lacks the cytoplasmic 
domain, and both the cytoplasmic and transmembrane domain is absent 
in esRAGE [21]. 

Several signaling pathways contribute to AGEs-RAGE interactions. 
The actin-binding molecule, mDia1 (diaphanous1), serves as an adaptor 
molecule for RAGE signaling in the various cell types [22]. The activa-
tion of the RAGE signaling pathway through phosphatidylinositol-3 ki-
nase (PI-3 K), Ki-Ras, and the mitogen-activated protein kinase 
(MAPKs), Erk1, and Erk2 lead to nuclear factor-kB (NF-kB) activation 
and range of inflammatory response, which is mediated by cytokine 
such as IL-6 [21,22]. RAGE also induces a spectrum of pathological ef-
fects through the activation of oxidative stress by activation of Rac, and 
subsequently, nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase, an enzyme that has a critical function in the production of the 
free radical superoxide[22]. 

3. The association of AGEs and risk factors for COVID-19 death 

3.1. 3.1Aging 

The clinical and epidemiological reports of COVID-19 reveals that 
age and different comorbidities raise the risk of infection with more 
critical lung involvement and death[5,23]. COVID-19 has highlighted 
the susceptibility of the elderly to emerging infectious diseases[6]. The 
study of 5700 patients in New York City revealed the importance of 
aging in the COVID-19-related mortality in people older than 80 years 
old compared to all other age groups [24]. Similarly, the study in the UK 
showed that more than 90% of the COVID-19-related deaths were in 
people over 60[5]. The accumulation of AGEs during aging is associated 
with an enhanced risk of developing various chronic diseases that dis-
proportionally afflict older individuals[18]. AGEs accumulate gradually 
with age in adults aged 65 and older, and their levels correlate with an 

Fig 1. The schematic illustration between AGEs and COVID-19 risk factors. All of the disorders related to AGE/RAGE pathway could be as COVID-19 associated 
morbidity and mortality. 
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increased risk of mortality due to all-cause or cardiovascular disease 
(CVD) [25,26]. We and others have recently reviewed the evidence for 
the accumulation of AGEs with age and its relevance to aging and age- 
related diseases, including diabetes [22,27]. The AGEs may potentially 
trigger COVID-19 severity and mortality through their classic receptor 
RAGE, which is mainly expressed on the surface of type one and type 
two alveolar epithelial cells as well as alveolar macrophages, the cells 
that have indispensable roles in COVID-19-related acute lung injury 
[28,29]. 

3.2. Hypertension 

Hypertension is the most prevalent comorbidity reported in hospi-
talized COVID-19 patients, with an association with higher risks of 
adverse outcomes, including mortality, ICU admission, and heart failure 
[30]. Hypertension is considered a remarkable all-cause mortality risk in 
COVID-19 patients[31]. The Renin-angiotensin system (RAS) has a 
critical role in controlling blood pressure[32]. The angiotensin- 
converting enzyme-2 (ACE2), which serves as the receptor for SARS- 
CoV-2, exert a pivotal role in this complex system and virtually has a 
crucial impact on susceptibility to the severe form of COVID-19[33]. 
ACE2, a homologue of angiotensin-converting enzyme (ACE), was pri-
marily described by Donoghue et al. in 2000[34]. The ACE2 is a type 1 
integral membrane glycoprotein composed of 805 amino acids, and its 
gene is located on the short arm of the X chromosome (Xp22)[34]. It is 
constitutively expressed by the epithelial cells of the lungs, kidney, in-
testine, and blood vessels[35]. ACE2 has several critical roles, including 
regulation of blood pressure, cardiac function, and it serves as the 
principal receptor for three viruses in the coronaviridae family with 
clinical relevance, including HCoV-NL63, SARS-CoV, and SARS-CoV-2 
[36,37]. Several lines of evidence show close interaction between 
AGE-RAGE and RAS systems, which may be mediated by reactive- ox-
ygen (ROS) produced by the AGE-RAGE pathway as well as angiotensin 
II created in the RAS system [38,39]. Angiotensin II has both inflam-
matory and thrombotic properties, which are prominent findings in 
patients with COVID-19. Angiotensin II ignites the inflammatory re-
actions through the Angiotension 1 (AT1) receptor along with induction 
of RAGE expression by endothelial cells [12,40]. It can be postulated 
that the down-regulation of ACE2 by SARS-CoV-2[41,42] may lead to 
angiotensin II accumulation[42] which may further trigger the inflam-
matory reaction through the RAGE pathway. Considering the cross-talk 
between the AGE-RAGE pathway and the RAS system also the role of 
RAGE in the pathogenesis of severe form of COVID-19 [14,43], AGE- 
RAGE interaction may affect COVID-19 death through its impact on 
the RAS system that regulates blood pressure, which needs to be docu-
mented[43]. 

3.3. Obesity 

Obesity is a risk factor for various diseases, including metabolic, 
kidney, and cardiovascular disorders [44]. Recently, it has been re-
ported that obese individuals show a poor prognosis for COVID-19, such 
as the need for hospitalization and ventilation, in addition to respiratory 
failure [45-47]. The recent study reported a significant relationship 
between obesity and ICU admission in COVID-19 patients[47,48]. 
Additionally, obesity-related complications such as type 2 diabetes 
mellitus (T2DM) and hypertension are independent risk factors for a 
severe form of COVID-19 [48,49]. There is a close relation between 
RAGE, adiposity, and innate immune system activation[50,51]. It has 
been documented that inhibition of RAGE signaling may have thera-
peutic implications for obesity and metabolic disorders[52]. Further-
more, the reduction of methylglyoxal (MGO), one of the precursors of 
AGEs, has been shown to reduce obesity in mice. Dietary genistein 
reduces MGO and advanced glycation end-product accumulation in o-
bese mice treated with a high-fat diet [53]. Gaens et al. confirmed the 
high expression of carboxymethyl lysine-AGE and RAGE receptor in 

adipocytes[54]. The AGE-RAGE interaction on the surface of adipocyte 
and macrophages in white adipocyte tissue induces the inflammatory 
cascade mediated by nuclear factor kappa B (NF-κB), which leads to 
cytokine and chemokine production[51]. It seems that the AGE-RAGE 
interaction in adipocytes may exacerbate the inflammatory reactions 
that occur in COVID-19 obese individuals, which need to be 
documented. 

3.4. Diabetes and hyperglycemia 

Data showed a remarkable association between diabetes mellitus and 
hyperglycemia with COVID-19 severity and increased mortality[55]. 
The study conducted by Codo et al. revealed that elevated glucose levels 
and enhanced glycolysis promotes SARS-CoV-2 replication and cytokine 
elaboration in monocytes [56]. Parallel to these findings, evidence 
showed that Glucose-lowering drugs routinely used to control blood 
sugar might reduce COVID-19 severity[55,57]. Increased blood glucose 
promotes inflammatory reactions through the generation of AGE com-
pounds [58]. The accumulation of AGEs is associated with an increased 
risk of morbidity and mortality in diabetic patients [10]. AGEs are not 
merely biomarkers of a hyperglycemic and pro-inflammatory condition; 
rather, they also contribute to the pathogenesis of diabetic complica-
tions, such as peripheral neuropathy, nephropathy, and cardiomyopa-
thy, mainly through their interactions with their principal receptor, 
RAGE[25,59-61]. AGEs are produced not only from glucose but also 
from intermediary molecules produced during glycolysis. Methylglyoxal 
(MGO) is non-enzymatically generated during glycolysis and is a critical 
precursor for several AGEs [10]. A recent study showed that SARS-CoV- 
2 induces glycolysis gene at the transcriptional levels at 24 post- 
infection to provide one-carbon metabolism necessary for its replica-
tion[62]. It can be postulated that striking induction of glycolysis re-
ported in recent studies may expedite the production of AGEs during the 
initial phase of SARS-CoV-2 replication, especially in diabetic and hy-
perglycemic patients. AGEs up-regulates the expression of its receptor, 
RAGE, on the surface of endothelial cells, and its subsequent interactions 
with RAGE can induce exaggerated inflammatory and oxidative re-
actions through the elaboration of pro-inflammatory cytokines, 
including TNF-α, IL-1, and IL-6, and production of reactive oxygen and 
nitrogen intermediates respectively which may lead to endothelial 
dysfunction and hypercoagulation[58,63]. Considering the similarity 
between mechanistic principles that underlie a critical form of COVID- 
19 and the inflammation provoked by AGE and RAGE interaction, as 
well as the effect of the diabetes mellitus on COVID-19 severity, it can be 
hypothesized that diabetes mellitus can affect COVID-19 exacerbation 
through the accelerating the formation of AGE compounds. On the other 
hand, SARS-CoV-2 promotes glycolytic reactions that may serve as a 
source for amplification of AGEs production[62]. 

4. AGEs, cellular senescence and inflammaging 

The chronic sterile low-grade Inflammation that occurs with age is 
defined as inflammaging [64]. A principal feature of inflammaging is the 
persistent activation of the innate immune system, in which the 
macrophage has a pivotal role [61]. A couple of self and non-self- 
molecules, including microbial pathogens, microbiota, nutrients, and 
damaged-associated molecules (DAMPs), underpin the inflammaging 
process through the activation of PRR receptors such as Toll-like re-
ceptors (TLRs) and induce the production of pro-inflammatory cytokines 
during inflammaging [64]. 

Experimental and epidemiological studies show that AGEs have a 
particular role in inflammaging through several mechanisms, including 
protein cross-linking, oxidative stress, senescence, and up-regulation of 
inflammatory processes [10,65]. As mentioned, above through binding 
several ligands, RAGE acts like a classic PRR and induces various subtle 
inflammatory reactions during the aging phenomenon [7,21]. Further-
more, AGEs can also contribute to inflammaging by increasing cellular 
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senescence. Cellular senescence, a state of stable growth arrest is 
accompanied by activation of inflammatory processes. Senescent cells 
increase with age in most mammalian tissues and can accelerate age- 
related diseases in part by secreting a myriad of factors, including pro- 
inflammatory molecules, collectively known as the senescence- 
associated secretory phenotype (SASP)[66,67]. A recent review dis-
cusses how increased cellular senescence may contribute to the cytokine 
storm observed in COVID-19 infections[68,69]. 

5. Ages in acute respiratory distress syndrome (ARDS) and 
sepsis 

Acute respiratory distress syndrome (ARDS) is the potentially life- 
threatening inflammatory involvement of alveoli, which has a critical 
role in the COVID-19 associated death[70]. The alveolar macrophages 
and alveolar epithelial cells (AECs), including type1 and type 2 cells, 
have a pivotal role in the evolution of this respiratory syndrome [71,72]. 

The pattern recognition receptors, including TLRs, inflammasome, and 
RAGE, play pivotal roles in inflammatory reactions associated with 
ARDS and lung injury through their interactions with several pathogens 
associated molecular pattern (PAMP) and damaged-associated mole-
cules (DAMPs) [73,74] (Fig. 2). Recently, it was shown that the 
expression of EN-RAGE (S100A12), a ligand for RAGE and a biomarker 
of pulmonary injury, strikingly increases in peripheral monocyte of 
COVID-19 patients and may promote pulmonary damage in these pa-
tients through its interaction with RAGE on the surface of alveolar 
epithelial cells [43]. This study accentuates the importance of RAGE and 
its ligand in the pathogenesis of COVID-19-associated lung injury. AGEs 
are one of the classical and primary ligands recognized for RAGEs 
[12,21]. The production and accumulation of AGEs in the body, due to 
physiological or pathological processes like aging and hyperglycemia, 
may promote COVID-19 related lung pathology in the elderly [10]. The 
existing data reveals that a diet with a high content of AGEs worsens 
acute lung injury in animal models [75]. 

Fig 2. Contribution of AGEs in cytokine storm related to COVID-19 pathogenies. Different receptors and cells in alveolar sac are involved in cytokine storm syn-
drome. ACE2 as COVID-19 receptor is expressed on various cells including type one and type two alveolar epithelial cells as well as alveolar macrophages. On the 
other hand, RAGE receptor on the type 2 alveolar epithelial cells surface reacts with its ligands especially AGEs resulting to NF-κB activation and Cytokine storm. 
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Inflammasomes are multi-subunit and complex molecules, which 
induce the production of an active form of inflammatory cytokines, 
including IL-1 and IL-18, following activation by various molecules such 
as bacterial and viral pathogens [76]. Recent studies showed the 
importance of inflammasome in the development of the severe and 
critical form of COVID-19 [77-79]. Also, there is a close interaction 
between inflammasomes and RAGE in inflammatory diseases [80-82]. 
Considering these findings, one can postulate that the RAGE–AGE and 
inflammasome pathways may exert a significant role in the severe form 
of pneumonitis and determining the extent of lung damage in many 
pathological events, including severe pneumonitis in COVID-19 [82]. 

A previous study showed that patients with COVID-19 meet the 
diagnostic criteria for viral sepsis and septic shock [6]. Furthermore. 
RAGE signaling has a remarkable effect on the development of sepsis, 
and inhibition of this molecule with antibody (anti-RAGE) may mitigate 
the sepsis complications [83]. Thus the RAGE-AGE pathway is a po-
tential contributor in COVID-19 associated septic, which needs to be 
further examined. 

6. Anti-AGEs interventions that hypothetically could be used to 
minimize COVID-19 complications 

Considering the association of AGEs with immune function, aging, 
and COVID-19 comorbidity diseases, AGEs can be a promising thera-
peutic target for treating patients with pre-existing conditions and se-
vere COVID-19 symptoms. Studies that targeted AGEs for treating age- 
associated diseases have shown significant improvement in overall 
health in both animal models and human clinical trials [84]. Hence, 
inhibition of AGEs can be an alternate method for reducing the risk of 
COVID-19 and related mortalities. 

Metformin is the cornerstone drug for the management of hyper-
glycemia in T2DM patients. Interestingly a recent study documented the 
positive effects of metformin, independent of its glucose reducing ca-
pabilities, in COVID-19 patients [85]. Data shows that metformin re-
duces the toxic effects of AGEs and reduces diabetes-associated COVID- 
19 severity. Association of Cardio Vascular Diseases (CVD) with COVID 
− 19 is clinically proven, and pre-existing CVD conditions worsen the 
outcome of this viral disease [86]. Algaebrium chloride (ALT-711), a 
drug used for treating CVD, has shown promising results in breaking 
AGEs cross-linking and thus improving the heart condition in dogs [87], 
monkeys [88], diabetic mice models [89], and humans [90]. ALT-711 
treatment improves cardiovascular functions by reducing ventricle 
stiffness. This drug was also proven to reduce the accumulation of car-
boxymethyl lysine (one of the AGEs) and increase the solubility of 
collagen [89]. Another drug C16 is proved for its ability to limit the 
accumulation of AGEs in blood vessels and prevent the AGEs cross- 
linking in the diabetic rat model [91]. Furthermore, aminoguanidine 
has shown a promising effect to improve vascular elasticity, perme-
ability and reduce complications associated with cardiac hypertrophy in 
diabetic mice models. Notably, aminoguanidine treatment reduced the 
level of AGEs in diabetes and atherosclerosis mice models [89]. 
Reducing AGEs has proven to be an effective treatment for improving 
age-associated diabetes and cardiovascular diseases [92]. Taken 
together, it is compelling to hypothesize that reducing AGEs through the 
administration of the above drugs candidates could help to maintain 
cardiac function during SARS-CoV-2 infections. 

Increased oxidative stress leads to the accumulation of AGEs and 
inflammatory disease, which has been observed in patients with Rheu-
matoid arthritis. Treatment with Pyridoxamine and Benfotiamine has 
proven to reduce the accumulation of AGEs in arthritis patients and 
improve the inflammatory condition [93]. In the case of SARS-CoV-2 
infection excessive ROS is generated due to impaired redox balance in 
high-risk patients. Treatment with antioxidants is expected to regain the 
redox balance [94]. Given the role of AGEs to induce ROS, it will be 
interesting to see if Pyridoxamine and Benfotiamine have a positive 
impact in reducing the redox imbalance in COVID-19 patients. 

Also, there is an alarming concern of acute renal failure in COVID-19 
patients due to excessive cytokine release, which requires intensive care 
in critically ill patients. Clinicians are finding it problematic to manage 
acute renal failure and reduce mortality. The reason behind the renal 
failure in COVID-19 patients remains unclear for now [95]. Similar to 
these observations accumulation of AGEs are the causative factor in 
diabetic nephropathy that results in glomerular hypertrophy and 
reduced urine excretion [96]. In a treatment approach, short fragments 
of nucleic acids (DNA or RNA) called aptamers are reported to bind with 
AGEs and decrease the accumulation of AGEs in the kidney of diabetic 
mice. The binding of aptamers to AGEs facilitates effective removal of 
AGEs from the system and protects the kindney from the AGEs induced 
oxidative stress [96]. Considering the risk of renal failure in COVID-19 
patients, these AGEs reducing aptamers could be considered for treat-
ing patients with renal damage. 

7. Reducing AGE precursors to combat COVID-19 

An alternate way to reduce AGEs is to target precursors of AGEs, the 
reactive carbonyls, generated as a byproduct of normal glycolysis. These 
reactive carbonyl compounds irreversibly modify nucleic acids and 
proteins through a non-enzymatic reaction. Reducing the reactivity of 
these dicarbonyls has proved to reduce the accumulation of AGEs. 
Methylglyoxal (MGO) is considered a major dicarbonyl that can react 
with biological macromolecules to generate different AGEs. Carnisone is 
a naturally occurring dipeptide that is proven to effectively inhibit the 
activity of methylglyoxal in vitro [97]. Carnisone is effective not only 
against AGEs generated through glycolysis but also against aldehydes 
generated through lipid peroxidation [98]. This drug has been proven to 
negate several health complications including hyperglycemia. Similar to 
carnisone other peptides like homocarnisone and anserine are found to 
reduce the glycation process and thereby limit the generation of AGEs 
[99]. As these peptides are naturally occurring and proven to be safe, 
exploring the effectiveness of these peptides for COVID-19 treatment 
might serve as an alternate way to reduce the generation of AGEs and 
their secondary complication in patients. 

LR90 is another potent inhibitor of MGO-induced cytotoxicity and 
serves as a potent antioxidant and anti-inflammatory drug. LR90 ex-
hibits cytoprotective activity against MGO-induced apoptosis by pre-
venting the release of cytochrome C and inhibiting the activation of 
caspase-3 and caspase-9 [100]. A recent study reported that SARS- 
CoV-2 infection-induced apoptosis through its accessory protein 
ORF3a in a similar pathway of activating the release of mitochondrial 
cytochrome C and activation of caspase-9 [101]. The close correlation 
between the pathways involved in MGO cytotoxicity and SARS-Cov-2 
infection mediated cytotoxicity is striking. Hence, LR90 could be a po-
tential drug candidate to reduce cytotoxicity in COVID-19 patients 
through its effects on AGEs. Analogous to LR90, antioxidants like ami-
noguanidine and N-acetyl cysteine are proved to better combat the 
cytotoxic effects of MGO in endothelial cells [102]. 

8. Inhibiting RAGE axis to limit COVID-19 related inflammation 

Upon activation by ligands, RAGE initiates series of pathways that 
end up in the generation of ROS and inflammation response. RAGE- 
mediated activation of pro-inflammatory signals results in tissue dam-
age and regulation of NADPH oxidase that contributes to oxidative stress 
and neutrophil dysfunction [10]. Given the expression of RAGE in lungs 
and the critical role of ACE-2 receptors in alveolar cells for SARS-CoV-2 
binding, there is a higher possibility for AGE-RAGEs to be involved in 
COVID-19 progression. Several small molecules have been tested for 
their efficacy to inhibit RAGE [103]. TTP488, also known as Azeliragon, 
inhibits the binding of several RAGE ligands, including HMGB1, S100B, 
and Aβ [104]. TTP488 treatment reduces inflammatory signaling in 
neurodegenerative models. At a low dose of 5 µM, this drug was found to 
be not only safe but also improve cognitive function in human subjects 
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[105]. HMGB1 and S100 protein families are the damage-associated 
signal that are highly expressed in diabetes and microbial infections. A 
recent clinical study in COVID-19 patients revealed that HMGB1 and 
S100 A8/A9 levels were significantly high in severe infections. This was 
found to be associated with poor clinical outcomes, including infection- 
related tissue damage and cytokine storm [106]. Another small mole-
cule FPS-ZM1, initially identified to inhibit the RAGE-Aβ interaction, 
was also found to reduce inflammatory signaling in mouse models. FPS- 
ZM1 effective in rescuing cardiac dysfunction, hypertrophy, and 
inflammation [107]. Pyrazole-5-carboxamides and 6-Phenoxy-2-phe-
nylbenzoxazoles are other serirs of RAGE inhibitors, exhibited RAGE 
inhibitory activity in previous studies[108,109]. Given the efficiency of 
these drugs to limit RAGE activation by its ligands and their role in 
reducing inflammatory responses, it will worth studying their effect to 
reduce COVID-19 associated disease outcomes. 

9. Reducing dietary AGEs to limit COVID-19 associated 
inflammation 

Dietary or exogenous AGEs are the primary source of AGE molecules 
in our body[110]. Exogenous AGEs are mainly produced during heat- 
processing of foods by non-enzymatic Maillard reaction between free 
carbonyl groups[111]. AGEs are effectively absorbed in the gastroin-
testinal system, and there is a direct association between plasma AGEs 
concentrations and dietary AGEs intake and its elimination by kidneys 
[112,113]. Data from clinical trials accentuate the critical role of the 
high dietary intake of AGEs molecules in triggering and promoting in-
flammatory and oxidative reactions[110,114]. There are several ap-
proaches for reducing the dietary AGEs including, lowering the cooking 
temperature, decreasing cooking time, and using higher humidity and 
moisture during food preparation, caloric restriction is another way for 
diminishing exogenous AGEs [115-118]. Fats and meats tend to contain 
more dietary AGE per gram of weight, given that reducing butter, cream 
cheese, margarine, beef, and hamburger in a routine regimen can help 
lessen exogenous AGEs. On the other hand, foods such as low-fat milk, 
vegetables, yogurt, natural juice, honey, chicken, and lamb have low 
exogenous AGE content[118]. Reducing dietary AGEs content in routine 
regimen during the pandemic period by simple modifications may hy-
pothetically be beneficial for blunting the hyperinflammatory mecha-
nisms underlying the pathogenesis of a severe form of COVID-19. 

Although the direct role of AGEs and RAGE in COVID-19 disease 
progression and severity is yet to be clarified there seems to be more 
correlation between AGEs and COVID-19 pathogenicity. Given the un-
certainty of potent vaccine or drug candidates against COVID-19 it is 
worth testing the biomolecules that can potentially reduce the burden of 
AGEs as complementary treatment (Table 1), to minimize the effect of 
COVID-19 infections. 

10. Conclusion 

Given the association of COVID-19 with various underlying condi-
tions and clinical manifestations, finding molecules with the crucial 
contribution in all aspects of COVID-19 exacerbation can open a new 
window for the treatment of this substantial global concern. Regarding 
important influences of AGEs on aging as the most significant risk factor 
for the severe form of COVID-19 and its apparent association with 
COVID-19-associated risk factor, including hypertension, obesity, dia-
betes, cardiovascular and renal disease, as well as inflammaging, the 
study of AGEs and their effects on COVID-19 death could potentially 
provide more helpful clues about the mechanism of tissue injuries in 
COVID-19, and also may help to provide dietary and treatment in-
terventions to reduce the mortality of this pandemic emergency. The 
strong overlap between pathways regulated by AGEs and COVID-19, 
argue that drugs that are effective against AGEs would be potential 
drug candidates to treat COVID-19 and associated diseases. 
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