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Abstract: DNA double strand breaks (DSBs) are known to be the most toxic and threatening of
the various types of breaks that may occur to the DNA. However, growing evidence continuously
sheds light on the regulatory roles of programmed DSBs. Emerging studies demonstrate the roles
of DSBs in processes such as T and B cell development, meiosis, transcription and replication.
A significant recent progress in the last few years has contributed to our advanced knowledge
regarding the functions of DSBs is the development of many next generation sequencing (NGS)
methods, which have considerably advanced our capabilities. Other studies have focused on the
implications of programmed DSBs on chromosomal aberrations and tumorigenesis. This review aims
to summarize what is known about DNA damage in its physiological context. In addition, we will
examine the advancements of the past several years, which have made an impact on the study of
genome landscape and its organization.
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1. Introduction

DNA double-strand breaks (DSBs) are well known for their deleterious effects. Improper repair of
these breaks can result in mutations, translocations and even loss of genetic material, which can later
lead to tumor formation and cancer progression. There are many exogenous agents that can cause
DSBs. For example, ionizing radiation (IR) can target the DNA in two ways, either by directly striking
the DNA molecule, mainly causing DSBs, or by water radiolysis, which can result in the formation of
reactive oxidative species (ROS) [1]. These radicals can then attack macromolecules in the cell, such
as DNA, forming single strand breaks (SSBs) and DSBs in the process. Many other chemicals and
genotoxic agents can lead to DNA DSBs, as well [2,3]. Although exogenous agents are a cause of
DSBs, the more prevalent source of breaks is endogenous. For example, ROS can be also generated
endogenously by oxidative stress brought on by different chemicals, such as H2O2 or by natural oxygen
metabolism [4]. DSBs can also emerge due to replication stress activated by inhibition of DNA synthesis
and/or activation of oncogenes [5,6]. Replication stress, resulting in stalling of replication fork, has
been proposed to preferentially take place in DNA regions that are under-replicated such as those
known as common fragile sites (CFSs). If DSBs at CFSs are misrepaired then genome rearrangements,
including copy number variants (CNVs), and genomic instability can occur [7]. It is interesting to
note that some of the most common CFSs, such as FRA3B and FRA16D, are encompassed by FHIT
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and WWOX tumor suppressor genes, respectively, suggesting that breaks at these genes could infer
positive selection and growth advantage [8–11].

Regardless of its source, breaks that occur in the DNA must be repaired as quickly and as
accurately as possible. The most accurate mechanism for DSB repair is homologous recombination
(HR). This mechanism occurs during the late S/G2-phase of the cell-cycle and relies on the sister
chromatid as a template to repair the broken site. The existing template ensures that no errors will
appear at the site of the break, since it will be repaired exactly as the intact template is. The default
mechanism for DBS repair is classical nonhomologous end joining (cNHEJ). This mechanism can
be activated throughout the entire cell cycle [12–15]. As the name suggests, in this mechanism the
two ends of the broken DNA are joined back together and ligated in place. During this process,
Ku70/Ku80 dimer binds to the DNA ends, assisting their protection against end resection, followed
by the recruitment of DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The Ku70/Ku80
dimer seems to play an active role in DNA repair choice, by inhibiting HR [16,17]. In most cases,
cNHEJ leads to minor and insignificant errors [18,19]. Despite that, if the break resulted in the loss
of a piece of DNA or was in the vicinity of another DSB, the simple act of joining and ligation can
be between the wrong ends of broken DNA, leading to aberrations of the original DNA sequence
(losses and translocations, as previously mentioned). It is essential for all the proteins that participate
in the DNA repair to cooperate with each other and perform their role properly. Activation of the
NHEJ mechanism inhibits end resection and prevents HR proteins from repairing a given DSBs hence
ensuring one mechanism time to operate. When alteration of these mechanisms happens, there are
others that can take their place, such as alternative end joining (alt-EJ) or single-strand annealing
(SSA) [20]. However, these mechanisms are much less accurate and therefore, more error-prone.
The choice of which mechanism would repair a DSB depends on several factors including the cell cycle
phase and abundance of DNA repair proteins [20]. Impaired DNA repair will result in mutations and
those that are nonlethal of nature and of growth advantage will enable the cells to proliferate and
survive contributing to cancer evolution.

In recent years, several lines of evidence support the occurrence of programmed DSBs that
constantly occur in the cell with various physiological roles. These DSBs can also be misrepaired,
resulting in catastrophic events such as cancer transformation. In this review article, we will discuss
recent advances in what is known regarding programmed DNA damage and physiological DSBs and
their biological significance.

2. Programmed DSBs and Mechanisms of Repair

2.1. Meiosis

A process that requires DSBs for its execution is meiosis, in which gametes undergo two cell
divisions, forming haploid cells [21] (Figure 1). During the prophase I stage of meiosis, homologous
chromosomes undergo recombination, allowing genes to ‘cross-over’ and exchange in order to achieve
accurate segregation of homologs. Gene diversification in the next generation is another important
result of meiosis, as exemplified even in plants [21]. The sites of recombination depend on sequence
‘hot spot’ motifs and require the recognition of zinc-finger protein PRDM9, as shown in mammals [22].
These programmed breaks are mediated via SPO11, a meiosis-specific topoisomerase-like protein whose
role is to attack the DNA backbone and break it [23] (Figure 1). After breakage, SPO11 remains bound
to the DNA and is recognized by the MRN (MRE11, RAD50 and NBS1), which will subsequently act to
remove SPO11, process the DNA ends and later signal for repair [24], suggesting a coupling between
processes. In fact, a recent study demonstrates that the MRN complex, or more specifically, NBS1,
is crucial for the repair of SPO11-dependant DSBs [25]. This phenomenon is also ATM-dependent [26].
Another role discovered for SPO11 in this context is homologous chromosome pairing, i.e., facilitating
the search and coupling of the correct homologous chromosomes during preleptotene, the earliest
stage of meiosis [27]. SUN1, a protein whose function is to tether telomeres to the nuclear envelope,
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is reported in mice to be indispensable to the pairing process as well [27]. Remarkably, in addition
to the programmed breakage, meiotic cells carry out mechanisms and checkpoints that ensure a safe
number of DSBs. The amount should be enough to allow the recombination to occur. However,
too many breaks can be deleterious. The existence of checkpoints can result in meiotic arrest, cell-cycle
delay and cell death [28]. In Saccharomyces cerevisiae, these mechanisms are controlled by the ATM
homolog TEL1 and MRE11 [29]. Repair of meiotic DSBs is achieved by the HR mechanism [30]. In this
regard, the template for DNA repair is mainly the homologous chromosome and, less often, the sister
chromatid [31]. Two known proteins that initiate the process of meiotic HR are the paralogues RAD51
and DMC1. Currently, the suggested mechanism for meiotic DSBs as proposed by Zhang et al. reveals
localization of BRCA2 to the break sites, as shown in mice. This localization is facilitated through
interaction with the germline-specific Meiotic Localizer of BRCA2 (MEILB2). Consistent with that,
lack of BRCA2 resulted in impaired recruitment of complexes required for the recombination [31].
Surprisingly, this work also pointed out that Meilb2 mRNA is unusually expressed in some breast
cancer cases, and has been recently shown to be directly implicated in cancer [32].
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RAG and are repaired via NHEJ, following γH2AX signaling and the recruitment of the MRN 
complex and DNA-PKc complex factors. The process of B-Cell Receptor (BCR) diversification 
including class switch recombination (CSR) and somatic hypermutation (SHM) are initiated by 
Activation-Induced Cytidine Deaminase (AID). CSR breaks lead to the recruitment of 53BP1, RIF1 
and the shieldin complex, which drive repair via NHEJ. SHM breaks are repaired through mismatch-
repair (MMR). Transcriptionally induced breaks can be either single- or double-strand breaks and are 
activated via topoisomerase I (TOP I) or topoisomerase II (TOP II), respectively. This illustration is a 
simplified version of highly complex break and repair mechanisms. Figure was generated using 
BioRender tool. 
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repertoire of T cell receptors (TCR) in T lymphocytes as well as immunoglobulins (Ig) in B 
lymphocytes and thus allows for an enhanced ability to recognize a large range of pathogens and 
antigens [36]. The DSBs are induced via recombination activating genes (RAG) 1 and 2 [37,38]. 
However, the repair mechanism seems to be more complex (Figure 1). Previous research in the field 
shows an activation of a DNA damage checkpoint, mediated via p53, in order to regulate the repair 

Figure 1. Programmed DNA breaks: nucleases, participating factors and repair pathways.
Representative mechanistic view of programmed DNA breaks. During meiosis, SPO11 induces
double-strand breaks (DSBs), leading to the recruitment of homologous recombination (HR) repair
factors such as ATM, BRCA2 and the MRN complex. DSBs for V(D)J recombination are induced by
RAG and are repaired via NHEJ, following γH2AX signaling and the recruitment of the MRN complex
and DNA-PKc complex factors. The process of B-Cell Receptor (BCR) diversification including class
switch recombination (CSR) and somatic hypermutation (SHM) are initiated by Activation-Induced
Cytidine Deaminase (AID). CSR breaks lead to the recruitment of 53BP1, RIF1 and the shieldin
complex, which drive repair via NHEJ. SHM breaks are repaired through mismatch-repair (MMR).
Transcriptionally induced breaks can be either single- or double-strand breaks and are activated via
topoisomerase I (TOP I) or topoisomerase II (TOP II), respectively. This illustration is a simplified
version of highly complex break and repair mechanisms. Figure was generated using BioRender tool.

2.2. V(D)J Recombination

During lymphocyte development, T and B lymphocytes undergo a process called V(D)J
recombination. The purpose of this process is to create diversity in the antigen receptor (TCR
or BCR) genes, by creating breaks at specific sequences, which contain V, D or J coding segments [33–35].
By utilizing DSBs and repair at the signal sites of the receptor genes, V(D)J recombination diversifies
the repertoire of T cell receptors (TCR) in T lymphocytes as well as immunoglobulins (Ig) in B
lymphocytes and thus allows for an enhanced ability to recognize a large range of pathogens and
antigens [36]. The DSBs are induced via recombination activating genes (RAG) 1 and 2 [37,38].
However, the repair mechanism seems to be more complex (Figure 1). Previous research in the field
shows an activation of a DNA damage checkpoint, mediated via p53, in order to regulate the repair
at the V(D)J recombination sites and take action if the repair was completed improperly [37]. This is
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an important step in reducing the likelihood of oncogenesis, which can emerge from translocations
between proto-oncogenes and receptor intermediates. In addition, earlier work reveals a dependency
of the process on the DNA-dependent protein kinase (DNA-PK), a key factor of the NHEJ repair
mechanism [36]. The repair activity of DSBs regulated by this protein is essential for V(D)J recombination.
In fact, evidence shows that mutations in the PRKDC gene (which encodes for DNA-PKcs) and impaired
activity during lymphocyte development results in severe immunodeficiency, through impairment
of V(D)J recombination [39]. Moreover, another study demonstrates that in developing T cells,
foci of NBS1 (of the MRN complex) and γ-H2AX have been observed in colocalization with the TCR
break sites following RAG-dependent cleavage [38]. This, too, insinuates a tight regulation of the
DNA damage response (DDR) machinery at the sites of programmed DSBs to minimize oncogenic
transformation and allow for proper T cell development. It can be hence postulated that misrepair in
the VDJ genomic regions could result in rearrangements and translocations associated with TCR and
lymphomagenesis/leukemogenesis.

2.3. Class-Switch Recombination (CSR)

Class-switch recombination (CSR) is a process that occurs in mature stimulated B-cells. During CSR,
the constant immunoglobulin (Ig) heavy chain genes are broken and then recombined to allow deletion
and exchange of the effector Ig gene [40]. At the end of the process, only one of the Ig heavy-chain
genes will be expressed in the antibody, which will define the function and capabilities of the antibodies
the B-cell produces. The designated antibody function will be one appropriate for the encountered
antigen [41]. CSR is initiated by DSBs, introduced via activation-induced cytidine deaminase (AID) [42]
(Figure 1). AID deaminates single-strand DNA, causing them to nick and form SSBs, which subsequently
turn into DSBs [43]. Following the breakage, the Cµ region is removed and substituted with the next
downstream region, utilizing the cell’s DSB repair mechanisms. Previous research in the field revealed
that DDR signaling is required for proper CSR. Further investigation focuses on unraveling the complex
mechanism, which allows for the successful programmed breakage and repair in CSR. Interestingly,
expression of AID is essential for the recruitment of Nsb1/γ-H2AX foci at the sites of breaks related
to CSR, suggesting a potential coupling mechanism [44]. CSR is preferentially repaired via NHEJ,
as evident by the repair factors, which appear as the CSR break sites. The consensus among many
groups reveals 53BP1, the main NHEJ-driving protein, as indispensable to the process [40,41,45,46].
Recently, a protein complex named ‘shieldin’ has been discovered. This complex operates downstream
of 53BP1 and is responsible for protecting the ends of broken DNA from resection, allowing for
more efficient NHEJ [47]. Loss of components of the shieldin complex results in deficient CSR as
well [42]. Another 53BP1-dependant protein whose absence impairs CSR is Rif1. Rif1 acts as part of the
mechanism to protect DNA ends from resection following DSBs and thereby assists 53BP1 in driving
repair via NHEJ [46]. Consistent with these data, a lack of repair factors, which encourage NHEJ repair
leads to DNA repair through other mechanisms, such as alt-EJ, causing a higher rate of chromosomal
breaks and resulting in failure to undergo SCR and lack of Ig diversification.

In addition, mature B cells undergo somatic hypermutation (SHM). This process allows for
variability of the Ig at the antigen binding area named ‘affinity maturation’ [48], creating a large variety
of antibodies. As with CSR, SHM requires AID activity in order to create the DNA lesions that facilitate
the rearrangements and mutations and both processes are impaired without it. Nevertheless, it appears
that the repair mechanism of SHM differs from what we observed regarding CSR. For example, 53BP1
is not required in the case of SHM [45]. Furthermore, the preferred mechanism for SHM-related
breaks is mismatch-repair (MMR), this has been established based on the observation of two MMR
genes, PMS2 and MSH2, whose absence impair SHM [49]. MMR occurs after replication and is
responsible for fixing wrongly paired nucleotides. This pathway of repair is error-prone, which is an
advantage in this case as it allows the variable Ig to mutate constantly and increase the diversity of
antibodies. Interestingly, SHM requires replication in order to initiate the repair [50]. On the flip side
of genetic heterogeneity, the existence of this purposefully mutagenic process is detrimental and can
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give rise to tumors [51]. AID overexpression is indeed observed in a number of B-Cell lymphomas [52].
Furthermore, AID-induced mutagenic mismatches has been shown to be indispensable for cause of
mutations in B-cell malignancies [53]. Transgenic mouse models overexpressing AID in B-cells have
been shown to cooperate with loss of p53 to enhance B-cell lymphomas [54]. Pioneer work by the
lab of Michel Nussenzweig has revealed Ig and non-Ig genes to be involved in translocation and
rearrangements mediated by the AID gene [55]. Altogether, these results imply that perturbations in the
programmed DNA damage in B cell development and maturation could result in B-cell malignancies.

2.4. Replication and Transcription

Processes that require the opening and separation of the double-stranded DNA, such as replication
and transcription, face a significant amount of torsional tension due to the supercoiled state of the
DNA [56]. In order to overcome this obstacle, cells express several topoisomerase genes with the
purpose of breaking the DNA and subsequently looping it around itself to release the tension [57].
Topoisomerase function is required for transcription initiation, further exemplifying the programmed
nature of these breaks [58,59]. The topoisomerases themselves possess the catalytic ability to break
the DNA, however, the mechanism of action differs between topoisomerase 1 (TOP1) and TOP2 [60]
(Figure 1). TOP1 is active throughout the cell cycle and leads to a single-strand cleavage at the site of
the supercoiled DNA. At the site of the break, TOP1 forms a ‘cleavage complex’ with the DNA. Next,
TOP1 plays a role in the relaxation of the DNA, achieved by rotating the broken strand around the
intact strand several times [61]. Finally, the strand is religated via TOP1 itself. The nucleotide excision
repair (NER) pathway may be induced in some cases. The excision repair cross complementing 1
protein-xeroderma pigmentosum group F (ERCC1-XPF) endonuclease collaborates with replication
protein A (RPA) in order to repair the nicks caused by TOP1 [62]. TOP2, on the other hand, functions as
a dimer, binding either strand of the DNA and together creating DSBs [63]. Relaxation of the DNA is
achieved by pulling the two ends apart and passing the same DNA molecule through the gap between
the ends [63]. Since the creation of DSBs has more potential for danger, it seems that the repair of
TOP2-mediated breaks is more complex. In humans, these breaks are repaired preferentially using the
NHEJ repair mechanism [64]. Remarkably, Bermejo et al. show that during S-phase, TOP2 interacts
with the HMG protein Hmo1 near transcribed genes as a means to resolve transcription–replication
conflicts and maintain genome integrity during replication [65]. Transcription of heat shock related
genes [66], serum-induced immediate early genes [67] and nuclear receptor-activated genes [68] have
been shown to require DSB generated by TOP2B. Transcription initiation in response to sex hormones
has been shown to require TOP2B mediated DSBs, as well. Several reports have implicated stimulation
of androgen- and estrogen- receptor target gene expression with the expression and recruitment of
TOB2B [69–72]. These breaks were demonstrated to be both sufficient and necessary for activation
of transcription [73]. The function of TOP1 and TOP2 in this context allows the cell to cope with its
heavy transcriptional load as well as with the potential dangers that supercoiled DNA poses towards
genome integrity.

TOP1 has also been shown to regulate the formation of R-loops, a DNA-RNA hybrid formed
during transcription [74] (Figure 2). Unscheduled R-loops, formed due to dysregulation of TOP1, are a
known cause of genomic instability and chromosomal aberrations, mainly due to the exposure of the
non-hybrid single-stranded DNA [75,76]. TOP1 was shown to be involved in activation of specific
super-enhancers and recruitment of DSB repair factors, suggesting that TOP1-induced single-strand
breaks (SSBs) may develop into DSBs [77,78].
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exogenous mechanisms. Topoisomerase I (TOP I) relieves transcriptionally induced torsional tension
and regulates the formation of DNA breaks (blue)/RNA (purple) hybrids (R-loops). The exposed
single-strand DNA segment (red) can be harmed via several processes and develops into a DSB
(not shown). Endogenously, breaks can occur due to collisions between transcription machinery (RNA
Polymerase II, pink) and replication machinery (DNA polymerase, light blue). The DNA can also be
damaged via exogenous stresses, such as IR, UV, oxidative stress and other chemicals. Figure was
generated using BioRender tool.

Given that cancer cells can utilize topoisomerase function to allow heavy transcription and
replication, recent studies focus on the targeted inhibition of topoisomerases in order to prevent this
scenario [60,61,79]. In fact, several topoisomerases poisons such as camptothecin (TOP1 inhibitor) and
etoposide (TOP2 inhibitor) are widely used in cancer therapy to target highly proliferation cells with
high topoisomerases activity.

3. Mapping of DSBs by Next Generation Sequencing

The growing functional significance in physiological DSBs and programmed DNA damage has
been further developed and improved due to the development of new methods and technologies,
which utilize sequencing capabilities allowing, for the first time, a glimpse at the break pattern of
cells, as it appears across the genome (Table 1). Due to advancement in next-generation sequencing
(NGS) this has recently become possible. NGS has revolutionized the landscape of genetic research
by allowing for millions of strands to be simultaneously sequenced by the means of cell-free library
preparation, making the process more effective and comprehensive [80,81]. The range of applications
for NGS in research and in diagnostics is boundless, beginning with the ability to recognize mutations
in disease and extending toward identifying sites of DNA–protein interactions as well as DNA break
spots [82]. For example, in the clinical aspect, NGS methods have made it possible to properly detect
and diagnose pathogens [83]. In cancer, NGS can be applied to identify the terrain of a patient’s cancer
genome, including mutations, copy-number variations and rearrangements [84]. Such an application
can be observed in the work of Dziubańska-Kusibab et al., which identified a mutational signature
in colorectal cancer (CRC) that can be traced back to a DNA damaging genotoxin called colibactin,
secreted by several Escherichia coli strains [85]. This study opens the door to more research regarding
the landscape of distinct tumors and the impact of mutational signatures on tumor progression and
clinical outcome.
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Chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) was one of the earlier methods
to incorporate NGS and has been applied in order to identify sites of protein–DNA interactions [86].
Work done by Hinch et al. demonstrated the use of ChIP-seq in order to understand the roles of
RPA, RAD51 and DMC1 in the strand exchange of mammalian meiosis [87]. ChIP-seq can also be
utilized to study the chromatin state of genes, by immunoprecipitating and analyzing epigenetic
modifications, as demonstrated by Grosselin et al. [88]. Moreover, methods such as BLESS/BLISS or
END-seq (reviewed in [89]), which are based on the ligation of sequencing adaptors to the broken DNA
ends, have improved our insight into the complex mechanisms of programmed and artificial DSBs.
This has allowed for the mapping of breaks that emerge within the context of certain physiological
conditions along with detection of factors that have a significant role in these contexts (Figure 3).
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Figure 3. Various NGS methods to recognize different types of DNA damage. (i) DSBs
(BLESS/BLISS/END-seq/HTGTS), (ii) single-strand breaks (SSBs; GLOE-seq), (iii) 8-oxodG causing
oxidative DNA damage, done by immunoprecipitating the 8-oxodG sites (OxiDIP-seq) and (iv) damage
at transcriptionally active sites, done by immunoprecipitating RNA strands with radioactive analogues
(GRO-seq). Green DNA strands indicate sequencing adapters, used to recognize the damage sites.
Arrows indicate sites of sequencing. Red peaks indicate representative sequencing output on the
genome. Figure was generated using BioRender tool.

BLESS (direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing),
developed by Nicola Crosetto, was the first NGS-based method to directly map the sites of DSBs
at the resolution of a single nucleotide. Using their method, Crosetto et al. explored replication
stress-induced DSBs [90]. In BLESS, the DSB labeled with a linker that contains a known barcode
sequence via ligation. The linker is bound to biotin, which can be later used to pull-down the labeled
DSBs using streptavidin beads. The high affinity of biotin to streptavidin allows for specificity of the
mapping of the DSBs. The main limitations of this method is that it requires a large number of cells to
start with and requires many steps in comparison to newer methods.

Later, the more advanced and efficient BLISS (breaks labeling in situ and sequencing) was
developed by the Crosetto group (Figures 3 and 4). Similar to its predecessor, DSBs are labeled
with barcoded adaptors in BLISS, as well. However, these adaptors no longer contain bound biotin,
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but rather, a T7 promotor for in vitro transcription and library preparation. This method also requires a
relatively small number of cells to start with. This method has high mapping resolution; however, it is
extremely sensitive and therefore creates a high background. Using BLISS, Yan et al. demonstrated the
differences in endonuclease specificity between two CRISPR enzymes, Cas9 and Cpf1 [91]. Recent work
by Gothe et al. demonstrates utilization of BLISS in order to learn about translocations that occur with
the mixed lineage leukemia gene (MLL) by identifying the break-cluster region (BCR) hotspots induced
by the TOP2 poison, etoposide. Their findings reveal an enrichment of translocations between MLL
and highly transcribed genes at chromatin loop anchors, indicating a mechanism for how genomic
instability induced via transcription can lead to tumorigenesis [92].
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Figure 4. NGS platforms offer new insights and strategies to learn about DNA damage and repair.
Methods that can map DNA DSBs, such as BLISS and END-seq, can be utilized for various purposes
and multiple studies. Order of panels from the left: First panel, BLISS can be used to recognize cut sites
induced by nucleases, for example, CRISPR nucleases Cas9 and Cpf1. Second panel, BLISS has been
utilized to identify tumorigenic translocations, such as translocations induced at break-cluster regions
induced via Topoisomerase II, which can lead to genomic instability and incorrect religation. Different
colors of DNA strands indicate a translocation between strands from remote locations or different
chromosomes. Third panel, END-seq can recognize the resection capabilities of DSBs. Therefore, it can
be applied to differentiating between breaks that undergo end resection and are thus repaired via HR
(right break) as opposed to breaks that are not resected and subsequently repaired via NHEJ (left break).
Fourth panel, Due to the ability of END-seq to distinguish break sites that undergo end resection,
END-seq can be applied to uncovering meiotic DSB hotspots, which are repaired by HR, and lead to
genetic crossovers. Different colors of DNA strands indicate homologous chromosomes of maternal
and paternal sources, respectively. Figure was generated using BioRender tool.

Dellino et al. set out to identify sites of frequent chromosomal translocations via BLISS, as well.
This group reveals the association between DSBs and the release of RNA polymerase II (Pol II) from its
pause during elongation in physiological conditions. These breaks occur at sites of certain regulatory
elements, such as enhancers, promoters and splice sites, all involved in transcription [93]. Utilization of
this advanced methodology is vital for extending our insight into the underlying mechanisms leading
to transcriptionally induced translocations, which may eventually become tumorigenic.

Additionally, our laboratory has recently applied the BLISS methodology to characterize the
‘breakome’ in several tumorigenic and non-tumorigenic cell lines. This work linked transcription with
repair at the sites of oncogenic super-enhancers [77]. The proposed coupling mechanism supports the
heavy transcriptional load of oncogenes, which tumors need to survive and grow [94].

Known contributors to tumor progression are structural variants (SVs), such as amplifications,
deletions and translocations. Using BLESS, BLISS and the closely related DSBCapture [95],
Ballinger et al. were able to establish, for the first time, a tumor-specific model of SV breakpoints.
This model also characterized how these patterns might be affected by the DSB susceptibility signature
of different cell types in response to different types of stress, such as replication stress of transcriptional
state. These data can shed light on the differences in mutational signatures between cell types and
their evolution [96].
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Table 1. Methods for identification of DNA breaks via next-generation sequencing (NGS).

Method Recognizes Overview No. of Cells Required Usages Limitations Citations

ChIP-seq Protein–DNA interactions
Cells are crosslinked and sonicated. Target protein is

immunoprecipitated using antibodies linked to beads. Then,
DNA is purified and sequenced.

at least 106–107

*The roles of RPA, RAD51 and
DMC1 in the strand exchange of
mammalian meiosis. *Chromatin

state of genes.

*Quality of the antibody. *Cost.
*Number of required cells. [87,88]

BLESS Sites of DNA DSBs

Cells are crosslinked and labeled by biotin-linked adaptors
in-situ. DNA is extracted, sonicated and

immunoprecipitated using streptavidin beads. Samples
undergo biotin removal and sequencing.

at least 1.5–2×106 *Replication stress-induced DSBs.

*Time-consuming. *Number of cells
required.

*High background.
*Amplification bias.

[90]

BLISS Sites of DNA DSBs

Cells are crosslinked and labeled by adaptors containing
UMI and T7 promotor in-situ. DNA is extracted, sonicated

and purified using in-vitro transcription and library
preparation. Then, DNA is sequenced.

1×106

*Differences in endonuclease
specificity of Cas9 and Cpf1.

*Translocations that occur with the
mixed lineage leukemia gene (MLL).

*Sites of frequent chromosomal
translocations. *Linking

transcription with repair at the sites
of oncogenic super-enhancers.

*Tumor-specific model of structural
variants (SV) breakpoints.

*Time-consuming.
*High background. [77,91–93]

DSBCapture Sites of DNA DSBs

Cell are fixed and ligated to a biotinylated T-tailed P5
Illumina adapter in order to preserve cohesive ends. DNA is

extracted, sonicated and immunoprecipitated using
streptavidin beads. Samples undergo biotin removal

and sequencing.

1–2×107 *Link elevated gene expression and
regulatory sites to DSB. *Number of cells required. [95]

END-seq Sites of DNA DSBs, special
focus on resected ends

The DSBs are A-tailed and later labeled with adaptors
containing a 3′ T overhang and bound to biotin, allowing the
breaks to be captured via streptavidin beads and sequenced.

107

*RAG-associated DSBs, repaired
via NHEJ.

*DSBs at recombination signal
sequences (RSSs).

*Overlay between the ZCWPW1
chromatin biding and meiotic DSB

hotspots.

*Requires recurrent breaks in order
to identify them.

*Number of cells required.
[97–99]

HTGTS (high-throughput,
genome-wide, translocation

sequencing)
Translocation sites

Cells are baited to with biotinylated double-stranded DNA
for DSBs to translocate with. DNA is later purified,

pulled-down using streptavidin beads and sequenced.
107

*DSBs translocations in B-cells were
preferentially targeted to transcribed

chromosomal regions.
*CRISPR/CAS9 modifications.

*Lower sensitivity
*Not quantitative due to the

possibility of ligation with sequences
other than the bait.

[100–102]

GRO-seq Active transcriptional
regulatory elements

Addition of 5-Bromo-UTP (BrUTP) to cells is incorporated
into actively transcribed RNA. Radiolabeled RNAs are

captured using anti-Br-deoxy-U beads. RNA undergoes
reverse transcription and subsequently sequenced.

107
*Differentiate between

transcriptionally active and
inactive regions.

*Time-consuming. *Number of cells
required. *High background. [103]

OxiDIP-seq Oxidative damage using
the 8-oxodG marker

DNA is extracted, sonicated and immuno-precipitated with
polyclonal antibodies against 8-oxodG. DNA is then purified,

converted from ssDNA to dsDNA and sequenced.

10 µg of genomic DNA per
immuno-precipitation

*Coenrichment of 8-oxodG and
γH2AX was found within the gene
body of transcribed long genes and

DNA replication origins.
*The study of oxidatively generated

DNA damage at gene promoters.

*Distinction between the forward
and reverse DNA strands is required. [104,105]

GLOE-seq Sites of SSBs

The 3′-OH SSB ends are denatured and ligated with a
biotinylated adaptor. Then, DNA is fragmented and

captured on streptavidin beads. DNA is then purified,
converted from ssDNA to dsDNA and sequenced.

7×105

*Insight into the use of ligases 1 and
3 in human cells.

*Map Okazaki fragments. *Can
detect asymmetries in spontaneous

nicks in yeast and human chromatin.

*Distinction between the forward
and reverse DNA strands is required.

*High background due to
spontaneous SSBs.

[106]

Break-seq Sites of DSBs

Cells are embedded in agarose plugs. The DNA breaks are
End-repaired and labeled using a dATP-bound biotin. Then,

DNA is fragmented, captured on streptavidin beads and
subsequently sequenced using Illumina TruSeq adaptors.

106 yeast cells

*detection of DSBs caused by
replication-transcription conflicts,

during exposure and recovery from
HU in yeast.

*This method has not been
reproduced by other labs. [107]
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Another method, which set to uncover the DSB topography in a sensitive and quantitative manner
is END-seq (Figures 3 and 4). Canela et al. introduced a method that can reduce the background
and is much more sensitive to low frequency breaks as opposed to the previously mentioned BLESS.
Additionally, END-seq visualizes the break’s end resection capabilities. The DSBs are A-tailed and
later labeled with adaptors containing a 3′ T overhang and bound to biotin, allowing the breaks to be
captured via streptavidin beads, as observed in BLESS. This method requires more cells than BLISS
and recurrent breaks in order to identify them. Since it was known that the extent of the end resection
at DSB sites affects the choice between NHEJ or HR, this work revealed the RAG-associated DSBs and
provided further insight regarding V(D)J, which is known to be repaired via NHEJ [97]. END-seq has
also made it possible to learn more about DSBs at recombination signal sequences (RSSs), which allow
for V(D)J recombination. Work by Shinoda et al. explored a known model called ‘RAG-scanning’ and
uncovered insight into the prediction capabilities of Vκ gene rearrangement and Igκ repertoire [98].

Recently, mapping of ZCWPW1 chromatin biding via CUT&RUN revealed an overlay between the
binding sites and meiotic DSB hotspots, mapped via END-seq. ZCWPW1 is a factor that participates
in repairing PRDM9-induced DSBs during meiosis. This study, made possible with NGS and END-seq,
demonstrated the tight regulation that is ensued due to the collaboration between ZCWPW1 and
PRDM9 [99].

Other methods that utilize NGS have emerged as well, mainly differing by means of library
preparation and the desirable mapping sites (Figure 3). For instance, high-throughput, genome-wide,
translocation sequencing (HTGTS) can detect translocation sites [100–102], global run-on and
sequencing [103] (GRO-seq) recognizes active transcriptional regulatory elements. In addition,
Spo11-oligo-seq, CC-seq and Topo-seq all map topoisomerase cleavage sites [81].

Recently published, OxiDIP-seq exploits NGS in order to detect oxidative damage based on the
8-oxodG marker [104,105] (Table 1). OxiDIP-seq can recognize oxidized DNA fragments, using an
8-oxodG-specific antibody. GLOE-seq, in contrast to BLESS/BLISS or END-seq, can capture SSBs
by detecting free 3′-OH ends [106]. These ends are ligated with a biotinylated adaptor, which will
subsequently be pulled down via streptavidin. In this method, distinction between the forward and
reverse DNA strands is required. As shown in yeast and human cells, GLOE-seq is sensitive and
manages to preserve the original DNA nicks, avoiding fragmentation, which, if it occurs, can tamper
with the accuracy of the results. A high background due to spontaneous SSBs is a strong limitation to
this method.

Together, these methodologies have provided a platform to learn and advance our knowledge
regarding the specificity of DSBs in their physiological contexts in a quick and efficient manner.

4. New Insights on Misrepair of Physiological DSBs in Cancer Cells

Although DSBs and repair exist as part of the cell’s internal programming, aberrations in many
of the factors involved can lead to tumor initiation and progression. It is not surprising, if so, to
learn that many of these abnormalities arise due to changes in numerous of the factors mentioned
earlier. Programmed DNA damage and breaks that are incorrectly repaired or fused to the wrong
break site can give rise to translocation, losses and inversions. All of these are potential drivers of
many malignancies [108].

For example, genome instability can occur as a result of AID overexpression, leading to a higher
frequency of DSBs at AID target sites and resulting in chromosomal translocations with sites of breaks
that arise due to replication stress [109]. These translocations are significant initiators of tumorigenesis.
Moreover, RAG has been shown to cleave sequences similar to V, D and J sequences, causing the
formation of fusions between antigen receptor loci and other unrelated genes, giving rise to several
lymphoid malignancies [109,110].

It is apparent that some individuals can acquire a predisposition to tumor formation, originating
from meiotic errors. In most cases, a future loss of the heterozygosity event will initiate the
progression [111].
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Topoisomerase malfunction can introduce chromosomal aberrations as well. Both replication-
and transcription machinery have the potential to collide with a newly produced cleavage complex
instigated by active topoisomerases, disrupting their function and preventing efficient religation.
Alterations that stem from this mechanism are linked with a number of malignancies [112].

EdUseq enabled the study of mitotic DNA synthesis (MiDAS), occurring due to replication stress.
Two recent reports showed that all CFSs, known to be late replicating and commonly deleted in cancer,
colocalize with the mapped MiDAS [113,114]. These studies emphasize how replication stress that
carries into mitosis can pose a severe threat to genome integrity, which can lead to tumor progression,
thus, providing an understanding of how CFSs are implicated in cancer. Identification of these sites
can serve as a potential biomarker in the clinic [113,114].

5. Concluding Remarks

Looking closely at the various pathways, it is evident that DNA damage occurs as part of evolution
and the need for heterogeneity and diversity [115,116]. This notion suggests that the DNA repair
mechanisms have emerged in parallel in order to accommodate the break mechanisms. This concept is
supported by evidence that nurse sharks have an earlier form of CSR, and yet, all of the shieldin complex
proteins, which are integral to the process, are present, suggesting a coevolutionary development [42].
Although DNA repair has evolved in response to programmed DNA damage, it is necessary for the
restoration of breaks that are triggered via unprompted processes as well. As previously mentioned,
unregulated breaks can emerge due to endogenous processes, such as collisions between transcription
and replication or alterations in usually regulated pathways, or exogenous agents, like IR and various
chemicals. These breaks are key drivers of many malignancies.

Recent evidence confirms that these pathways do not only drive tumorigenesis. We have
previously reported that cancer cells can “hijack” repair pathways in order to maintain the genome’s
integrity, which becomes compromised as a result of the heavy transcriptional load introduced in the
tumor [77,94]. This observation underscores the importance of understanding how these mechanisms
work. Learning which aspects of DDR can be utilized for the tumor’s benefit will allow for producing
better therapeutic strategies. For instance, topoisomerase inhibitors, which are used as chemotherapy,
trap cleavage complexes on the DNA in order to prevent their religation [117,118].

Interestingly, a recent report revealed a recurrent break clustering pattern in neural progenitor cells,
mainly occurring in genes, at CFS [119]. Some of these genes have been shown to be associated with
synaptic plasticity, suggesting a possible programmed breakage mechanism in the brain. This study
links the DSBs to genetic diversity in neuronal genes and associates repair with cNHEJ as well as with
alt-EJ [119]. Although most processes that utilize DNA breaks in order to execute proper function have
been known about for decades, this study and others [120,121] (also reviewed in [122,123]) prove that
we have yet to uncover them all.
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