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Disseminated coccidioidomycosis (DCM), often a severe and refractory disease leading to
poor outcomes, is a risk for people with certain primary immunodeficiencies (PID). Several
DCM-associated PID (STAT4, STAT3, IFNg, and Dectin-1) are modeled in mice. To
determine if vaccination could provide these mice protection, mice with mutations in
Stat4, Stat3, Ifngr1, Clec7a (Dectin-1), and Rag-1 (T- and B-cell deficient) knockout (KO)
mice were vaccinated with the live, avirulent, Dcps1 vaccine strain and subsequently
challenged intranasally with pathogenic Coccidioides posadasii Silveira strain. Two weeks
post-infection, vaccinated mice of all strains except Rag-1 KO had significantly reduced
lung and spleen fungal burdens (p<0.05) compared to unvaccinated control mice. Splenic
dissemination was prevented in most vaccinated immunodeficient mice while all
unvaccinated B6 mice and the Rag-1 KO mice displayed disseminated disease. The
mitigation of DCM by Dcps1 vaccination in these mice suggests that it could also benefit
humans with immunogenetic risks of severe disease.

Keywords: coccidioidomycosis, vaccine, disseminated, immunodeficiency, mice
INTRODUCTION

Coccidioidomycosis is a systemic fungal infection of the American southwest caused by the endemic
fungi, Coccidioides immitis and C. posadasii. They are primary pathogens which cause disease in
immunologically normal hosts (Nguyen et al., 2013). The consequences of infection, typically
acquired by inhaling fungal spores in soil and air, range from asymptomatic in about 60% of people
to a wide spectrum of clinical illness in the remainder (Drutz and Catanzaro, 1978; Nguyen et al.,
2013). The majority of clinical cases are uncomplicated pneumonia and resolve without treatment
over a period of weeks to months (Galgiani et al., 2019). Approximately 1% of all infections result in
progressive disease beyond the chest, a complication known as disseminated coccidioidomycosis
(DCM) (Borchers and Gershwin, 2010; Odio et al., 2017). Established risk factors for DCM include
AIDS, pregnancy, race/ethnicity, and exogenous immunosuppression (steroids, antirejection drugs,
biological immunosuppressants, antineoplastic drugs) (Nguyen et al., 2013; Odio et al., 2017).
People with rare primary immunodeficiencies (PID) in a variety of signaling pathways, including
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the IL-12/IFNg axis and STAT3 pathway, have also been
identified with disseminated coccidioidomycosis (DCM) and
the mutations are thought to make them more susceptible
(Mansouri et al., 2005; Odio et al., 2017; Hung et al., 2019;
Powell et al., 2019).

The IL-12/IFNg axis is critical for development of adaptive
immune responses and for killing of intracellular bacteria, such as
mycobacteria and Salmonella, as well as fungal pathogens
(Mansouri et al., 2005; Odio et al., 2017). Engagement of pattern
recognition receptors, including the b-glucan receptorDectin-1, on
antigen presenting cells induces the release of IL-12, leading to
activation of T- and NK-cells through STAT family transcription
factors and cytokine production, including IL-23 and IFNg. IFNg
then drives the release of microbicidal factors from macrophages
(Hung et al., 2019). Immunodeficiencies in these pathways result in
the inability tomountan appropriate adaptive response, resulting in
weak or absent killing of microbes. We wondered whether it might
bepossible tomitigate the effects ofprimary immunodeficiencies on
disseminated coccidioidomycosis through vaccination. Mouse
models of vaccination and challenge were used to explore
this question.

Removal of the 6 kb CPS1 gene from C. posadasii, strain
Silveira, resulted in the avirulent strain, Dcps1. When used as a
vaccine, Dcps1 extends survival and greatly diminishes
dissemination in susceptible but immunologically normal mice
(Narra et al., 2016; Shubitz et al., 2018). C57BL/6 mice infected
with 50-100 spores of Silveira typically develop total lung fungal
burdens >1 x 106 colony-forming units (CFU) by day 14 post-
infection; when tested for survival, all of them die in less than
three weeks (Narra et al., 2016; Shubitz et al., 2018). By contrast,
vaccinated mice have mean total lung fungal burdens <1 x 102

CFU, splenic dissemination cannot be detected grossly or by
fungal culture in the majority of animals, and all mice survived
six months after challenge with either C. immitis or C. posadasii
(Shubitz et al., 2018). Given the success of Dcps1 vaccination in
normal, susceptible mice, we surveyed PID mouse models of
vaccination and challenge to test its effectiveness.
MATERIALS AND METHODS

Mice
Commercially available mice were purchased from Jackson
Laboratories (Bar Harbor, Maine): C57BL/6J (B6, stock #000664),
B6D2F1/J (stock #10006), Stat4 KO (C57BL/6J-Stat4em3Adiuj/J,
stock #028526), and Ifngr KO (B6.129S7-Ifngr1tm1Agt/J stock #
003288) (Huang et al., 1993). Dominant-negative mutant Stat3
(mut-Stat3) that models hyperimmunoglobulin E syndrome
(C57BL/6-Tg(Stat3*)9199Alau/J, stock #027952) (Steward-Tharp
et al., 2014) and Dectin-1 KOmice (B6.129S6-Clec7atm1Gdb/J, stock
#012337) (Marakalala et al., 2013) were purchased from Jackson
Laboratories and bred in house to obtain sufficient numbers.
Stat4E626G (B6-Stat4em1Doe/em1Doe) mice, recapitulating a mutation
in three generations of a family with disseminated
coccidioidomycosis (Powell et al., 2019), were engineered using
CRISPR/Cas9 and bred in house (Singh et al., 2015; Powell et al.,
2020). Stat4E626G/E626G females were crossed with DBA2/J males to
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obtain heterozygous, dominant-negative B6D2F1 offspring. Rag-1
KO mice (B6.129S7-Rag1tm1Mom/J) were a generous gift of J.
Nikolich-Zugich and were used as T- and B-cell deficient
controls unable to mount an adaptive immune response. Both
male and female mice were used in all studies. Breeding of mice
and procedures were approved by the institutional animal care and
use committee for the University of Arizona. Mice were housed
and cared for according to PHS standards, and all manipulation of
infected mice was performed at animal biosafety level (BSL) 3.

Fungal Cultures
C. posadasii strain Silveira (Silveira) (ATCC #28868), a highly
pathogenic strain, and the avirulent vaccine strain, Dcps1, (Narra
et al., 2016) were grown on 2x glucose-yeast extract agar (2%
glucose, 1% yeast extract, 1.5% agar) at 30°C until colonies
appeared mature as previously described (Narra et al., 2016).
In brief, arthroconidia were harvested by the spin-bar method in
water, enumerated by hemocytometer, and cultured to determine
viability by plating serial dilutions and counting CFU at 72 hrs
(Silveira) or 96 hrs (Dcps1). Prior to intranasal infection or
vaccine inoculation, arthroconidia were diluted to the desired
concentration in sterile saline for injection. To determine fungal
burdens post-sacrifice, organs were homogenized in 1 mL of
sterile, isotonic saline. Ten-fold serial dilutions (100 µl/plate),
plus residual volume of undiluted homogenate from mice with
minimal or no gross disease, were incubated for 72 hrs and organ
CFU determined from plate colony counts. All growth and
manipulation of Coccidioides fungi was performed at BSL3 for
Silveira and BSL2 or BSL3 for Dcps1 vaccine strain. The avirulent
Dcps1 strain is approved by the Institutional Biosafety
Committee of the University of Arizona for use at BSL2.

Vaccine Challenge Studies
Six to 12 week old mice in groups of 7-10 animals were vaccinated
twice subcutaneously with approximately 10,000 viable
arthroconidia (range 7800-14,650) of Dcps1 in the right groin
followed by the left groin two weeks later. Negative control mice
received two injections of isotonic saline. Four weeks after booster,
mice were infected intranasally under ketamine (80 mg/kg)-
xylazine (8 mg/kg) anesthesia with 50-100 arthroconidia of
Silveira administered in 30 µl of sterile saline dropwise into the
nares with a micropipettor. Infectious doses were verified by plate
culture of the inoculum following infection of themice. Startingday
7 p.i., mice were monitored daily for weight, activity level, and
hydration. Animals exhibiting dehydration, hunched posture,
isolation from cagemates, weight loss >25%, and lethargy or
weakness were euthanized as needed prior to planned end of
study. Studies were terminated on day 14 post-infection and
lungs and spleens collected for quantitative fungal culture.

Statistical Analysis
Raw organ fungal burden data were log transformed. Zero was
replaced with 1.04 and 1 CFU was replaced with 2 prior to log
transformation and plotting. Log-transformed data were tested for
normality. Data were subsequently analyzed by the nonparametric
Kruskal-Wallis test with a Dunn’s test for multiple comparisons.
Differences were considered significant at p ≤ 0.05.
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RESULTS

Vaccination Reduces Fungal Burden in
PID Mouse Strains
One vaccine challenge study was performed for each of the
following strains of mice with a primary immunodeficiency: Stat4
KO, Ifngr KO, mut-Stat3, Dectin-1 KO, Rag-1 KO. B6 mice were
used for vaccinated and unvaccinated controls. B6 controls from
fourof the studies,whichbracketed the lowandhigh infectiondoses
(range, 50-99 arthroconidia), were combined to use as controls for
statistical analysis. Figure 1 shows the composite results of the lung
and spleen fungal burdens of vaccinated PID mice compared with
B6 vaccinated and saline control mice. There were significant
reductions in lung fungal burdens of the Stat4 KO, mut-Stat3,
Ifngr KO, andDectin-1 KOmice compared to the unvaccinated B6
mice (P<0.05, all comparisons, Kruskal-Wallis). As expected based
on the known requirement for T-cells in coccidioidal immunity
(Cox andMagee, 2004; Fierer et al., 2006), vaccination of Rag-1 KO
mice failed to reduce fungal burden (P>0.99 compared to
unvaccinated B6).

Spleen fungal burdens were undetectable in 58% of the
vaccinated PID mice and 88% of the vaccinated B6 mice. In
contrast, splenic dissemination was universal in the unvaccinated
B6 mice. Spleen fungal burdens for each strain were significantly
reduced compared to unvaccinated B6 mice (P ≤ 0.003, all
comparisons). (Figure 1B) Spleen fungal burdens were not
quantitated for the Rag-1 KO mice, but all spleens and livers
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
from those mice were positive for fungal growth, demonstrating
dissemination similar to the unvaccinated mice. Overall,
vaccination of Stat4 KO, mut-Stat3, Ifngr KO, and Dectin-1
KO mice reduced lung burdens and diminished dissemination.
Vaccinated B6D2F1-Stat4E626G/+ Are
Indistinguishable From B6D2F1 Mice
B6-Stat4E626G/E626G mice were bred to DBA/2J mice to create
heterozygous mice with a dominant-negative mutation present
in three generations of family members with disseminated
coccidioidomycosis. For background, Coccidioides infection
with Silveira is so lethal to B6 mice that there was significant
concern negative effects of the mutation would not be observed
in experiments with B6-Stat4E626G/E626G or B6-Stat4E626G-/+

mice. DBA/2 and B6D2F1 mice are both more resistant to
coccidioidomycosis (Cox et al., 1988; Fierer et al., 1999; Shubitz
et al., 2021), so the cross to the genetically more resistant DBA/
2 mice was bred to test the negative impact of the allele.
Purchased B6D2F1/J mice were used as vaccinated and
unvaccinated controls. Figure 2 shows that vaccination of the
B6D2F1-Stat4E626G-/+ mice resulted in very low lung fungal
burdens indistinguishable from the vaccinated B6D2F1 mice
(P>0.99). Vaccination entirely prevented dissemination to
the spleen as it did in the vaccinated B6D2F1 mice, while
both lung and spleen fungal burdens were high in the
unvaccinated animals.
A B

FIGURE 1 | Mice with primary immunodeficiencies and normal C57BL/6 (B6) mice were vaccinated twice with Dcps1 avirulent vaccine and challenged IN with 50-
100 arthroconidia of virulent C. posadasii Silveira. (A) Lung fungal burdens quantitated 14 days post-infection were significantly reduced in Stat4 KO, mut-Stat3,
Dectin-1 KO and Ifngr KO mice compared to unvaccinated B6. Vaccinated Rag-1 KO mice, deficient in T- and B-cells, had no reduction in fungal burdens.
(B) Dissemination was prevented in most vaccinated PID mice and statistically significantly reduced in all strains while universally present in unvaccinated B6 mice.
(Statistical analysis – Kruskal- Wallis).
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DISCUSSION

This series of vaccination-challenge studies in mice with PID
homologous to humans with DCM demonstrates that the
avirulent Dcps1 vaccine induced some protection in all of
them. Reduction in dissemination was one of the most
remarkable outcomes of vaccination in these mice. In the case
of the Stat4 mutation from a family with 3 generations of
disseminated coccidioidomycosis, the vaccinated mice showed
no dissemination and appeared as protected as normal mice in
this short term study. Therefore, it seems plausible that Dcps1
vaccine may protect vulnerable patients with PID from severe,
progressive disease. At minimum, a reduction in disease severity
from vaccination might improve outcomes of antifungal
treatment. Some DCM patients identified with PID, including
the family with the Stat4E626G mutation, had no previous medical
histories before developing severe DCM (Odio et al., 2017;
Powell et al., 2019). This speaks to the concept that there
may be many unidentified carriers of negative alleles who
would potentially avoid the most severe outcomes of
coccidioidomycosis through vaccination.

Hung, et.al., showed that vaccine immunity is driven by
early activation of Th1, Th2, and Th17 pathways using the live,
attenuated Coccidioides vaccine, DT (Hung et al., 2011).
Consistent with this, Rag-1 KO mice, lacking all mature
lymphocyte lineages, were not protected by Dcps1 vaccine. It
also demonstrates that vaccine protection from Dcps1 is not a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
result of trained innate immunity, since the Rag-1 KO mice
have an intact myeloid compartment (Blok et al., 2015). Hung
et al., further showed that IL-17ra KO-/- mice have poor
adaptive immunity from failure to generate Th17 cells.
Interestingly, we showed partial vaccine protection in a
mouse model of hyper-immunoglobulin E syndrome (HIES),
an immunodeficiency mainly associated with susceptibility to
Staphylococcus aureus, recurrent pneumonia, and Candida
albicans, but for which there are reports of disseminated
coccidioidomycosis (Powers et al., 2009; Odio et al., 2015).
Humans with HIES have heterozygous, dominant-negative
mutations in STAT3 and circulating Th17 cells are absent or
low (Renner et al., 2008). In light of varying results of
vaccination challenge studies, additional studies on mice with
Stat3/Th17 abnormalities are needed to better predict the utility
of vaccination in this particular population.

Use of Ifngr KO mice demonstrated IFNg signaling is not
required for a Coccidioides vaccine response in mice
administered DT, another live, attenuated coccidioidal vaccine
strain of C. posadasii (Fierer et al., 2006; Hung et al., 2011). This
is consistent with our study results for the avirulent Dcps1
vaccine. Even though defects in IL-12 and IFNg receptors are
associated with severe, disseminated coccidioidomycosis and
non-tuberculous mycobacterial infections in humans, (Dorman
and Holland, 1998; Dorman et al., 2004; Vinh et al., 2009; Odio
et al., 2017), murine models suggest that vaccination might
provide significant protection to this susceptible population.
A B

FIGURE 2 | B6D2F1-Stat4E626G/+ mice vaccinated with Dcps1 twice and challenged with lethal C. posadasii Silveira had significantly reduced lung (A) and spleen
(B) fungal burdens 14 days post-infection. They were indistinguishable from normal B6D2F1 mice. Dissemination was prevented in B6D2F1-Stat4E626G/+ mice while
universally present in unvaccinated B6D2F1 mice. (Statistical analysis, Kruskal-Wallis).
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Dectin-1 has also been shown to be very important in driving
adaptive immunity to Coccidioides through IFNg and IL-17,
affecting both Th1 and Th17 pathways (Hung et al., 2019).
Damaging Dectin-1 variants are overrepresented in a cohort of
human patients with disseminated coccidioidomycosis (Hsu
et al., 2020). However, vaccination reduced fungal burden and
dissemination in Dectin-1 KO mice in our experiment. This
suggests additional receptors involved in Coccidioides
recognition allow a sufficiently effective vaccine response that
diminishes the severity of infection. More studies are needed to
verify and understand this.

Limitations of this data include the lack of confirmatory
studies of protection and mechanistic studies to understand
how Dcps1 stimulates immunity with defects in the primary
pathways leading to adaptive immunity in fungal disease.
Survival studies and determination of the pathways Dcps1
antigens use to generate an immune response are important
for follow up on this preliminary work. The data generated here
suggest there is a range of protection; additional studies would
also identify which immunological defects are the most
deleterious and difficult to protect.

To summarize, Dcps1 vaccination provided reduction of
disseminated disease in mouse strains that model human
primary immunodeficiencies associated with severe DCM.
Additional studies should focus on the role of vaccines to
prevent or mitigate disease in people with mutations or alleles
which make them susceptible to DCM.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
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