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Torbjørn Wisløff , and Eline Aas

Background. Decisions about new health technologies are increasingly being made while trials are still in an early
stage, which may result in substantial uncertainty around key decision drivers such as estimates of life expectancy
and time to disease progression. Additional data collection can reduce uncertainty, and its value can be quantified
by computing the expected value of sample information (EVSI), which has typically been described in the context of
designing a future trial. In this article, we develop new methods for computing the EVSI of extending an existing
trial’s follow-up, first for an assumed survival model and then extending to capture uncertainty about the true sur-
vival model. Methods. We developed a nested Markov Chain Monte Carlo procedure and a nonparametric
regression-based method. We compared the methods by computing single-model and model-averaged EVSI for col-
lecting additional follow-up data in 2 synthetic case studies. Results. There was good agreement between the 2 meth-
ods. The regression-based method was fast and straightforward to implement, and scales easily to include any
number of candidate survival models in the model uncertainty case. The nested Monte Carlo procedure, on the other
hand, was extremely computationally demanding when we included model uncertainty. Conclusions. We present a
straightforward regression-based method for computing the EVSI of extending an existing trial’s follow-up, both
where a single known survival model is assumed and where we are uncertain about the true survival model. EVSI for
ongoing trials can help decision makers determine whether early patient access to a new technology can be justified
on the basis of the current evidence or whether more mature evidence is needed.

Highlights

� Decisions about new health technologies are increasingly being made while trials are still in an early stage,
which may result in substantial uncertainty around key decision drivers such as estimates of life-expectancy
and time to disease progression. Additional data collection can reduce uncertainty, and its value can be
quantified by computing the expected value of sample information (EVSI), which has typically been
described in the context of designing a future trial.

� In this article, we have developed new methods for computing the EVSI of extending a trial’s follow-up,
both where a single known survival model is assumed and where we are uncertain about the true survival
model. We extend a previously described nonparametric regression-based method for computing EVSI,
which we demonstrate in synthetic case studies is fast, straightforward to implement, and scales easily to
include any number of candidate survival models in the EVSI calculations.

� The EVSI methods that we present in this article can quantify the need for collecting additional follow-up
data before making an adoption decision given any decision-making context.
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Introduction

The expected value of sample information (EVSI) quan-
tifies the expected value to the decision maker of reduc-
ing uncertainty through the collection of additional
data,1,2 for example, a future randomized controlled
trial. Although a few studies have considered the use of
EVSI methods at interim analyses of adaptive trials,3

overall little research has been done on EVSI for trials
that are ongoing at the point of decision making.

In the past decade, the European Medicines Agency
has introduced regulatory mechanisms that are aimed at
accelerating the licensing of new pharmaceuticals, such
as adaptive pathways4 and conditional marketing
authorizations.5 When evidence is obtained from a trial
at an early stage, the events of interest, such as disease
progression or death, may have only been observed in a
small proportion of patients. Health care authorities
therefore have to issue guidance on new pharmaceuticals
based on less mature evidence than previously, resulting
in greater uncertainty about clinical and cost-effective-
ness. With this comes an increased risk of recommending
a technology that reduces net health benefit.6

Additional evidence can be valuable as it can lead to
better decisions that improve health and/or reduce
resource use.6 Positive adoption decisions can be costly
or difficult to reverse and may remove the incentives for
manufacturers to provide additional data. When a trial

is ongoing at the point of decision making, for example,
when follow-up is continued for regulatory purposes,
there may therefore be value in delaying the adoption
decision until additional data have been collected in the
ongoing trial and uncertainty has reduced.7 In this con-
text, there will be a tradeoff between granting early
access to a new technology that may turn out to reduce
health benefits and waiting for uncertainty to be reduced
through ongoing data collection with a potential loss of
health benefits while waiting. When the manufacturer is
already committed to continuing the ongoing trial, the
option to delay a decision is relevant even in a policy con-
text in which the decision maker does not have the formal
authority to commission research. The value of delaying
the decision could be quantified, at least in theory, by
computing the EVSI for the additional follow-up data.

Estimates of life expectancy and time to disease pro-
gression are often key drivers of cost-effectiveness, par-
ticularly in oncology. However, immature data means
that there may be substantial uncertainty around these
estimates, and they rely on extrapolation beyond the trial
follow-up period.8 The choice of the survival distribution
for extrapolation can have major implications for cost-
effectiveness, and uncertainty surrounding this choice
can be accounted for by model averaging, which may
improve the quality of the extrapolations compared with
selecting a single model.9 A potential benefit of continu-
ing an ongoing trial is to reduce the structural uncertainty
as to the most appropriate survival distribution. How-
ever, to the best of the authors’ knowledge, there is no
guidance on how to compute EVSI for survival data from
a trial that is ongoing at the point of decision making nor
on how to account for structural uncertainty about the
choice of survival model in the EVSI calculations.

In this article, we present algorithms for computing
the EVSI of extending a trial’s follow-up with and with-
out accounting for structural uncertainty. The algo-
rithms are based on nested Markov Chain Monte Carlo
(MCMC) methods and a fast nonparametric regression-
based method.10 The nonparametric regression-based
method10 is generally more practical than other EVSI
approximation methods, as it neither requires nested
Monte Carlo computations nor importance sampling.11
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The article is structured as follows. In the second section,
we describe single-model and model-averaged EVSI
algorithms for survival data from an ongoing trial. In
the third section, we compare the EVSI algorithms in 2
illustrative case studies, and in a final section, we con-
clude with a brief discussion.

Method

EVSI for an Ongoing Study Collecting Time-to-Event
Data

Decision problem and model definition. We assume a
decision problem with d = 1, . . . ,D decision options.
The net benefit of option d is NB(d, u), and we have a
cost-effectiveness model that predicts this quantity, given
a vector of p possibly correlated model input parameters,
u= fu1, . . . , upg. Our current judgments about the vec-
tor u is represented by the joint probability distribution
p(u). Our goal is to choose the decision option with the
greatest net benefit.

EVSI for further follow-up in an ongoing study. The EVSI
for a new study that will provide (as yet uncollected)
data, x, is defined as:

EVSI(new study)=

Ex½max
d

EujxfNB(d, u)g� �max
d

EufNB(d, u)g, ð1Þ

where the first term is the expected value of a decision
based on our beliefs about u given the new data, p(ujx),
and the second term is the expected value of a decision
based on our beliefs about u given current information
alone, p(u).12 We now imagine that data x have been col-
lected during a given follow-up period for this study,
which we denote as time t1. This could be an interim
analysis or the end of the study follow-up period.

The value of extending the follow-up from current
time t1 to some future point t2 is given by

EVSI(ongoing study)= E ~xjx½max
d

Eujx, ~xfNB(d, u)g�

�max
d

EujxfNB(d, u)g, ð2Þ

where the first term is the expected value of a decision
based on our beliefs about u given both new data, ~x, col-
lected between t1 and t2, and data, x, collected between
time 0 and t1. The second term is the expected value of a
decision based on our beliefs about u given only the
information collected up until t1. See Appendix A for a
fuller explanation.

Specifying current beliefs about model parameters for an
ongoing study. The distribution for the cost-effectiveness
model parameters given knowledge at t1 p(ujx) can be
defined either in a fully Bayesian manner, by updating
(possibly vague) prior information about u with data x, or
by fitting a standard frequentist statistical model to x and
obtaining the maximum likelihood estimate for u along
with some expression of uncertainty and treating this as a
Bayesian posterior. In the absence of strong prior informa-
tion about u, the 2 methods will produce very similar dis-
tributions for p(ujx), even with relatively little data.13

Specifying the likelihood for ongoing time-to-event data
and left truncation. To compute EVSI, we must define
the data-generating distribution for the follow-up data
between t1 and t2, p(~xju). We first consider the structure
of the data we will observe. We assume our study has 2
arms, new treatment and standard care, and that N partici-
pants are recruited into each arm. Data, x, collected from
time 0 to t1, take the form of a vector of times to death,
time to end of follow-up, or time to loss to follow-up,
whichever is soonest. Survival times for those alive at t1

are censored. If we continue to collect data ~x from t1 to t2,
we may observe times to death for the participants whose
observations were censored at t1. Survival times for those
alive at t2 or lost to follow-up are now the only observa-
tions censored. Table 1 illustrates the structure of the data
for 1 arm of a study with follow-up at 12 and 24 mo.

Survival times are usually assumed to arise from a
data-generating process that can be described using a
parametric model, the form of which must be chosen by
the analyst.14 Censoring is common when collecting
time-to-event data, as the follow-up time may not be
long enough to observe the endpoint of interest for all
individuals in the trial, and some individuals may be lost
to follow-up.15 The likelihood function for survival data,
x, obtained up until t1 for a model with hazard function
h( � ) and survivor function S( � ), is

Likelihood p(xju)=
Yn1

i= 1

h(xi, u)
di S(xi, u), ð3Þ

where i indexes the n1 =N study participants at risk at
time 0, where the censoring indicator di = 1 when xi is
an observed event, di = 0 when xi is a censored observa-
tion, and where u are the parameters of the survival dis-
tribution. The observed data set at time point t1 consists
of the n1 survival times and censoring indicators,
x= fx1, . . . , xn1

, d1, . . . , dn1
g.

The data collected between time points t1 and t2 is
denoted ~x= f~x1, . . . ,~xn2

, ~d1, . . . , ~dn2
g, where n2 is the
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number of study participants at risk at t1. The likelihood
function for ~x is left truncated at t1 to reflect that events
beyond t1 are conditional on not having occurred prior
to t1.

16 Unlike censoring, which contributes to the likeli-
hood by plugging in a survival factor for censored obser-
vations as well as observed survival times, truncation
does not add any data points to the likelihood. This dis-
tinction is important, because we want to avoid double
counting the observed data x when we compute the like-
lihood for the ongoing study data ~x. The left-truncated
likelihood has an additional term in the denominator
that renormalizes the truncated distribution so that it
integrates to 1, that is,

Left-truncated likelihood pLT (~xju)=
Yn2

i= 1

h(~xi,u)
~di S(~xi, u)

S(t1,u)
:

ð4Þ

Once we have derived the posterior distribution for
the model parameters given data at t1, p(ujx), and the
likelihood for the ongoing follow-up data, pLT (~xju), we
require a method for actually computing expression (2).
In almost all realistic applications, this will require
numerical methods. Nested Monte Carlo can be used,
but this is computationally expensive. A regression-based
approach is much quicker,10 and this is described along
with the Monte Carlo approach in Appendix B.

We are now in a position to describe methods for
computing EVSI that account for uncertainty about the
choice of survival model.

Model-Averaged EVSI for an Ongoing Study Accounting
for Survival Model Uncertainty

Survival model uncertainty and model averaging. In this
section, ‘‘model’’ refers to the survival model for the

time-to-event data p(xju), not the cost-effectiveness
model, NB(d, u). In many real applications, we will be
uncertain about which survival model is most appropri-
ate and should be used to extrapolate the data beyond
the observed follow-up period t1, although we may be
comfortable with proposing a candidate set of models,
M=Mr, r = 1, . . . ,R, that covers plausible approxima-
tions of the data-generating process, that is, the set is
M� open in the terminology used by Bernardo and
Smith.17 In these circumstances, we may account for
model uncertainty using predictive model averaging and
average over model predictions using model weights
based on each model’s predictive ability.18,19 After obser-
ving data x at time t1, we place probability weight
P(Mrjx) on the rth model producing the best predictions,
with

PR
r = 1 P(Mrjx)= 1.

The net benefit function for decision option d given
model Mr and parameters ur is denoted NB(d, ur,Mr).
Taking the expectation over both parameters and models
after observing data x up to time point t1 gives us

Model-averaged NBd jx=
XR

r = 1

Eur jx,Mr
NB(d,ur,Mr)P(Mrjx)

� �

= EMjx½Eur jx,Mr
fNB(d,ur,Mr)g�

= Eur ,MjxfNB(d,ur,Mr)g,
ð5Þ

and the optimal choice at time point t1 is the decision d

that maximizes this expectation.

EVSI for an ongoing study accounting for model uncertain-
ty. Additional follow-up data ~x will not only update our
judgments about parameters, p(urjx, ~x,Mr), but will also
update our judgments about the relative plausibility of
each model, P(Mrjx, ~x), for each model r = 1, . . . ,R.

Table 1 Structure of Data for 1 Arm of a Study with Follow-up at 12 and 24 moa

ID

Follow-up at t1 = 12 Mo Follow-up at t2 = 24 Mo

OutcomeSurvival Time Censoring Indicator, d At Risk at t2 Survival Time Censoring Indicator, d

1 9.3 1 No — — Died at 9.3 mo
2 12.0b 0 Yes 13.4 1 Died at 13.4 mo
3 12.0b 0 Yes 24.0b 0 Alive at 24.0 mo
4 6.7b 0 No — — LFU at 6.7 mo
5 12.0b 0 Yes 15.9b 0 LFU at 15.9 mo

LFU, lost to follow-up.
aFive participants are shown. Data are denoted x= f(9:3, 12, 12, 6:7, 12), (1, 0, 0, 0, 0)g for observations up until t1 = 12 mo and

~x= f(13:4, 24, 15:9), (1, 0, 0)g for observations between t1 and t2 = 24 mo.
bObservation censored (d= 0).
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The EVSI for an ongoing study, where we average
over models, is given by

Model-averagedEVSI = E ~xjx½max
d

Eur ,Mjx, ~xfNB(d,ur,Mr)g�

�max
d

Eur ,MjxfNB(d, ur,Mr)g, ð6Þ

which is identical to equation (2), except that expecta-
tions are now taken over models as well as parameters
(see Appendix C for a derivation).

To compute equation (6) we will need a method for
generating plausible data sets ~x from p(~xjx), the distribu-
tion of the follow-up data given the observed data, which
takes account of the fact that we now consider plausible
a number of different data-generating models. We will
also need to define model probabilities given observed
data, P(Mrjx), and then find a method for computing
posterior model probabilities P(Mrjx, ~x), given each
sampled future plausible data set ~x. We address the issue
of defining model probabilities given observed data first.

Deriving model probabilities given observed data up until
t1. We assume that before we see the observed data x,
that we are indifferent about the ‘‘correct’’ model, so
P(Mr)= 1=R for all r. After we observe data x, we use
the Akaike’s Information Criterion (AIC)20 to derive
posterior model probabilities giving greater weight to
models with better predictive ability (according to Kull-
back-Leibler divergence), as described by Jackson et al.18

We set

P(Mrjx)=
expf�0:5 AICr(x)gPR

r = 1 expf�0:5 AICr(x)g
, ð7Þ

where

AICr(x)= � 2 logfp(xjûr)g+ 2ur:

The term ûr is the maximum likelihood estimate for
the parameters of model Mr, and ur is the number of
parameters in model Mr.

Generating plausible ongoing follow-up data sets, ~x, that
we may observe between t1 and t2. Plausible data sets
from the distribution p(~xjx) are generated as follows.
First, we sample a model M (k)

r with probability P(Mrjx)
given by equation (7). Next, we draw a sample u(k)

r from
the distribution of the parameters of our chosen model
p(urjx,M (k)

r ). Finally, we generate a data set ~x(k) from the
distribution of the data p(~xju(k)

r ,M (k)
r ) given the sampled

parameter values u(k)
r and model M (k)

r . We can repeat this

process k = 1, . . . ,K times to generate an arbitrary num-
ber of data sets.

Updating model probabilities given ongoing follow-up data
from t1 to t2. We can derive our posterior model prob-
abilities at time point t2, for data set ~x(k), via Bayes
theorem:

P(Mrjx, ~x(k))=
p(~x(k)jMr, x)P(Mrjx)PR

r = 1 p(~x(k)jMr, x)P(Mrjx)
, ð8Þ

where p(~x(k)jMr, x) is the marginal likelihood (‘‘marginal’’
because we have integrated out the model parameters):

p(~x(k)jMr, x)=

ð
Y

p(~x(k)jMr, ur)p(urjMr, x)dur:

We use bridge sampling to approximate the marginal
likelihood, which is a form of importance sampling that
has been shown to give good approximations in a wide
range of settings.21–24 The key notion behind bridge sam-
pling is that the marginal likelihood can be written as the
ratio of 2 expectations, each of which can be estimated
via importance sampling. The name ‘‘bridge’’ reflects the
incorporation in the estimator of a density function that
‘‘bridges’’ (i.e., has good overlap with) the 2 densities
from which samples are drawn. A detailed tutorial on
the bridge sampling method is given in the article by
Gronau et al.,23 and the method is straightforward to
implement in the R package bridgesampling.25 Given the
bridge sampling estimates of p(~x(k)jMr, x) for each model,
posterior model probabilities are trivial to compute via
expression (8).

As with single-model EVSI, computing model-
averaged EVSI (expression [6]) will require numerical
methods. Nested Monte Carlo and a regression-based
approach are described in Appendix D. In the next sec-
tion, we will apply these methods in a synthetic case
study.

Synthetic case study. We will model survival with and
without accounting for survival model uncertainty.

Decision problem and model definition. Our decision
problem is to determine which of 2 treatment options
has the longest mean survival: a new treatment (d = 1)
or standard care (d = 2).

In the single-model case, survival is assumed to follow
a Weibull distribution, and the net benefit of each treat-
ment option is assumed to equal the restricted mean
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survival time, given an overall time horizon of th = 240

mo (i.e., the area under the survival curve from 0 to 240
mo). So the net benefit function is:

NB(d, ud)=

ðth

0

exp �( t

euld
)
eukd

� �
dt, ð9Þ

where the model parameters are the log-transformed
Weibull shape and scale parameters, ud =(ukd, uld).
Computing the restricted mean survival for distributions
other than the exponential requires numerical integra-
tion, but easy-to-use functions are available in the R
package flexsurv.26

In the model-averaged case, the decision problem is as
above, but we assume we are uncertain about the choice
of survival model, Mr, to extrapolate the observed data
beyond the current follow-up period t1. We assume that
our set of plausible models M contains the following 4
parametric distributions: Weibull (r = 1), Gamma
(r = 2), log-normal (r = 3), and log-logistic (r = 4).

Generating synthetic case study data sets, x, collected up
to t1 = 12 months. We generated 2 synthetic case study
data sets: one in which the hazard of death is monotoni-
cally increasing and the other in which it is monotoni-
cally decreasing. For each case study, we generated a
data set with 200 participants per trial arm with a maxi-
mum follow-up of t1 = 12 mo. We denote the data sets
x1 for new treatment and x2 for standard care.

To explore the performance of the method when the
survival model was misspecified, we generated survival
times evenly spaced from either a Weibull or a Gamma
distribution, using the 0:005th, 0:015th, . . . , 0:985th, 0:995th

quantiles from each distribution (i.e., 100 evenly spaced
quantiles that avoid 0 and 1). We could have randomly
generated survival times, but this would have just added
additional Monte Carlo error when assessing the meth-
ods for computing EVSI. The parameters of the Weibull
and Gamma distributions that we used to generate the
synthetic case study data sets are shown in Table 2.

We enrolled all patients in the trial at t0 = 0 and right
censored the data sets at t1 = 12 mo. We assumed no
loss to follow-up and did not apply any other censoring.
Figure 1 shows the Kaplan-Meier plots for the 2 syn-
thetic case study data sets.

Initial Trial Analysis at t1 = 12 Months

For each synthetic case study, we analyzed the 2 trial
arms separately. We fitted all 4 models to the data from
each arm and estimated the model parameters using
maximum likelihood (as implemented in the flexsurvreg
function).26 We assumed that our judgments about the
log-transformed parameters for each survival model con-
ditional on the observed data up to t1, p(urjx), are repre-
sented by a bivariate normal distribution with the mean
vector and covariance matrix derived from the maximum
likelihood estimation. We computed the AIC for each
model fit and derived model probability weights via
equation (7).

Net benefits, AICs, and model probabilities are shown
in Table 3, and means and covariances for each model
are reported in Appendix G.

The expected net benefits (mean survival times) assum-
ing a single Weibull model computed via Equation (9) are
50.96 versus 44.01 mo (incremental = 6.95 mo) for the
increasing hazard data set and 84.81 versus 77.85 mo
(incremental = 6.97 mo) for the decreasing hazard data
set. The expected value of perfect information (EVPI) val-
ues, computed via Monte Carlo simulation with a sample
size of 105, are 4.93 and 6.33 mo for the increasing and
decreasing hazard data set, respectively.

The model-averaged net benefits, weighted by model
probabilities, were 72.93 versus 62.36 mo (incremental =
10.57 mo) for the increasing hazard data set and 93.31
versus 85.85 mo (incremental = 7.46 mo) for the decreas-
ing hazard dat set. The model-averaged EVPI values are
10.32 and 9.97 mo for the respective data sets.

Generating plausible ongoing follow-up data sets, ~x, for the
EVSI computation. Both the nested Monte Carlo and

Table 2. Weibull and Gamma distribution parameters for the synthetic case study datasets

Increasing Hazard Case Study Decreasing Hazard Case Study

New Treatment Standard Care New Treatment Standard Care

Weibull shape, k 1.10 1.10 0.60 0.60
Weibull scale, l 70.00 50.00 80.00 57.00
Gamma shape, a 1.80 1.80 0.80 0.80
Gamma rate, b 0.04 0.04 0.01 0.01
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regression-based EVSI methods require a set of sampled
ongoing follow-up data sets for each trial arm, denoted
~x1 and ~x2. We generated k = 1, . . . ,K data sets with
K = 6000 for each trial arm, where the kth data set was
generated as follows.

In the single-model case, we first sampled log-shape
and log-scale values (u(k)

1 for new treatment and u(k)
2 for

standard care) from the bivariate normal distributions in
Appendix G. We computed the net benefit for each deci-
sion option, given the sampled parameters, NB(d, u(k)

d )

Figure 1 Kaplan-Meier plots for the increasing hazard data set (left) and decreasing hazard data set (right).

Table 3 Mean Survival, Akaike’s Information Criterion (AIC), and Prior Model Probabilities P(Mrjx) for
the 2 Hypothetical Data Sets

Increasing Hazard Data Set Decreasing Hazard Data Set

Net Benefit (Mean Survival) AIC(x) P(Mrjx) Net Benefit (Mean Survival) AIC(x) P(Mrjx)

New treatment
Weibull 50.96 277.58 0.26 84.81 437.06 0.29
Gamma 57.71 277.57 0.26 74.41 437.08 0.29
Log-normal 110.43 277.97 0.22 123.49 438.45 0.14
Log-logistic 79.28 277.58 0.26 105.98 437.14 0.28
Weighted average 72.93 93.31

Standard care
Weibull 44.01 329.26 0.28 77.85 470.37 0.30
Gamma 49.42 329.29 0.28 66.99 470.40 0.29
Log-normal 98.43 330.18 0.18 116.25 472.01 0.13
Log-logistic 71.00 329.33 0.27 99.70 470.47 0.28
Weighted average 62.36 85.85

Incremental values
Weighted average 10.57 7.46
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and stored this (these values are required for the
regression-based approximation). For each arm, we then
sampled n survival times from a truncated Weibull distri-
bution (see Appendix E) with the sampled shape and
scale values, where n was the number of patients who
were still alive in the trial arm at t1 = 12 mo. Finally,
survival times were censored at the proposed endpoint
for the ongoing data collection, t2.

In the model-averaged case, we first chose a model
M (k)

r with probability P(Mrjx), before sampling u(k)
r from

the bivariate normal distribution p(urjx) for the chosen
model M (k)

r and generating the n survival times for each
arm. The remainder of the data-generation step is as
above.

Computing EVSI for ongoing follow-up via nested Monte
Carlo. To sample from the posterior distributions,
p(ud jxd , ~x

(k)
d ), we used Hamiltonian Monte Carlo (HMC)

as implemented in the package rstan.27 HMC is a Metro-
polis-Hastings MCMC algorithm with a particularly effi-
cient sampling scheme that reduces Monte Carlo
sampling error, therefore requiring fewer posterior sam-
ples for any inference. The package rstan is an R inter-
face to the Stan language.28 An alternative option would
have been to use OpenBUGS.29

In the single-model case, for each outer loop sampled
data set, k = 1, . . . , 6000, we averaged the net benefit
functions over J = 2000 inner loop posterior samples of
the model parameters and stored the maximum net bene-
fit of the 2 treatment options. We then averaged these
maximized net benefits and subtracted the expected value
of a decision based on current information to obtain the
EVSI following expression (5) in Appendix B.

In the model-averaged case, for each outer loop data
set, we generated the J posterior samples of the model
parameters for each of the r = 1, . . . , 4 models (we
needed to identify the truncated likelihood function for
each model as we did for the Weibull example above, but
this is straightforward (see Appendix E). We weighted
the parameter averaged net benefits NBk

r (d) by the pos-
terior model probabilities P(Mrj~x(k)) to give the posterior
model-averaged expected net benefit and identified the
treatment d that maximized this for iteration k = 1, . . . ,
6000. We then subtracted the expected value of a deci-
sion based on current information to obtain the EVSI
following expression (14) in Appendix D.

Computing EVSI for ongoing follow-up via regres-
sion. The generalized additive model (GAM) approach
to computing EVSI for extending the follow-up until
time t2 for the hypothetical example is as follows.

For each trial arm, we computed a low-dimensional
summary statistic for each data set. A convenient choice
here is the number of observed events e

(k)
d and the total

time at risk y
(k)
d for each data set ~x

(k)
d , that is,

T (~x(k)d )= fe(k)d , y(k)d g for d = 1, 2.
Then, for each of the 2 decision options, we fitted a

GAM regression model with the stored net benefits

NB(d, u(k)
d ) as the dependent variable and the two sum-

mary statistics, e
(k)
d and y

(k)
d , as independent variables.

We allowed a smooth, arbitrary, nonlinear relationship
between the independent and dependent variables, plus
an arbitrary interaction between the independent vari-
ables, by specifying a tensor product cubic regression
spline basis for the independent variables. This has the
simple syntax gam(nb_d ; te(e_d, y_d)) in the mgcv30

package in R. We extracted the GAM model fitted val-

ues ĝ
(k)
d from each regression model fit and estimated the

EVSI using equation (9) in Appendix B.
The GAM-based approximation method for model-

averaged EVSI is identical to that used in the single-
model case.

Results

EVSI Values for the Weibull Ongoing Data

The nested Monte Carlo– and GAM-based EVSI esti-
mates for additional follow-up times of 12, 24, 36, and
48 mo (i.e., t2 = 24, 36, 48, 60 mo) are shown in Table 4.
The methods used to estimate the standard errors of the
nested Monte Carlo and GAM estimators are described
in an appendix of the article by Strong et al.31

As expected, the EVSI reflects the diminishing mar-
ginal returns for increasing the follow-up duration and
converges toward the EVPI. The EVSI varies depending
on the underlying hazard pattern, even when point esti-
mates of mean incremental survival benefit are similar
(6.95 mo for the increasing hazard data set and 6.97 mo
for the decreasing hazard data set). The increasing
hazard data set has lower numbers of prior observed
events and higher expected numbers of future events for
the additional follow-up time than the decreasing hazard
data set does, which—all else equal—is expected to result
in greater EVSI values. This upward effect on EVSI is,
however, canceled out by the downward effect of lower
estimates of mean survival, resulting in greater EVSI val-
ues for the decreasing hazard data set than for the
increasing hazard data set.

The GAM method agrees well with the MCMC
method, with the benefit of a greatly reduced computa-
tional cost. The MCMC inner loop for the Monte Carlo
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method used parallel processing, but even with this addi-
tional efficiency, the regression method was approxi-
mately 700 times faster than the nested Monte Carlo
method was. We used a machine running Windows 10
with an Intel Core i9 CPU with 15 threads running on 8
cores at 2.40 GHz and with 32 GB RAM.

Of note is that the standard errors for the nested
Monte Carlo estimator slightly increase with increasing
follow-up duration, while the opposite is true for the
GAM estimator. This is due to different mechanisms
through which the effective sample size of the generated
data ~x affects the standard errors of the nested Monte
Carlo and GAM estimators, which is further explained
in Appendix F.

Model-Averaged EVSI Values

The nested Monte Carlo– and GAM-based model-
averaged EVSI estimates for additional follow-up times
of 12, 24, 36, and 48 mo (i.e., t2 = 24, 36, 48, 60 mo) are
shown in Table 5.

As expected, the EVSI converges toward the EVPI as
follow-up time increases, and there is good agreement

between the 2 methods. The model-averaged EVSI values
for additional follow-up are greater than the Weibull
model EVSI (Table 4), which reflects the additional value
in reducing model as well as parameter uncertainty. The
GAM method is approximately 8000 times faster than
the nested Monte Carlo method.

Expected net benefit of sampling. The net value of addi-
tional data collection can be quantified by computing the
expected net benefit of sampling (ENBS).32 In the con-
text of an ongoing study, the ENBS is the difference
between the EVSI for collecting additional data between
t1 and t2 and the expected cost of continuing the study
and potential health benefits foregone if approval is with-
held. When the ENBS is positive, it is worthwhile to con-
tinue the study and collect more data before making an
adoption decision.

If the adoption decision is reversible, then there are 2
decision options given that the new technology is
expected to improve net health benefits: ‘‘approval with
research’’ (AWR), which refers to approval while addi-
tional data are being collected, or ‘‘only in research’’
(OIR), which means a decision to approve or reject is

Table 4 EVSI (SE) Values for Additional Follow-up Time for the 2 Hypothetical Data Sets Given a Weibull
Distribution for the Survival Times

Additional Follow-up (mo)

Increasing Hazard Data Set Decreasing Hazard Data Set

Nested Monte Carlo GAM Nested Monte Carlo GAM

12 4.25 (0.09) 4.28 (0.08) 4.41 (0.10) 4.46 (0.10)
24 4.58 (0.09) 4.62 (0.06) 5.20 (0.11) 5.27 (0.09)
36 4.68 (0.09) 4.71 (0.05) 5.45 (0.11) 5.54 (0.08)
48 4.74 (0.09) 4.77 (0.04) 5.55 (0.11) 5.65 (0.07)

EVSI, expected value of sample information; GAM, generalized additive model.
aEVPI values are 4.93 and 6.33, respectively. Total computation times for the analyses in the table are 24,808 s (nested Monte Carlo) and 36 s (GAM).

Table 5 Model-averaged EVSI (SE) Values for Additional Follow-up Time for the 2 Hypothetical Data Sets Given a Mixture of
Weibull, Gamma, Lognormal and Log-logistic Distributions for the Survival Times

Additional Follow-up (mo)

Increasing Hazard Data Set Decreasing Hazard Data Set

Nested Monte Carlo GAM Nested Monte Carlo GAM

12 7.50 (0.18) 7.52 (0.14) 6.69 (0.15) 6.70 (0.13)
24 8.75 (0.20) 8.82 (0.10) 8.09 (0.18) 8.16 (0.11)
36 9.43 (0.21) 9.44 (0.08) 8.71 (0.19) 8.76 (0.09)
48 9.77 (0.22) 9.74 (0.07) 8.96 (0.19) 9.01 (0.08)

EVSI, expected value of sample information; GAM, generalized additive model.
aEVPI values are 10.32 and 9.97, respectively. Total computation times for the analyses in the table are 289,211 s (nested Monte Carlo) and 37 s

(GAM).
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withheld until additional data have been collected.6 An
adoption decision may also be reversible with a cost, in
which case the EVSI for AWR will be lower than for
OIR.7 For example, some irrecoverable costs, such as
high initial treatment costs that are offset only by later
health benefits, may be avoided if treatment initiation
could be delayed until additional data have been col-
lected.33 If these avoidable costs are large, OIR may
potentially be more appropriate than AWR, even if the
decision is reversible. OIR may also be recommended if
the new technology is not expected to improve net health
benefits, but there is value in collecting additional data.
If the adoption decision is irreversible, or approval
would mean that further research could not be con-
ducted, then AWR is not available and OIR may be the
only option. In these circumstances, opportunity costs,
in terms of potential net health benefits foregone, will be
incurred while the research is being conducted if the new
technology is expected to improve net health benefits.

Establishing population ENBS requires an assessment
of the number of current and future patients who may
benefit from additional data collection over the decision
relevance time horizon.34 The cost of continuing an
ongoing study will primarily consist of variable (per
patient) costs, including marginal incremental treatment

costs and marginal reporting costs. Fixed study costs
that have already been incurred will not affect the deci-
sion to continue the ongoing study or not.

Figure 2 illustrates that if AWR is recommended, the
marginal benefit in terms of population model-averaged
EVSI equals the marginal cost of continuing the trial at
47 and 50 mo of additional follow-up for the increasing
and decreasing hazard data sets, respectively. These are
the time points at which the ENBS is at a maximum. If
OIR is recommended, the ENBS is at a maximum when
the marginal benefit of delaying the decision until more
data have been collected equals the marginal cost of con-
tinuing the trial and withholding approval, which is at 20
and 24 mo of additional follow-up for the increasing and
decreasing hazard data sets, respectively.

Discussion

EVSI is useful not only for informing the design of a
future trial but also for deciding whether an ongoing
study should continue in order to collect additional data
before making an adoption decision. This article is the
first to set out generic EVSI algorithms for survival data
from an ongoing trial with or without accounting for sur-
vival model uncertainty. The EVSI algorithms generalize

Figure 2 Marginal benefit (MBEVSI), marginal cost of ‘‘approval with research’’ (MCAWR) and, marginal cost of ‘‘only in
research’’ (MCOIR) given different durations of additional follow-up. Estimates are based on the model-averaged EVSI analyses
for the increasing hazard data set (left) and decreasing hazard data set (right), trial costs of 5 life-months per month, 5 new
patients receiving treatment each month, and a decision time horizon of 10 y.

Vervaart et al. 621



to any decision context in which structural uncertainty is
present, provided that the analyst is able to derive prob-
ability weights for the competing scenarios.

Strengths and Limitations

The nonparametric regression-based method is fast and
straightforward to implement, even when we include con-
sideration of model uncertainty. In fact, extending the
method to include model uncertainty does not increase
the complexity or computation time. The nested Monte
Carlo procedure, on the other hand, is extremely compu-
tationally demanding when we include model uncertainty.

Although we considered only 2 treatment options in
the synthetic case study, the EVSI methods described in
this article extend to any number of treatment options
that are being compared. This requires the generation of
data for each treatment arm for which additional data
will be collected conditional on samples from the distri-
bution of the model parameters, which could be drawn
from independently fitted survival models or from a joint
model based on proportional hazards or an accelerated
failure time assumption. The net benefit for each treat-
ment arm can then be regressed on the treatment arm–
specific summary statistics of the generated data, and
EVSI can be computed the usual way following the algo-
rithms in this article.

When a large part of the relevant time horizon is
unobserved, the clinical plausibility of the survival extra-
polations is often of greater importance than the mathe-
matical fit to the observed data.14 Deriving prior model
probabilities from purely statistical measures such as
AIC may therefore not always be appropriate when data
are immature, since these measures do not reflect the
plausibility of the extrapolations.8 This became evident
in the synthetic case studies, as the AIC-based prior
model probabilities of the log-normal and log-logistic
models were similar to those of the Weibull and Gamma
models for the increasing hazard data set, despite the fact
that the former 2 models do not allow for monotonically
increasing hazards and therefore cannot capture the true
underlying hazard pattern.

Similar to previous work,9,35 we have viewed model
uncertainty in terms of a discrete model space, which can
be addressed by model averaging. An alternative view on
model uncertainty could involve indexing candidate
models within a continuous model space, using a single
very flexible model that includes all the models the ana-
lyst believes plausible. For example, the generalized F
distribution includes most commonly used parametric
survival distributions as special cases.36 In this case, the
EVSI algorithms in this article would reduce to the

single-model case. This approach, however, requires the
specification of a prior that appropriately reflects uncer-
tainty in choosing between alternative functional forms
within the flexible model, which may be not be straight-
forward. Flexible models such as the generalized F distri-
bution, Royston-Parmar spline models, or fractional
polynomials are also prone to overfitting and may not
always provide reliable predictions of mean survival,
particularly when data are immature.9

For the purposes of describing the new method, we
assumed that the survival distribution in the future unob-
served time period is the same as in the observed period.
This is a simplifying assumption that may not hold in
real-life settings. Most importantly, we may have addi-
tional uncertainty about the postobservation period that
is not captured by the uncertainty encoded in the survival
model probability distribution. For example, the dura-
tion of the treatment effect is conditional on multiple fac-
tors such as the biological effect mechanism, treatment-
stopping rules, compliance, and side effects.37 The extra-
polation of trial data may therefore have to be supple-
mented with external evidence38 and assumptions about
disease progression and mechanisms of action of the
treatments that reflects additional knowledge and uncer-
tainty. This typically involves eliciting expert opinion.39

We also did not consider flexible parametric models such
as Royston-Parmar spline-based models40 or mixture
cure models41 in the synthetic case studies. Although the
EVSI methods described in this article apply equally to
any survival distribution and underlying assumptions
(including those regarding the duration of the treatment
effect), they require the generation of plausible data sets
that obey all the model rules, which may not be straight-
forward for complex study designs. This is a common
limitation of existing EVSI methods, and more research
in this area may be needed.

In the synthetic case studies, we assumed all patients
had the same follow-up at t1. In clinical trials, patients
are usually recruited over a period of time, which means
the individual follow-up times will vary at t1. In these cir-
cumstances, additional follow-up will provide more
information not only about the tail of the survival curve
(from patients who were enrolled early) but also about
the central part (from patients who were enrolled later).

We did not consider sequential trial designs,42 which
require EVSI to be recalculated after each observation
and to account for all the possible ways in which future
patients may be allocated to the trial arms or when to
stop the trial.34 This can give rise to a large number of
subproblems that may have to be solved using dynamic
programming methods, which can be computationally
very demanding.
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Policy Implications

Immature evidence leads to a high level of decision
uncertainty, which may result in the uptake of technolo-
gies that reduce net health benefit. The decision-making
context in which trials are ongoing and evidence is
immature is particularly pronounced for new oncology
drugs. The purpose of the Cancer Drug Fund (CDF) in
the United Kingdom, for example, is to enable early
patient access to promising new cancer drugs while
allowing evidential uncertainty to be reduced through
ongoing data collection. In the period between 2017 and
July 2018, the National Institute for Health and Care
Excellence (NICE) recommended more than half of the
appraised cancer drugs through the CDF, typically
because of concerns about immature survival data.43

EVSI will depend on both the study design and the
decision context44,45 but also on whether the trial results
generalize to multiple jurisdictions46,47 and whether the
adoption decision can be fully implemented.48,49 The
benefit of additional data collection can be realized only
when trial results are reported.50 An assessment is there-
fore required of when the ongoing trial might report and
at which point the adoption decision can be revisited.51

Risk-sharing agreements between a manufacturer and
payer may potentially modify the value of collecting
additional data as well as the expected net benefit of
access to a new technology.6,47,52 The option to enroll
more patients into an ongoing trial should also be con-
sidered if it has a positive net value.

The EVSI algorithms in this article can help decision
makers determine whether early patient access to a new
technology can be justified on the basis of the current
evidence or whether more mature evidence is needed.
Unlike most of the existing work on EVSI that primarily
targets commissioners and funders of research, EVSI for
ongoing trials also addresses the policy context of deci-
sion makers who do not have the remit to commission
additional research.
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