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Abstract. Nerve growth factor (NGF) is a target- 
derived neurotrophic protein that promotes the sur- 
vival and growth of developing sympathetic and sen- 
sory neurons. We have examined NGF receptor gene 
expression in these neurons after NGF administration. 
Northern blot and in situ hybridization analyses 
demonstrated that NGF given systemically to neonatal 
rats increased levels of NGF receptor mRNA in sym- 
pathetic neurons within the superior cervical ganglion. 
This increase was accompanied by a differential regu- 
lation of genes associated with neurotransmitter 
phenotype; tyrosine hydroxylase mRNA was in- 
creased, but neuropeptide Y mRNA was not. NGF 
receptor mRNA levels were also increased in L4-L5 
dorsal root ganglia, although this mRNA was not ex- 
pressed uniformly in sensory neurons of control or 
NGF-treated animals. Levels of Tod ot-mbulin mRNA, 
a marker of neuronal growth, also increased. In con- 

trast to developing neurons, systemic NGF did not in- 
crease NGF receptor mRNA in nonneuronal cells of 
the sciatic nerve. To determine if NGF regulated NGF 
receptor gene expression at the transcriptional level, 
we examined PC12 cells. NGF treatment for 6 h in- 
creased NGF receptor mRNA fourfold; this increase 
was inhibited by cycloheximide. Nuclear run-off tran- 
scription assays demonstrated that the increase in 
steady-state NGF receptor mRNA levels was mediated 
at the transcriptional level. In contrast, although NGF 
treatment increased steady-state tyrosine hydroxylase 
mRNA levels, this effect was not blocked by cyclohex- 
imide, and was not due to increased transcription. 
These data raise the possibility that transcriptional 
regulation of NGF receptor gene expression by target- 
derived NGF could be a molecular mechanism for 
potentiating NGF's effects on neurons during develop- 
mental periods of neuronal competition and cell death. 

I 
NTERACTIONS between a developing peripheral neuron 
and its target organ are believed to partially determine 
the phenotypic fate of that neuron, and to play an impor- 

tant role in neuronal competition and cell death. Nerve 
growth factor (NGF) t is a target-derived neurotrophic fac- 
tor involved in the survival and differentiation of developing 
sympathetic and neural crest-derived sensory neurons. NGF 
given systemically to neonatal rats promotes growth of sym- 
pathetic neurons (Levi-Montalcini and Booker, 1960a), and 
affects the neurotransmitter phenotype of both sensory and 
sympathetic neurons (Kessler and Black, 1980; Otten et al., 
1980; Thoenen et al., 1971). Conversely, antibodies to NGF 
lead to the death of embryonic sensory neurons (Johnson et 
al., 1980; Aloe et al., 1981), and of neonatal or mature sym- 
pathetic neurons (Levi-Montalcini and Booker, 1960b; An- 
geletti et al., 1971; Gorin and Johnson, 1980). NGF synthe- 
sis in the target field of sympathetic neurons commences 
around the time of axonal contact (Davies et al., 1987). To- 
gether, these studies suggest that NGF plays an important 
role in regulating neuronal survival and differentiation. 

NGF mediates its actions by binding to the high-affinity 

1. Abbreviations used in thispaper: DRG, dorsal root ganglia; NGF, nerve 
growth factor; SCG, superior cervical ganglia. 

form of the membrane-bound NGF receptor (Green et al., 
1986). The low-affinity form of the NGF receptor (Sutter et 
al., 1979), which has been cloned (Johnson et al., 1986; 
Radeke et al., 1987), is believed to provide an essential com- 
ponent of the high-affinity receptor (Hosang and Shooter, 
1985; Green and Greene, 1986), and is capable, when ex- 
pressed in mutant PC12 cells, of restoring functional re- 
sponses to NGF (Hempstead et al., 1989). Thus, the same 
gene product is believed to encode components of both the 
high- and low-affinity binding sites, as well as a truncated 
form of the receptor (DiStefano and Johnson, 1988b). 

NGF receptor mRNA is expressed in both neural and non- 
neural tissues during the development of rodents and 
chickens (Ernfors et al., 1988; Large et al., 1989). Wyatt et 
al. (1990) recently demonstrated that the amount of NGF 
receptor on developing trigeminal neurons increased at ap- 
proximately the same time as initial target contact. One ex- 
planation for this observation is that NGF may directly in- 
crease expression of the NGF receptor gene, a hypothesis 
supported by studies demonstrating that NGF administered 
in the cerebrospinal fluid increased NGF receptor mRNA in 
basal forebrain cholinergic neurons (Higgins et al., 1989; 
Cavicchioli et al., 1989), and that NGF increased receptor 
mRNA in cultures of adult sensory neurons (Lindsay et al., 
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1990). Regulation of the number and density of NGF recep- 
tors on the surface of peripheral neurons by NGF in vivo 
could be a positive feedback mechanism that contributes to 
neuronal differentiation and survival. 

In this study, we tested whether exogenous, systemic NGF 
regulates the levels of NGF receptor mRNA in developing 
peripheral neurons during the period of neuronal competi- 
tion and cell death. Results demonstrate that systemic NGF 
increased levels of NGF receptor mRNA in neonatal sym- 
pathetic and sensory neurons, but not in developing non- 
neuronal cells of sciatic nerve that also express NGF recep- 
tor mRNA. In PC12 cells, the NGF-mediated increases in 
NGF receptor mRNA occur at the transcriptional level with 
characteristics that implicate an immediate early gene prod- 
uct. This increase in NGF receptor gene expression was ac- 
companied by increased expression of tyrosine hydroxylase 
and Totl ~tubulin mRNAs in sympathetic and sensory neu- 
rons, respectively. These data indicate that NGF increases 
transcription of the NGF receptor gene in developing periph- 
eral neurons, and that this increase is coincident with other 
NGF-mediated changes in neuronal gene expression. Subse- 
quent increases in levels of the high-affinity NGF receptor 
would provide a cellular mechanism for potentiating the 
effects of NGF on NGF-responsive neurons, and may indi- 
cate a role for target-derived NGF in neuronal competition 
and cell death. 

Materials and Methods 

Animals and Surgical Procedures 

Neonatal Sprngue Dawley rats obtained from timed pregnant mothers were 
injected subcutaneously daily from postnatal days 2 to 11 with either 5 
mg/kg (two experimental animals) or 10 mg/kg (one experimental animal) 
2.5S NGF (generously provided by Dr. Richard Murphy, University of Al- 
berta) dissolved in saline. Control littermates were injected daffy with simi- 
lar volumes of saline. Animals were subsequently killed at postnatal day 12 
under deep anaesthesia (35 mg/kg sodium pentobarbital) and RNA was iso- 
lated from the sciatic nerve, the superior cervical ganglion, and LA-L5 dor- 
sal root ganglia (DRG). Alternatively, animals were anaesthetized with so- 
dium pentobarbital, transcardially perfused with 4% paraformaldehyde in 
phosphate buffer, and the sciatic nerve, the superior cervical ganglion, and 
dorsal root ganglia removed and processed for in situ hybridization or im- 
munocytochemistry. 

PC12 Cell Cultures 

Stock cultures of PCI2 phcochromocytoma cells (Tischler and Greene, 
1975) were routinely maintained in complete medium consisting of 85% 
RPMI-1640 medium, 10% heat-inactivated horse serum, 5% FBS, 25 
#g/ml streptomycin, and 50 U/ml penicillin (all from Sigma Chemical Co., 
St. Louis, MO). For each experiment, cells were plated onto 10-cm 
collagen-coated (rat tail collagen; Sigma Chemical Co.) tissue culture 
dishes (Coming Glass Works, Coming, NY) containing a total volume of 
10 ml of complete medium. 24 h after plating, the cells were washed and 
maintained in PC-1 serum-free medium (Ventrex) containing the PC-1 sup- 
plement, 3 mM L-glutamine (Sigma Chemical Co.), 20 U/rrd penicillin, 
and 20 #g/ml streptomycin until they reached 30-40% confluence. The 
medium was subsequently changed to PC-1 medium containing 200 ng/ml 
2.5S NGF, and the cells were incubated for 2, 6, 24, 48, or 72 h before har- 
vesting. Medium containing NGF was replaced every 24 h. For studies in- 
volving cyclobeximide, the drug was added at a final concentration of 10 
#g/ml for 6 or 12 h during the NGF treatment. 

RNA Isolation and Analysis 
Total cytoplasmic RNA was prepared from ganglia or nerve by a modifica- 
tion of the phenol/chloroform/isoamyl alcohol technique (Schibler et al., 
1980). Total RNA (1-3 #g) was fractionated by electrophoresis on 1.2% 
agarose gels in the presence of 1 M formaldehyde (Rave et al., 1979) and 

transferred to nitrocellulose (Thomas, 1980). Antisense RNA probes were 
hybridized to the immobilized RNA as previously described for probes pre- 
pared by nick-translation (Lenoir et al., 1986) except that hybridizations 
were performed at 65°C, and blots were washed to a stringency of 0.05× 
SSC at 65°C. Nitrocellulose filters were subsequently exposed to XAR or 
XRP x-ray film (Eastman Kodak Co., Rochester, NY) for 2 h to 7 d. To 
confirm that equivalent amounts of RNA were loaded in each lane, ethidium 
bromide was added to the sample buffer before electrophoresis, and gels 
were photographed under ultraviolet illumination. In addition, the nitrocel- 
lulose was stained with methylene blue (Monroy, 1988) subsequent to hy- 
bridization. 

Hybridization Probes 
Probes to T~I and total c~-tubulin mRNAs were prepared as previously de- 
scribed (Miller et al., 1987a, 1989a). For NGF receptor studies, a 310 
nucleotide Eco RI/Bam HI fragment containing nucleotides 400-710 of the 
rat eDNA (Radeke et al., 1987) (kindly donated by Dr. Moses Chao, Cor- 
nell University Medical College) was subcloned into pGEM3, and radio- 
labeled antisense RNA probes were generated with SP6 RNA polymerase 
(Bethesda Research Laboratories, Gaithersburg, MD) and (32P)CTP (800 
Ci/mmol; New England Nuclear, Boston, MA) under conditions described 
by Melton et al. (1984). Antisense RNA probes specific to mRNAs encod- 
ing tyrosine hydroxylase (plasmid K35) (Lewis et al., 1983) and neuropep- 
tide Y (Allen et al., 1987) were generated from subclones provided by Dr. 
Gerry Higgins and Dr. Janet Allen, respectively. The clone for rat histone 
H3.3 mRNA (Devo 8) was previously isolated in a screen for mRNAs en- 
riched in the embryonic rat brain (Miller et al., 1987b), and has since been 
fully sequenced and characterized (F. Miller, D. Feinstein, L. Mall, and R. 
Milner, manuscript in preparation). 

Nuclear Run-Off Transcription Assays 
Nuclear run-off transcriptions were performed as described by Greenberg 
and Ziff (1984; Groudine et al., 1981). Briefly, nuclei were isolated from 
PC12 cells that were 50% confluent after treatment for 6 or 12 h with or 
without 200 ng/ml NGE After nuclear run-off transcription, the labeled, 
purified RNA was hybridized to linearized plasmid containing the inserts 
of interest immobilized on nitrocellulose. After washing, the filters were ex- 
posed to XAR x-ray film (Eastman Kodak Co.) for 1-7 d, and the hybridiza- 
tion signal was quantitated using an Ultrascan XL scanning laser densitom- 
eter (LKB Instruments, Inc., Gaithersburg, MD). 

In Situ Hybridization 
Ganglia or segments of sciatic nerve from perfused animals were cryopro- 
tected in graded sucrose solutions and sectioned onto chromalum subbed 
slides. In situ hybridization was performed with antisense probes as previ- 
ously described (Miller et al., 1989b). Hybridized slides were air-dried and 
apposed to Kodak XRP film for 12-24 h to obtain x-ray images. The slides 
were subsequently dipped in Kodak NTB-2 emulsion, and exposed for 2-7 
d before development. Hybridization with a sense probe was performed to 
ensure specificity of hybridization. For viewing, slides were counterstained 
with hematoxylin and eosin, and alternate tissue sections stained with cresyl 
violet. 

Analysis and Quantification 
Northern blot and nuclear run-off results were quantitated using an Ultra- 
scan XL scanning laser densitometer (LKB Instruments, Inc.). Representa- 
tive Northern blots from different experiments were chosen for quantitation 
after ensuring that the amounts of total RNA in the pertinent lanes were 
identical. Several different film exposures of the same data were analyzed. 
Results are represented as an approximate value, or as a range of values. 
To ensure that the in situ hybridization and immunocytochemistry results 
were comparable and reproducible, we sectioned control and NGF-treated 
tissue onto the same slides (Miller et al., 1989a,b). 

Results 

Regulation of NGF Receptor and ~yrosine 
Hydroxylase mRNAs in the Developing Superior 
Cervical Ganglion by NGF 
Systemic administration of NGF to neonatal rats dramati- 

The Journal of Cell Biology, Volume 112, 1991 304 



Figure 1. Expression of the NGF receptor, tyrosine hydroxylase, and neuropeptide Y mRNAs in the postnatal day 12 SCG with and without 
NGF treatment. Northern blot analysis of (a) NGF receptor, (b) tyrosine hydroxylase, and (c) neuropeptide Y mRNAs in equal amounts 
of total RNA from the SCG of an animal treated with 10 mg/kg NGF (lane 2) and its control littermate (lane 1), and equal amounts of 
total RNA from an animal treated with 5 mg/kg NGF (lane 4) and its control littermate (lane 3). Note that lanes I and 2 are not directly 
comparable to lanes 3 and 4 in the amount of RNA analyzed, the specific activity of the probe, or in the exposure time. 

cally influences the differentiation of sympathetic neurons 
(Levi-Montalcini and Booker, 1960a; Snider, 1988; Thoe- 
nen et al., 1971). To assess any NGF-mediated changes in 
abundance of NGF receptor that might play a role in this re- 
sponse, we injected neonatal animals with 2.5S NGF from 
postnatal days 2-11, and isolated RNA from the superior cer- 
vical ganglia (SCG) at postnatal day 12. Northern blot analy- 
sis revealed that levels of NGF receptor mRNA increased 
5-10-fold relative to total RNA synthesis in NGF-treated 
versus control SCG (Fig. 1 a). No significant differences 
were observed between one animal treated with 10 mg/kg 
(Fig. 1 a, lanes I and 2) and those treated with 5 mg/kg 2.5S 
NGF (Fig. 1 a, lanes 3 and 4). 

To determine whether the increase in NGF receptor 
mRNA was specific, we examined the mRNAs encoding 
tyrosine hydroxylase and neuropeptide Y, two proteins as- 
sociated with the transmitter phenotype of sympathetic neu- 
rons. Northern blot analysis demonstrated that, consistent 
with a previously reported increase in enzyme activity 
(Thoenen et al., 1971), tyrosine hydroxylase mRNA in- 
creased at least 10-fold in the SCG after administration of 
10 mg/kg (Fig. 1 b, lanes I and 2) or 5 mg/kg 2.5S NGF (Fig. 
1 b, lanes 3 and 4). In contrast to tyrosine hydroxylase, neu- 
ropeptide Y mRNA levels remained constant with NGF 
treatment (Fig. 1 c). 

These data suggest that a specific program of gene expres- 
sion is induced in developing sympathetic ganglia by sys- 
temic NGF. Alternatively, NGF may prolong the develop- 
mental process and maintain high neonatal levels of NGF 
receptor and tyrosine hydroxylase mRNAs. To differentiate 
between these two possibilities, we isolated total RNA from 
the SCG at postnatal day 1, 1 d before NGF treatment. 
Northern blot analysis demonstrated that systemic NGF in- 
creased NGF receptor mRNA levels at least 5-10-fold above 
those seen either at postnatal days 1 or 12 (Fig. 2 a). Longer 
exposures of similar blots revealed that, as demonstrated by 
Buck et al. (1987), NGF receptor mRNA increased 2-3-fold 
from postnatal day 1-12 in control animals, paralleling a 
similar increase in NGF content of the developing SCG 
(Korsching and Thoenen, 1988). In contrast, neither tyro- 
sine hydroxylase nor neuropeptide Y mRNAs changed sig- 
nificantly in the SCG over the same developmental interval 
(Fig. 2, b and c). However, NGF treatment dramatically in- 
creased tyrosine hydroxylase mRNA over normal neonatal 
levels, as it does for NGF receptor (Fig. 2 b). 

Differential Regulation of NGF Receptor mRNA in 
Sympathetic Neurons and Nonneuronal Cells of the 
Sciatic Nerve 

To determine whether NGF receptor mRNA was increased 
in neurons or nonneuronal cells of the SCG, we analyzed 
sections of control and NGF-treated superior cervical gan- 
glia by in situ hybridization (Fig. 3). Adjacent sections were 
hybridized to probes specific for NGF receptor mRNA (Fig. 

Figure 2. (a-c) Expression of NGF receptor, tyrosine hydroxylase, 
and neuropeptide Y mRNAs in the developing SCG. Northern blot 
analysis of (a) NGF receptor, (b) tyrosine hydroxylase, and (c) neu- 
ropeptide Y mRNAs in equal amounts of total RNA from the SCG 
of postnatal day 1 (lane 1), postnatal day 12 (lane 2, and NGF- 
treated postnatal day 12 (lane 3) animals. (d and e) Expression of 
NGF receptor and Tad ct-tubulin mRNAs in the postnatal day 12 L4- 
L5 DRG with and without NGF treatment. Northern blot analysis 
of (d) NGF receptor and (e) Ttxl c~-tubulin mRNAs in equal 
amounts of total RNA from the L4-L5 DRG of an animal treated 
with 10 mg/kg NGF (lane 2) and its control littermate (lane 1 ). (f) 
Expression of NGF receptor mRNA in the sciatic nerve of NGF- 
treated animals. Northern blot analysis of equal amounts of total 
RNA isolated from the sciatic nerve of control (lane 1) and NGF- 
treated (lane 2) postnatal day 12 animals. Note that any differences 
in hybridization intensity in c can be attributed to differences in the 
amount of total RNA present in each lane. 
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3, a and c) or for tyrosine hydroxylase mRNA (Fig. 3, b and 
d), which is expressed in neurons, but not nonneuronal cells, 
of the ganglion. The SCG were enlarged in all of the NGF- 
treated animals (data not shown), as previously reported 
(Levi-Montalcini and Booker, 1960a; Thoenen et al., 1971). 
Increased hybridization to sections from NGF-treated versus 
control animals was observed for both NGF receptor and 
tyrosine hydroxylase mRNAS (data not shown), confirming 
the Northern blot results. The cellular localization of NGF 
receptor and tyrosine hydroxylase mRNAS was similar in 
control and NGF-treated animals, with silver grains being 
predominantly localized over neurons (Fig. 3, a-d). The 
NGF receptor probe did not hybridize significantly to the 
epineurium, or to any nonneuronal cells scattered through- 
out the ganglion. 

Although these data indicate that NGF receptor mRNA is 
expressed primarily in neurons of control and NGF-treated 
ganglia, they do not rule out the possibility that NGF can in- 
crease low relative levels of NGF receptor mRNA in non- 
neuronal cells. To address this possibility, total RNA was 
isolated from the sciatic nerves of control and NGF-treated 
P12 animals. Northern blot analysis demonstrated that NGF 
receptor mRNA levels were similar in the sciatic nerve of 
control versus NGF-treated animals (Fig. 2 f ) .  Furthermore, 
the NGF receptor probe hybridized to a similar degree to 
cross-sections of control and NGF-treated sciatic nerve (Fig. 
3, g and h). 

Regulation of  NGF Receptor and TaI 
a-Tubulin mRNAs by Systemic NGF in Sensory 
Neurons of  the DRG 

To determine whether NGF increases NGF receptor mRNA 
in postnatal, neural crest-derived sensory neurons, as it does 
in sympathetic neurons, we isolated RNA from L4-L5 DRG 
of NGF-treated animals. Northern blot analysis demon- 
strated an increase of approximately fourfold in NGF recep- 
tor mRNA in the DRG of animals treated with 10 mg/kg 
(Fig. 2 d) or 5 mg/kg 2.5S NGF (data not shown). The mag- 
nitude of the increase was lower than that observed in the 
SCG of the same animals (Fig. 1 a). 

To determine whether other changes in gene expression 
accompanied the observed increase in NGF receptor mRNA 
in the DRG, we examined Tal  oetubulin mRNA, which is 
expressed in all developing neurons (Miller et al., 1987a), 
and is regulated as a function of neuronal growth (Miller et 
al., 1989a). In contrast to NGF receptor mRNA, Tod 
mRNA was increased only approximately twofold in the 
DRG (Fig. 2 e), consistent with the fact that sensory neurons 
do not sprout significantly after systemic NGF administra- 
tion (Levi-Montalcini and Booker, 1960a). 

Previous studies have demonstrated that sensory neurons 
of the DRG are heterogeneous with regards to the presence 
of high-aliinity NGF binding sites (Richardson et al., 1986). 
To determine the cellular localization of NGF receptor 
mRNA, sections of control and NGF-treated ganglia were 
analyzed by in sitn hybridization (Fig. 3 f ) .  As a control, al- 
ternate sections were hybridized to a probe specific for Tod 
wtubulin mRNA (Fig. 3 e). This analysis demonstrated that 
NGF receptor and Tod mRNAs were both predominantly 
localized to neurons in control (data not shown) and NGF- 
treated (Fig. 3, e and f )  ganglia, with little or no detectable 
hybridization to nonneuronal cells. However, whereas the 
Tal  oetubulin probe hybridized uniformly to all DRG neu- 
rons, the NGF receptor probe did not, as previously ob- 
served in the embryonic chick (Ernfors et al., 1988). 

NGF Regulation of  NGF Receptor and 1)~osine 
Hydroxylase Gene Expression in PC12 Cells 

To analyze the genetic mechanisms responsible for the NGF- 
induced increase in NGF receptor mRNA, we studied the 
PC12 pheochromocytoma cell line (Tischler and Greene, 
1975), which responds to NGF with an increase in the num- 
ber of NGF-binding sites (Bernd and Greene, 1984). To de- 
termine whether the NGF-induced increase in NGF binding 
sites was a consequence of elevated levels of NGF receptor 
mRNA, we isolated RNA from PC12 cells that had been ex- 
posed to NGF for timepoints ranging from 2 to 72 h. North- 
ern blot analysis demonstrated that NGF receptor mRNA 
levels were similar to controls after 2 h, and were increased 
approximately fourfold at 6, 12, 24, and 48 h posttreatment 
(Fig. 4 a). The NGF-induced increase in NGF receptor 
mRNA observed at 6 and 12 h was completely inhibited by 
the addition of the protein synthesis inhibitor cyclobeximide 
to the culture medium (Fig. 4 c). 

Expression of tyrosine hydroxylase mRNA was also regu- 
lated by NGF in PC12 cells. Tyrosine hydroxylase mRNA 
did not change at 2 h, but was increased approximately two- 
fold at 6 h, and threefold at 12, 24, and 48 h after NGF addi- 
tion, as determined by Northern blots (Fig. 4 b). This in- 
crease was transient, and by 72 h, levels of tyrosine 
hydroxylase mRNA were similar in the control and NGF- 
treated PC12 cells (data not shown). In contrast to NGF 
receptor mRNA, the NGF-mediated increase in tyrosine 
hydroxylase mRNA was not affected by the concurrent addi- 
tion of cyclobeximide (Fig. 4 d). 

To determine whether the changes in steady-state levels of 
NGF receptor and tyrosine hydroxylase mRNAs were a con- 
sequence of increased rates of transcription, we performed 
nuclear run-off transcription assays. Nuclei were isolated 
from PC12 cells cultured with and without 200 ng/ml NGF 

Iqgure 3. (a-d) Expression of NGF receptor and tyrosinc hydroxylase mRNAs in sympathetic neurons of NGF-treated postnatal day 12 
animals. Sections of SCG from NGF-treated animals were hybridized with probes specific for (a and c) NGF receptor or (b and d) tyrosinc 
hydroxylase mRNAs, coated with emulsion for autoradiography, developed, counterstained with hematoxylin and eosin, and visualized 
under darkfield (a and b) or brightfield (c and d) illumination. Note the clustering of grains over the large, pale-staining neurons in c 
and d and the relative lack of signal over the smaller, nonneuronal cells. (e and f )  Expression of NGF receptor and T,vl c~-tubulin mRNAs 
in sensory neurons of NGF-treated postnatal day 12 animals. Sections of L4-L5 DR(; from NGF-treated animals were hybridized with 
probes specific for (e) Ted c~-mbulin or (f) NGF receptor mRNAs and, following autoradiography, visualized under darkfield illumination. 
(g and h) Expression of NGF receptor mRNA in the sciatic nerve of NGF-treated postnatal day 12 animals. Sections of sciatic nerve from 
control (g) and NGF-treated (h) animals were hybridized with probes specific for NGF receptor rnRNA and, after autoradiography, visual- 
ized under darldield illumination. Bars: (a, b, e, and f )  10 #m; (c and d) 5 #m; (g and h) 20 #m. 
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Figure 4. (a and b) Expression of NGF receptor and tyrosine 
hydroxylase mRNAs in NGF-treated PC12 cells. Northern blot 
analysis of (a) NGF receptor and (b) tyrosine hydroxylase mRNAs 
in equal amounts of total RNA from control PC12 cells (lanes 1, 
4, and 6) or from PC12 cells treated with 200 ng/ml 2.5S NGF for 
2 h (lane 2), 6 h (lane 3), 24 h (lane 5), and 48 h (lane 7). (c and 
d) Expression of NGF receptor and tyrosine hydroxylase mRNAs 
in NGF-treated PC12 cells with and without cycloheximide treat- 
ment. Northern blot analysis of (c) NGF receptor, and (d) tyrosine 
hydroxylase mRNAs in equal amounts of total RNA from PC12 
cells treated with 200 ng/ml 2.5S NGF for 12 h with (lane 2), and 
without (lane 1) l0 #g/ml cycloheximide. 

for 6 or 12 h, and the relative levels of transcription of the 
NGF receptor and tyrosine hydroxylase genes determined 
(Fig. 5). For comparison, we also examined transcription 
rates for the replication-independent histone H3.3 mRNA, 
which does not increase with NGF treatment of PC12 cells, 
and for total ot-tubulin mRNA, which does (J. Toma and E 
Miller, unpublished observations). These experiments dem- 
onstrated that NGF treatment increased the transcription 
rate of the NGF receptor gene approximately three- to four- 
fold. This increase is equivalent to the observed increase in 
steady-state NGF receptor mRNA levels (Fig. 4), suggesting 

Figure 5. Nuclear run-offtran- 
scription of (a) NGF receptor, 
(b) historic H3.3, (c) total c~-tu- 
bulin, and (d) tyrosine hy- 
droxylase mRNAs in PC12 
cells cultured with (NGF) or 
without (CON) 200 ng/ml 2.5S 
NGF for 12 h. Note that a 
comes from a darker exposure 
of the same experiment shown 
in b-d. 

that NGF mediates its effects upon this gene mainly at the 
transcriptional level. A similar fourfold elevation of tran- 
scription rate was observed for total a-tubulin mRNA. In 
contrast, NGF did not affect the transcription rate of tyrosine 
hydroxylase mRNA, andonly slightly increased that for his- 
tone H3.3 mRNA (Fig. 5). 

Discussion 

These results demonstrate that NGF increases levels of its 
own receptor mRNA in neonatal peripheral neurons as part 
of a specific program of NGF-induced gene expression. This 
program includes coordinate upregulation of tyrosine hy- 
droxylase mRNA in sympathetic neurons, and Ted ot-tubulin 
mRNA in both sympathetic (Mathew and Miller, 1990) and 
sensory neurons. The NGF-mediated increase in NGF re- 
ceptor mRNA is specific to neurons, which are known to dis- 
play high-affinity NGF receptor binding sites (Richardson et 
al., 1986), but is not observed in nonneuronal cells of the 
sciatic nerve that also express NGF receptor mRNA. In 
PC12 cells the NGF-indueed increase in NGF receptor mRNA 
is mediated at the transcriptional level, with characteristics 
that implicate an immediate early gene product in the ob- 
served transcriptional activation. Together, these data predict 
that one direct result of NGF binding to its high-affinity 
receptor on developing and mature neurons in vivo is in- 
creased transcription of the NGF receptor gene. This would 
provide a cellular mechanism for potentiating the effects of 
NGF on NGF-responsive neurons during development, col- 
lateral sprouting, and physiological situations where NGF is 
increased either locally or systemically. 

NGF mediates its biological effects by binding to the high- 
affinity form of the membrane-bound NGF receptor (Green 
et al., 1986). Since we have determined levels of NGF recep- 
tor mRNA, which is believed to encode components of both 
the high- and low-affinity binding sites (Hosang and Shooter, 
1985; Green and Greene, 1986; Hempstead et al., 1989), as 
well as a truncated form of the receptor (DiStefano and John- 
son, 1988b), it is not possible to make definitive statements 
about the protein produced as a function of the observed in- 
creases. However, the in situ hybridization studies presented 
here correlate well with the reported localization of high- 
affinity NGF binding sites on sympathetic and sensory neu- 
rons (Richardson et al., 1986). Furthermore, Bemd and 
Greene (1984) have previously demonstrated that NGF in- 
creases the number and density of high- and low-affinity 
receptors on PC12 cells, and Verge et al. (1989) have shown 
that administration of NGF prevented an axotomy-induced 
decrease in high-affinity binding sites on lesioned sensory 
neurons. It therefore seems likely that the NGF-mediated in- 
creases in neuronal NGF receptor mRNA levels lead to a 
corresponding increase in high-affinity NGF receptors. 

NGF Selectively Induces NGF Receptor 
and ~ s i n e  Hydroxylase mRNAs in Developing 
Sympathetic Neurons 

Administration of NGF to neonates has dramatic effects on 
sympathetic neurons, causing increased terminal sprouting 
(Levi-Montalcini and Angeletti, 1968), increased dendritic 
aborization (Snider, 1988), and increased activity of en- 
zymes involved in catecholamine biosynthesis (Thoenen et 
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al., 1971). NGF treatment in doses that caused these changes 
increased NGF receptor mRNA levels 5-10-fold in P12 sym- 
pathetic neurons. This increase can be only partially ex- 
plained by NGF-mediated rescue of neonatal sympathetic 
neurons, since NGF treatment permits only 30% more SCG 
neurons to survive (Hendry and Campbell, 1976; Hendry, 
1977). The actual relative increase in NGF receptor mRNA 
on a per neuron basis is difficult to estimate, since the ratio 
of nonneuronal cells to neurons is increased by NGF treat- 
ment (Hendry and Campbell, 1976). 

Elevated NGF receptor mRNA levels in sympathetic neu- 
rons are coincident with, and may play a role in, the induc- 
tion of tyrosine hydroxylase mRNA. Thoenen et al. (1971) 
have previously demonstrated that the specific activity of 
tyrosine hydroxylase increased approximately fivefold with 
systemic NGF treatment, an increase that can be explained 
by the 10-fold increase in mRNA reported here. Previous 
studies demonstrated that NGF regulation of tyrosine 
hydroxylase is time and dose dependent in the SCG (Max et 
al., 1978; Kornblum and Johnson, 1982), in cultured sym- 
pathetic neurons (Hefti et al., 1982; Raynaud et al., 1988), 
and in adrenal chromaffin cells (Acheson et al., 1984). For 
example, studies using adrenal chromaffin cells demon- 
strated that tyrosine hydroxylase is first induced by NGF fol- 
lowing a lag time of 36 h (Acheson et al., 1984). It may be 
that NGF must first "prime" these ceils by increasing NGF 
receptor levels, in a manner analogous to the "priming" of 
PC12 cells (Bernd and Greene, 1984), to produce a maximal 
increase in tyrosine hydroxylase. 

In addition to increasing NGF receptor and tyrosine 
hydroxylase mRNAs above early neonatal levels, systemic 
NGF prevents a developmentally programmed decrease in 
Ted cetubulin mRNA in sympathetic neurons (Mathew and 
Miller, 1990). In contrast, neuropeptide Y mRNA, which is 
associated with the neurotransmitter phenotype of a subset 
of sympathetic neurons in the SCG (Ekblad et al., 1984), 
does not change. Together, these data indicate that NGF 
directly or indirectly regulates a specific program of gene ex- 
pression in neonatal sympathetic neurons. 

Although these studies were carried out with systemic 
NGF, the results may have implications for the role target- 
derived NGF plays in neuronal competition and cell death, 
which are ongoing in the superior cervical ganglion during 
the period we chose for NGF administration (Hendry, 1977). 
Based upon our data, we hypothesize that initial exposure of 
a developing sympathetic neuron to target organ-derived 
NGF would increase NGF receptor and tyrosine hydroxylase 
mRNAs, and maintain elevated levels of Tod ot-tubulin 
mRNA. The increased mRNA levels could provide protein 
essential for expansion of the terminal arbor, and/or for 
neuronal maturation. In addition, increased NGF receptor 
mRNA could produce an increase in the number and density 
of high- and low-affinity neuronal receptors, as it does in 
PC12 cells (Bernd and Greene, 1984), thus, increasing net 
binding capacity and providing a "sink" for NGE One 
prediction of such a feedback mechanism is that early- 
arriving neurons, which have elevated receptor levels and 
binding capacity, would compete more effectively than later- 
arriving neurons for limiting concentrations of target-derived 
NGE One recent study supports this hypothesis; target con- 
tact is correlated with a significant increase in NGF receptor 
mRNA in developing trigeminal neurons (Wyatt et al., 1990). 

Systemic NGF Increases NGF Receptor mRNA Levels 
in Neonatal Sensory Neurons 

Our data demonstrate that NGF treatment increased NGF 
receptor mRNA approximately fourfold in the postnatal L4- 
L5 DRG. However, these sensory neurons did not express 
NGF receptor mRNA uniformly, as previously observed in 
the embryonic chick (Ernfors et al., 1988) and consistent 
with the observation that only 50% of L4-L5 neurons bind 
NGF with high affinity (Richardson et al., 1986; Verge et 
al., 1989). Since we did not quantitate the relative levels of 
NGF receptor mRNA on a per neuron basis, it is possible 
that NGF treatment increased this mRNA only within a 
defined population of DRG neurons. 

Previous studies of postnatal sensory neurons after NGF 
administration failed to demonstrate significant increased 
sprouting (Levi-Montalcini and Booker, 1960a), although a 
subset of DRG neurons hypertrophied (Kornblum and John- 
son, 1982), and levels of substance P, a marker for sensory 
neurons, increased (Kessler and Black, 1980; Otten et al., 
1980). The relative lack of neuronal sprouting after NGF ad- 
ministration is consistent with the small, twofold increase in 
Ted ~tubulin mRNA reported here. In sympathetic neu- 
rons, which sprout extensively with NGF treatment (Levi- 
Montalcini and Booker, 1960a), levels of Tod ortubulin 
mRNA increase 5-10-fold (Mathew and Miller, 1990). 

Similar NGF-induced genetic changes may have relevance 
not only in developing peripheral neurons, but also during 
the sprouting and growth of mature neurons. Increased avail- 
able target-derived NGF has been implicated in the col- 
lateral sprouting of mature sensory neurons (Diamond et al., 
1987), and levels of T~tl ~tubulin mRNA increased during 
the collateral sprouting of mature sympathetic neurons 
(Mathew and Miller, 1990). In the central nervous system, 
administration of NGF in the cerebrospinal fluid leads to in- 
creased NGF receptor mRNA in basal forebrain cholinergic 
neurons (Higgins et al., 1989; Cavicchioli et al., 1989). Fur- 
thermore, NGF increased NGF receptor mRNA in cultures 
of mature sensory neurons (Lindsay et al., 1990). These 
studies all suggest that NGF-induced changes in genes like 
NGF receptor and Tod a-tubulin could play a physiologi- 
cally relevant role in the mature animal. 

NGF Does Not Regulate NGF Receptor Gene 
Expression in Developing Nonneuronal Cells 
The data presented here suggest that expression of NGF 
receptor mRNA is correlated with the presence of a func- 
tional, high-affinity receptor on peripheral neurons. A simi- 
lar correlation does not seem to exist for nonneuronal cells 
of the ganglia or the sciatic nerve. Developing sciatic nerve 
contains NGF receptor mRNA and protein, as previously 
demonstrated (Heumann et al., 1987b; Yah and Johnson, 
1988) and confirmed here. It is likely that these represent 
low-affinity NGF binding sites, since Schwann cells cultured 
from neonatal sciatic nerve express only low-affinity recep- 
tor (DiStefano and Johnson, 1988a). After transection of the 
adult sciatic nerve, both NGF receptor mRNA and protein 
are reexpressed (Taniuchi et al., 1986; Heumann et al., 
1987a), coincident with localized production of NGF itself 
(Heumann et al., 1987a,b). Our studies, which demonstrate 
that systemic NGF does not increase NGF receptor mRNA 
in normeuronal cells in vivo, suggest that localized produc- 
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tion of NGF after nerve injury does not itself cause increased 
NGF receptors. Although NGF administered systemically 
may not have complete access to the nerve as the blood/nerve 
barrier develops postnatally, the same is not true for non- 
neuronal cells of the peripheral ganglia. Thus, NGF differen- 
tially regulates NGF receptor mRNA in neurons versus non- 
neuronal cells of the developing peripheral nervous system. 
This conclusion is supported by in vitro studies demonstrat- 
ing that NGF does not regulate expression of NGF receptor 
mRNA in cultured Schwann cells (Lemke and Chao, 1988), 
or in cultured nonneuronal cells of adult sensory ganglia 
(Lindsay et al., 1990). One potential explanation for these 
observations is cell type-specific gene regulation. However, 
the more likely, alternative explanation is lack of high-affinity 
NGF receptors on developing, NGF receptor mRNA-produc- 
ing nonneuronal cells. 

NGF Increases Transcription of the NGF Receptor 
Gene in PC12 Cells 

NGF increased NGF receptor gene expression in PC12 cells 
within 6 h of treatment. The increase in steady-state mRNA 
levels was approximately equal to the increase in transcrip- 
tion rate, indicating that NGF mediates its effects primarily 
at the transcriptional level. Inhibition of protein synthesis by 
cycloheximide blocked the increase, suggesting that the NGF 
receptor gene may be the "target" of one or more of the NGF- 
inducible immediate early gene products (Sheng and Green- 
berg, 1990). Although the promoter of this gene has been 
suggested to resemble that of a constitutively-expressed gene 
(Sehgal et al., 1988), it contains a recently described binding 
site (Christy and Nathans, 1989) for the zinc finger protein 
zif-268 (or, alternatively, NGF1A, Egr-l, or Krox 24) (Sik- 
hatme et al., 1988; Lemaire et al., 1988; Milbrandt, 1987; 
Christy et al., 1988) from nucleotides -161 to -152. The zif- 
268 gene product is rapidly induced in PC12 cells by NGF 
(Milbrandt, 1987), as well as by a variety of other extracellu- 
lar stimuli (Bat-tel et al., 1989). Together, these data raise 
the possibility that binding of NGF to PC12 cells or neurons 
at the high-affinity receptor results in the rapid production 
of the zif-268 protein product, which subsequently plays a 
role in increasing transcription of the NGF receptor gene. 
Interestingly, zif-268 is also induced by certain patterns of 
neuronal activity: it is, for example, dramatically increased 
in postsynaptic, hippocampal neurons by a stimulus suffi- 
cient to induce long-term potentiation (Cole et al., 1989). It 
is thus tempting to speculate that NGF receptor gene expres- 
sion may be modulated by both NGF and neuronal activity, 
potentially via the same immediate early gene product. This 
would provide one mechanism for coordinating trophic input 
and neuronal activity at the cellular level. 

Our results also indicate that NGF increased tyrosine 
hydroxylase mRNA levels within 6 h of treatment, that levels 
remained elevated for up to 48 h, and that by 72 h they 
returned to control levels. The increased steady-state mRNA 
levels were not coincident with increased transcription and 
were not sensitive to cycloheximide, suggesting that the un- 
derlying mechanisms are posttranscriptional in nature. 
Previous studies have reached similar conclusions regarding 
NGF induction of tyrosine hydroxylase in the superior cervi- 
cal ganglion (Rohrer et al., 1987), sympathetic neurons 
(Hefti et al., 1982; Raynaud et al., 1988), and adrenal 
chromaffin cells (Acheson et al., 1984). 

There is, however, some discrepancy in the literature re- 
garding effects of NGF on tyrosine hydroxylase in the PC12 
pbeochromocytoma cell line. Several laboratories have 
reported that NGF does not increase tyrosine hydroxylase 
activity in PC12 cells (Edgar and Thoenen, 1978; Goodman 
and Herschman, 1978; Hatanaka, 1981; Greene and Tisch- 
ler, 1982), but does in cell lines derived from the same tumor 
(Goodman and Herschman, 1978) in subeloned derivatives, 
(Hatanaka, 1981), and in PC12 cells themselves in the pres- 
ence of glucocorticoids (Otten and Towbin, 1980). More re- 
cent reports indicate that NGF treatment of PC12 cells in- 
creased transcription of the tyrosine hydroxylase gene for 1-2 
h after treatment, leading to a transient twofold increase in 
steady-state mRNA levels (Leonard et al., 1987; Gizang- 
Ginsberg and Ziff, 1990). In the present studies, we did not 
detect a significant increase in tyrosine hydroxylase mRNA 
levels until 6 h post-NGE and this increase did not coincide 
with increased transcription. These data may indicate that 
NGF has two effects on the synthesis of tyrosine hydroxylase: 
it induces a rapid, transient increase in transcription of the 
gene, followed by a more long-term posttranscriptionally 
mediated increase in steady-state mRNA levels. Previous 
studies focusing primarily on long-term increases (1-5 d) in 
tyrosine hydroxylase mRNA or protein would therefore have 
concluded that the increase was mediated independent of 
transcriptional activation. 

In summary, NGF induces a specific program of gene ex- 
pression in developing sympathetic and sensory neurons that 
includes increases in transcription of the NGF receptor 
gene. This type of feedback loop provides a molecular mech- 
anism for potentiating the effects of NGF on NGF-responsive 
neurons, and perhaps for enhancing the "fitness" of one neu- 
ron over another during the period of neuronal competition 
and cell death. 
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