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A B S T R A C T   

Sepsis is a leading cause of mortality in intensive care unit worldwide, it’s accompanied by immune cell 
dysfunction induced by multiple factors. However, little is known about the specific alterations in immune cells 
in the dynamic pathogenesis of sepsis secondary to bacterial pneumonia. Here, we used single cell RNA 
sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) in a healthy control and two 
patients with sepsis secondary to bacterial pneumonia, including acute, stable and recovery stage. We analyzed 
the quantity and function of immune cells. During disease course, interferon gamma response was upregulated; 
T/NK cell subtypes presented activation and exhaustion properties, which might be driven by monocytes through 
IL-1β signaling pathways; The proportion of plasma cells was increased, which might be driven by NK cells 
through IFN signaling pathways; Additionally, interferon gamma response was upregulated to a greater degree in 
sepsis secondary to pneumonia induced by SARS-COV-2 compared with that induced by influenza virus and 
bacteria.   

1. Introduction 

Sepsis is a complex and heterogeneous syndrome with highly vari
able clinical manifestations [1]. Pneumonia is one of the most common 
primary cause for sepsis in humans [2,3]. During sepsis, dysregulated 
host immune response to infecting pathogens lead to lethal organ 
dysfunction [4]. Among the known infecting pathogens, gram-negative 
bacteria were the predominant contributor, accounting for 62% positive 
cultures in patients with severe sepsis [3]. Therefore, the investigation of 
sepsis secondary to pneumonia infected by gram-negative bacteria is of 
great significance to understand and treatment of sepsis. 

During sepsis, both innate and adaptive immune cells showed long- 
term dysfunctional signatures even after clinical “recovery” due to 
immunosuppression [5]. PBMC was the most commonly studied sample 
for the assessment of systematic immune status in sepsis. The immu
nosuppression condition was reflected by the reduced quantity and 
functional defects of immune cells, especially for lymphocytes, 
including T cells, B cells and NK cells [6]. Among these, T cells with 

diverse subpopulations including CD4+ T cells and CD8+ T cells present 
the most notably immunosuppression features [7,8]. Myeloid cells were 
increased in number but defected in function during sepsis [9]. Among 
them, monocytes negatively induced T cell proliferation upon endotoxin 
stimulation [10]. However, these studies were carried out using flow 
cytometry based on known surface marker genes or in vitro experiments, 
and could only partially reveal the molecular alterations of immune cells 
in sepsis. 

With the development of transcriptome, the expression alterations of 
immune cells in sepsis were disclosed comprehensively [11–13]. How
ever, the whole picture of the immune cell composition and the cellular 
interactions of immune cell subpopulations are still unknown. The 
emerging of scRNA-seq technology contributes to more comprehensive 
knowledge about the global landscape of immune cell alterations in 
sepsis. Although recent studies have employed scRNA-seq to investigate 
the immune cell signatures in sepsis secondary to urinary-tract infection 
[14], and sepsis with acute respiratory distress syndrome [15], the 
specific pathogen and the dynamic immune response associated with 
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disease course have not been fully investigated. In this study, we 
explored the dynamic alterations in circulating immune cells, from the 
aspect of composition and function, and dissected the immune response 
during the pathogenesis of sepsis secondary to pneumonia infected by 
gram-negative bacteria. Furthermore, we also investigated the mecha
nisms implicated in the different immunological response of different 
causes of sepsis including bacteria and viruses. 

2. Results 

2.1. Global landscape of the immune cell composition during the 
pathogenesis of sepsis secondary to bacterial pneumonia 

To explore the dynamic alterations of the immune cell landscape 
driven by sepsis secondary to bacterial pneumonia, PBMC was isolated 
from two patients with sepsis secondary to pneumonia infected by gram- 
negative bacteria, followed by scRNA-seq with 10× Genomics platform. 
The clinical features of the two patients were listed in Table S1. Patient 
samples were collected with three disease stages including acute stage, 
stable stage and recovery stage. However, sample from the first patient 
in the acute stage was aborted due to low cell quality. For comparison, 
we conducted scRNA-seq of PBMC from a healthy control (ID: HC-1), in 
combination of another four scRNA-seq datasets from healthy controls 
(ID: HC-2, HC-3, HC-4, HC-5) downloaded from 10× Genomics (htt 
ps://www.10xgenomics.com/cn/). After stringent quality control, 
cells from all samples were integrated after batch effect corrected 
(Fig. 1A, B). Subsequently, a total of 52,412 cells were subjected to 
further analysis (Fig S1A). Unsupervised clustering identified three 
clusters, which were dimensionality reduction by uniform manifold 
approximation and projection (UMAP) (Fig. 1B). All of the three clusters 
were composed of cells from every sample, indicating well-corrected 
batch effect (Fig. 1C). These clusters were further annotated as T/NK 
cells (CD3D+ IL32+ NKG7+), myeloid cells (CD14+ FCGR3A+ S100A9+) 
and B cells (CD79B+ CD79A+ IGHM+) based on their canonically cell 
marker genes (Fig. 1D, E). T/NK cells were involved in lymphocyte 
activation and adaptive immune response (Fig. 1D). Myeloid cells 
functioned in myeloid leukocyte activation, cytokine-mediated 
signaling pathway and response to bacterium (Fig. 1D). B cells were 
implicated in B cell activation and B cell proliferation (Fig. 1D). Next, we 
quantified the composition of immune cells in each disease stages and 
healthy controls to reveal substantial changes during disease progres
sion. T/NK cells and B cells were reduced, whereas myeloid cells were 
expanded in sepsis secondary to bacterial pneumonia compared with 
healthy controls (Fig. 1F). Interestingly, unexpected changes were 
occurred during the disease process. The proportion of T/NK cells was 
sustained declined, whereas that of myeloid cells was increased 
continuously across disease stages especially in the recovery stage 
(Fig. 1F, Fig S1B), which suggested that the disorder of immune cells still 
existed in the recovery stage. 

2.2. Interferon response and TNFA signaling were upregulated during the 
pathogenesis of sepsis secondary to pneumonia 

To further dissect the molecular mechanisms of the dynamic changes 
underlying the pathogenesis of sepsis secondary to pneumonia, we 
performed pathway enrichment analysis with all differentially expressed 
genes between each disease stages and healthy controls, to find bio
logical pathways altered in disease condition at a global insight (Fig. 2A, 
B, C). Patients in all of the three stages showed upregulated interferon 
gamma response compared to healthy controls. Interestingly, patients in 
the recovery stage also showed upregulated interferon gamma response 
and interferon alpha response compared with stable stage (Fig S1C). 
Moreover, IFN response genes including IFNGR1, IFITM2, IFITM3, IFI6, 
ISG15 and ISG20 were increased in disease progression (Fig. 2D), sug
gesting sustained effects of interferon response in the disease course. In 
addition, TNFA signaling via NFκB was also upregulated in the acute and 

recovery stages compared to healthy controls (Fig. 2A, C). Patients in 
recovery stage also showed upregulated TNFA signaling via NFκB 
compared with stable stage. Genes involved in this pathway such as 
NFκBIA, JUNB, TNFAIP3, CCL4 and SOCS3 were highly expressed in 
disease stages compared with healthy controls (Fig. 2D). To explore 
whether these pathway alterations among disease course and healthy 
controls were driven by certain cell subtypes, we further expanded 
pathway enrichment analysis in all immune cell subpopulations. Sur
prisingly, interferon gamma response was upregulated in all disease 
stages in T/NK cells (Fig. 2E, Fig S1D), indicating T/NK cells may 
contribute to the upregulation of interferon gamma response in disease 
progression. In contrast, TNFA signaling via NFκB was upregulated in 
the acute and recovery stages of myeloid cells compared with healthy 
controls (Fig. 2F), suggesting that myeloid cells may be associated with 
the upregulation of TNFA signaling via NFκB in disease stages. Inter
estingly, TNFA signaling via NFκB was downregulated in stable stage 
compared with the acute stage, whereas was upregulated in the recovery 
stage compared with stable stage, suggesting the resolution of inflam
mation in stable stage but unexpected aggregation of inflammatory 
features in the recovery stage of myeloid cells (Fig S1E). However, in B 
cells, the MTORC1 signaling was upregulated in all disease stages, and 
was downregulated in the recovery stage compared to the stable stage 
(Fig S1F). This signaling was only upregulated in the acute stages 
compared with healthy controls for all PBMCs (Fig. 2A). All of these data 
indicated the global alterations of signaling pathways in sepsis second
ary to pneumonia was possibly associated with T/NK cells and myeloid 
cells. 

Next, we explored the dynamically transcriptional alterations in gene 
expression during disease progression. Eight clusters with different time- 
dependent expression patterns were found, the biological functions of 
genes in these clusters were also assessed (Fig. 2G). Cluster1 comprised 
2989 genes with declined expression along disease course. The function 
of genes in cluster1 were enriched in autophagy (Fig. 2G). Previous 
studies demonstrated that the repair of autophagy lead to the dysfunc
tion of proximal tubular in sepsis [16], indicating the dynamic gene 
expression in cluster1 may be associated with kidney injury in sepsis. 
Cluster 6 contained 2283 genes with sustained increased expression 
during disease stages. These genes were enriched in regulation of type I 
interferon production (Fig. 2G), which was consistent with the sustained 
upregulation of the interferon response genes in disease stages (Fig. 2D). 

2.3. T and NK cells presented sustained exhaustion and apoptosis features 
in sepsis secondary to bacterial pneumonia 

Given that T and NK cells were the major populations in healthy 
controls, and showed a sustained decrease in the process of sepsis sec
ondary to bacterial pneumonia, the compositional and molecular 
changes of them across the disease stages may reflect the severity of 
disease progression. Thus, we next re-clustered the T/NK cells to dissect 
the dynamic changes of them with a finer resolution. Ten clusters were 
generated and were visualized via UMAP plot (Fig. 3A). These clusters 
were classified with canonically cell marker genes into four CD4+ T cell 
subtypes (CD3D+ CD4+), three CD8+ T cell subtypes (CD3D+ CD8A+

CD8B+), NKT cells (CD3D+ NCR3+), NK cells (FGFBP2+ NKG7+) and 
proliferating T cells (Pro-T, MKI67+ STMN1+). Among these, CD4+ T 
cell subtypes included CD4+ Tn cells (CD4+ CCR7+), CD4+ Tpm cells 
(LTB+ IL7R+), Treg cells (IL2RA+ FOXP3+) and CD4+ CD28+ T cells 
(CD4+ CD28+). Additionally, CD8+ T cells were divided into CD8+ Tn 
cells (CD8A+ CCR7+), CD8+ Te cells (CCL5+ GZMB+) and CD8+ Tem 
cells (GZMA+ GZMK+) (Fig. 3B). To further understand the function of 
each subtype, we performed Gene Ontology (GO) analysis. CD8+ Tem 
cells, Treg cells, pro-T cells, CD8+ Te cells and NK cells were showed to 
be involved in response to interferon-gamma (Fig. 3C). Additionally, the 
expression patterns of interferon-gamma response genes including 
interferon receptor (IFNGR1), ISG15, IFI44L, IFI6 and IFITM3 and were 
different, with an elevated expression levels in almost all T and NK cell 
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subtypes during disease course compared with healthy controls (Fig 
S.2A). All subtypes were enriched in lymphocyte activation (Fig. 3C). 
Meanwhile, CD69, a marker of T cell activation, was also highly 
expressed in disease conditions compared with healthy controls, sug
gesting the activated immunological response in T and NK cells 
(Fig. 3D). However, CD4+ Tpm cells, NKT cells, CD4+ CD28+ T cells, 
CD8+ Te cells and NK cells were involved in positive regulation of 

apoptotic process, suggesting immunosuppression states of T cells 
(Fig. 3C). Immune suppression in sepsis was mainly characterized by the 
apoptosis and exhaustion of lymphocytes, especially T cells [17]. 
Further examination of the expression of pro-apoptotic associated genes, 
such as TNFSF10, TNFRSF1B, BCL2L11 and CASP3 and T cell exhaustion 
associated markers including PRDM1 and LAG3 were upregulated dur
ing disease progression in all T and NK cell subtype expect for CD4+

Fig. 1. Study design and single-cell transcriptomic landscape of PBMCs from patients with sepsis secondary to bacterial pneumonia and healthy controls. 
A. An overview of the study design and workflow. B. Overall cell type composition of 52,412 cells from sepsis patient with acute stage (Acu, n = 1), stable stage (Sta, 
n = 2) and recovery stage (Rec, n = 2), as well as healthy controls (HCs, n = 5) were visualized with UMAP projection. C. The same UMAP plot related to Fig. 1.B and 
cells were colored based on disease stage and individual. D. Heatmap showed the differentially expressed genes in three major types of PBMCs. The colour key from 
purple to yellow indicated low to high expression levels. Enriched GO terms for each cell type (biological processes) were showed at the right. E. Feature plots showed 
the expression of canonically cell marker genes used to define each cluster. F. Pie plots showed the ratio of each cell type constitution in HCs and sepsis patients at 
three disease stages. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Interferon response and TNFA signaling were upregulated during the pathogenesis of sepsis secondary to bacterial pneumonia. 
Pathway enrichment analysis of significant hallmark gene sets comparing PBMCs from A. acute stage, B. stable stage and C. recovery stage with those from healthy 
controls (HCs). NES, normalized enrichment score. D. Dot plots showed the scaled expression level and percentage of key genes involved in interferon gamma 
response and TNFA signaling via NFκB and of PBMCs in HCs versus disease courses. The colour key from gray to purple indicated low to high expression levels. The 
dot size indicated the percentage of cells that expressed genes. E. GSEA enrichment plot of interferon gamma response of T/NK cells in disease courses versus HCs. F. 
GSEA enrichment plot of TNFA signaling via NFκB of myeloid cells in disease courses versus HCs. G. Genes were clustered according to their expression patterns 
during disease progression. Enriched GO terms for each cell type (biological processes) were showed at the right. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. T and NK cells presented sustained exhaustion and apoptosis features in sepsis secondary to bacterial pneumonia. 
A. Sub-clustering of T and NK cells in healthy controls (HCs) and sepsis patients. B. Violin plots showed the scaled expression levels of canonical markers used to 
identify each cell types. C. Heatmap of enriched GO terms for each cell type (biological processes). D. Dot plots showed the expression of genes that involved in T cell 
exhaustion, apoptosis and activation in HCs and disease stages. The colour key from gray to purple indicated low to high expression levels. The dot size indicated the 
percentage of cells that expressed genes. E. Histogram showed the proportion of each cell type in HCs and sepsis patients at three disease stages. F. Sub-clustering of 
NK cells in HC and sepsis patients. G. Heatmap of enriched GO terms for each NK cell type (biological processes). H. Histogram showed the proportion of each NK cell 
type in HCs and sepsis patients at three disease stages. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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CD28+ T cells (Fig. 3D). 
We next investigated the immunological changes implicated in T and 

NK cell subtypes during the progression of sepsis secondary to bacterial 
pneumonia. For the perspective of cell composition, T and NK cells 
displayed a divergent landscape between disease conditions and healthy 
controls. CD4+ Tn cells and CD8+ Tn cells were attenuated in sepsis 
patients, indicating the immunosuppression status of these cell sub
populations. Both of these two cell types showed a similar decreasing 
trend along disease progress, with initially declined in the acute stage, 
slightly increased in the stable stage and further decreased in the re
covery stage (Fig. 3E). By contrast, the proportion of CD8+ Te cells and 
CD8+ Tem cells were risen in disease course, which agreed with their 
function in lymphocyte activation, indicating enhanced immune effector 
effects of them. Similar ascension trend was observed in CD8+ Te cells 
and CD8+ Tem cells along disease stages, which increased in the acute 
stage, slightly dropped in the stable stage, and increased continually in 

the recovery stage (Fig. 3E). Additionally, the proportion of NK cells was 
increased in disease process compared to healthy controls. While the 
proportion of NK cells were comparable between healthy controls and 
the acute stage, it was gradually increased in the following two disease 
stages (Fig. 3E). 

To further explore the cellular and functional alterations in NK cells. 
We performed re-cluster again and divided NK cells into two clusters: 
NK1 and NK2 (Fig. 3F). NK1 highly expressed FGFBP2, GZMB and 
FCGR3A, involved in response to bacterium, phagocytosis and I-kappaB 
kinase/NF-kappaB signaling (Fig S2B, Fig. 3G). NK2 highly expressed 
GZMK, XCL1 and KLRC1, involved in lymphocyte activation, cytokine- 
mediated signaling pathway and cell killing (Fig S2B, Fig. 3G). 
Cellular composition analysis revealed the dynamic alterations of NK 
cell subtypes. NK1 was the predominant subtype of NK cells. Surpris
ingly, NK1 was increased in the acute and stable stage, then dropped to 
similar level in healthy controls, whereas NK2 showed the reverses 

Fig. 4. Myeloid cells displayed functional dysregulation mainly in the recovery stage. 
A. Sub-clustering of myeloid cells in healthy controls (HCs) and sepsis patients. B. Violin plots showed the scaled expression levels of canonically cell marker genes 
used to identify each cell types. C. Heatmap of enriched GO terms for each cell type (biological processes). D. Histogram showed the proportion of each myeloid cell 
type in HCs group and different stages of patient groups. E. Enriched GO terms for genes that upregulated in the recovery stage compared with HCs. 
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trend, indicating NK cells recovered in the aspect of cell proportion in 
convalescent patients (Fig. 3H). However, NK cells expressed high levels 
of exhaustion and apoptosis marker genes in disease stages even though 
in the recovery stage, indicating the dysfunction of NK cells still 
remained in convalescent patients despite the recovered cell composi
tion (Fig. 3D). With regard to the functional features of T/NK cells that 
induced their phenotypic shifting during the disease progression, regu
lation of cell activation was significantly upregulated in the acute stage 
and recovery stage (Fig S2C, E). Granzyme-mediated apoptotic signaling 
pathway was markedly unregulated in the stable and recovery stage (Fig 
S2D, E). Particularly, positive regulation of apoptotic process showed 
upregulated in the stable stage, reinforcing the immunosuppression 
status of T/NK cells in the stable stage (Fig S2D). Moreover, positive 
regulation of cytokine production, antigen processing and presenting of 
exogenous peptide antigen via MHC class II were upregulated in the 
recovery stage (Fig S2E). 

2.4. Myeloid cells displayed dysregulation mainly in the recovery stage 

In our data, myeloid cells were the predominantly altered cell pop
ulation at different disease stages, indicating a strongly immunological 
response to sepsis. We then re-clustered the total myeloid cells to further 
explore the dynamically transcriptional alterations induced by sepsis 
secondary to bacterial pneumonia. Subsequently, eight clusters were 
obtained and were visualized using UMAP plot (Fig. 4A). These clusters 
were defined as six monocyte subtypes (CD14+ /FCGR3A+), megakar
yocytes (MK, PF4+ PPBP+), and dendritic cells (DC, JCHAIN+ SEC11C+) 
according to their canonically cell marker genes. Furthermore, the 
monocytes population consisted of CD14+ Monocyte1 (CD14+ Mono1: 
CD14+ CPVL+), CD14+ Monocyte2 (CD14+ Mono2: S100A8+ VCAN+), 
CD16+ Monocyte (CD16+ Mono: FCGR3A+ MS4A7+), HLA-DR+ Mono
cyte (HLA-DR+ Mono: HLA-DR+ CD74+), CD24+ Monocyte (CD24+

Mono: CD24+ CAMP+) and LDHB+ Monocyte (LDHB+ Mono: LDHB+

STMN1+) (Fig. 4B). The functional features of these cell subpopulations 
were diverged and were revealed by GO analysis. Almost all cell sub
types were involved in regulation of cytokine production and response 
to bacterium, indicating the activated immunological status of mono
cytes (Fig. 4C). CD14+ Mono2, CD16+ Mono, CD24+ Mono, HLA-DR+

Mono and LDHB+ Mono were involved in lymphocyte activation 
(Fig. 4C). However, CD14+ Mono2 and CD16+ Mono were enriched in 
positive regulation of cell death, apoptotic signaling pathway, negative 
regulation of cell proliferation and negative regulation of immune sys
tem process (Fig. 4C), indicating that the myeloid cells particularly 
monocytes may be involved in the regulation of both activation and 
apoptosis of lymphocyte. 

As myeloid cells showed a continuously increasing trend across three 
disease stages compared with healthy controls, we next investigated 
whether this phenotypic remodeling was existed with more meticulous 
scenario. Thus, we gained insights into the compositional alterations 
during disease progression. Unexpectedly, the proportion of myeloid 
cell subtypes was comparable in the acute and stable stages compared 
with healthy controls. A newly discovered cell type of monocytes named 
CD24+ Mono, was specifically emerged in the recovery stage, which 
functioned in regulated exocytosis, response to bacterium and defense 
response to other organisms (Fig. 4C, D). However, this new cell type 
was mainly derived from the first patient, indicating heterogeneous 
properties among individual patient with sepsis (Fig S3). Consistently, 
functional alterations of myeloid cells, with differentially expressed 
genes between disease stages and healthy controls, were concentrated 
on the recovery stage, specifically, the function of myeloid cells in the 
recovery stage were myeloid leukocyte activation, positive regulation of 
cytokine production, macrophage and response to molecule of bacterial 
origin (Fig. 4E), suggesting activated immunological response impli
cated in myeloid cells still remained in the convalescent patient. 

2.5. Expansion of plasma cells in the process of sepsis secondary to 
pneumonia 

B cells were depleted in sepsis secondary to bacterial pneumonia. 
However, there was no clear alterations in the proportion of them 
among disease stages, which prompted us to explore the cellular and 
molecular changes in a finer fashion. Thus, B cells were re-clustered into 
three clusters and dimensionality reduction with UMAP (Fig. 5A). 
Cluster 0 expressed high levels of TCL1A, IGHD and IL4R, involved in 
regulation of immune effector process, B cell proliferation and 
lymphocyte, was defined as B naïve cells (Bn) (Fig. 5B, C). Cluster 1 
highly expressed AIM2, TNFRSF13B and CD27, associated with B cell 
differentiation, was identified as B memory cells (Bm) (Fig. 5B, C). 
Cluster 2 was annotated as plasma cells due to high expression level of 
MZB1, IGHG3 and JCHAIN (Fig. 5B). Moreover, plasma cells were 
enriched with varies functions including antigen processing and pre
sentation, signal peptide processing, antigen processing and presenta
tion of peptide antigen via MHC class I and leukocyte activation 
involved in immune response (Fig. 5C). In accordance with the multiple 
functions implicated in plasma cells, the proportion of them was 
observed to be increased in different disease stages compared with 
healthy controls, and reached a peak in the stable stage then relatively 
declined in the recovery stage (Fig. 5D). In line with this, with regard to 
the activation of plasma cells in disease course versus healthy controls, 
leukocyte activation involved in immune response was conserved (Fig 
S4A-C), reinforcing the essential roles of plasma cells proliferation in the 
disease process. 

Next, we sought to investigate the potential mechanisms underlying 
the proliferation of plasma cells in the acute and stable stage. Intrigu
ingly, NK cells were observed to be enriched in B cell proliferation and 
leukocyte activation involved in immune response, as well as positive 
regulation of apoptotic process (Fig. 3C). Therefore, we tried to explore 
the potential regulation network between NK cells and plasma cells to 
dissect the effects of NK cells on plasma cells proliferation. In the acute 
and stable stages, IFNG and HLA-DRA showed enriched regulatory po
tential of ligand and target genes (Fig S4D, E). Interestingly, the change 
patterns of HLA-DRA expression level in three disease stages compared 
with healthy controls were similar with the alterations of plasma cells 
proportion (Fig. 5E), suggesting that the alterations of HLA-DRA 
expression were parallel with the proliferation of plasma cells. To 
explore the regulatory mechanisms of IFNG on HLA-DRA, the potential 
signaling pathways were inferred between IFNG and HLA-DRA, IFNG 
may regulate HLA-DRA through EP300, STAT1, SPI1 and RFX5 (Fig. 5F), 
indicating the potential cell-cell interactions of NK cells on plasma cells 
exert crucial roles in the proliferation of plasma cells through IFNG 
signaling pathways. 

2.6. Monocytes might facilitate the proliferation and exhaustion of T cells 
through IL1B signaling pathways 

T cells presented both immunological activation and suppression 
status, varies subpopulations of monocytes were observed to regulate 
lymphocyte activation and involved in apoptosis pathways. Addition
ally, it was shown that T cell function was suppressed in a monocyte 
dependent fashion in sepsis patients [18]. We next aimed to explore 
whether intracellular interaction exists between monocytes and T cells. 
Thus, we constructed a putative cellular interaction network between 
monocytes and T cells in different disease stages compared with healthy 
controls to investigate whether monocytes impact the activation and 
suppression of T cells. 

For the purpose of exploring the roles of monocytes on T cell acti
vation, we selected subsets of monocytes including CD14+ Mono2, 
CD16+ Mono, CD24+ Mono, HLA-DR+ Mono and LDHB+ Mono as 
sender cells because they were highly associated with lymphocyte 
activation (Fig. 4C). CD8+ Te cells and CD8+ Tem cells were chosen as 
receiver cells due to their sustained increasing proportion across disease 

T. Wang et al.                                                                                                                                                                                                                                   



Genomics 113 (2021) 1219–1233

1226

stages versus healthy controls. NicheNet [19] was employed to predict 
interactions between selected monocytes and T cells based on differen
tial expressed genes in CD8+ Te cells and CD8+ Tem cells upon disease 
induction. For CD8+ Te cells, ligand -target interactions were centered 
on the recovery stage, whereas were sparse in the acute stages (Fig. 6A, 
Fig S5A). Concurrently, the ligand-target interactions between selected 
monocytes and CD8+ Tem cells were also enriched in the recovery stage 
(Fig. 6B). Thus, we focused on the ligand-mediated intracellular 

interactions mainly in the recovery stage. Interestingly, among the top 
predicted ligands, we found IL1B was expressed by selected monocytes 
in regulation of both CD8+ Te cells and CD8+ Tem cells. Moreover, 
S100A9, JUN and S100A8 were the common target genes in CD8+ Te 
cells and CD8+ Tem cells potentially regulated by IL1B (Fig. 6A, B). 
Further analysis of inferring the potential signaling pathways between 
IL1B and its target genes discovered some transcriptional regulators 
including SPl1, RELA, FOS, EP300, STAT3, IRAK1 and MYC (Fig. 6C). 

Fig. 5. Expansion of plasma cells in the process of sepsis secondary to pneumonia. 
A. Sub-clustering of B cells in healthy controls (HCs) and sepsis patients. B. Violin plots showed the scaled expression levels of canonically cell marker genes used for 
annotating each cell types. C. Heatmap of enriched GO terms for each cell type (biological processes). D. Histogram showed the proportion of each B cell type in HCs 
groups and different courses of disease. E. Violin plots showed the log2(TPM/10 + 1) expression levels of HLA-DRA in disease stages versus HCs. F. Network of the 
potential signaling paths between the ligand IFNG and its predicted target gene, and the signaling/transcriptional regulators in these paths were visualized (blue: 
ligand; red: target genes; yellow: signaling/transcriptional regulators). The thickness of edge lines represented the weight of the interactions in the weighted in
tegrated networks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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To investigate the regulatory relationship and potential mechanisms 
in monocytes on T cells suppression, we selected CD14+ Mono2 and 
CD16+ Mono as sender cells, due to their function in positive regulation 
of cell death, apoptotic signaling pathway, negative regulation of cell 
proliferation and negative regulation of immune system process 
(Fig. 4C). Additionally, CD4+ Tn cells and CD8+ Tn cells were served as 
the receiver cells due to their continuously declined proportion across 
disease course (Fig. 3E). 

For CD4+ Tn cells, ligand-target interactions were concentrated in 
the acute and stable stages, but were not predicted in the recovery stage 
for no differential expression genes were found between recovery stage 
and healthy controls (Fig. 6D, Fig S5B). Further analysis on CD8+ Tn 
cells showed that ligand-target interactions were enriched in all disease 
stages, suggesting the selected monocytes may exert their regulatory 
functions on CD8+ Tn cells during disease progression (Fig. 6E, Fig S5C, 
D). To dissect the common mechanisms of regulatory relationships 

underlying the suppression of CD4+ Tn cells and CD8+ Tn cells induced 
by monocytes, we looked for the shared ligands and their target genes. 
Surprisingly, IL1B was also expressed by selected monocytes in regu
lating both CD4+ Tn cells and CD8+ Tn cells (Fig. 6D, E). Concurrently, 
PRDM1 and ITGB1 were among the commonly predicted target genes in 
CD4+ Tn cells and CD8+ Tn cells driven by IL1B (Fig. 6D, E). Of 
particular interest, PRDM1 was found to be upregulated in T cell sub
types across disease stages, supporting that monocytes may promote the 
exhaustion of both CD4+ Tn cells and CD8+ Tn cells with the target of 
PRDM1. Furthermore, some transcription regulators such as SPl1, 
IRAK1, STAT3, RELA, SMAD3 and PRTN3 were observed to be impli
cated in the IL1B-PRDM1 signaling pathways (Fig. 6F). Altogether, these 
data indicated that monocytes may stimulate both the activation and 
exhaustion of T cell through IL1B signaling pathway with different 
target genes. 

Fig. 6. Monocytes might facilitate the proliferation and exhaustion of T cells through IL1B signaling pathways. 
Heatmap showed the predicted ligand activity and the regulatory potential of the ligand and their target genes. Ligands of CD14+ Mono2, CD16+ Mono, CD24+

Mono, HLA-DR+ Mono and LDHB+ Mono and their target genes in A. CD8+ Te cells, B. CD8+ Tem cells in the recovery stage compared with healthy controls (HCs) 
(orange: ligand; purple: target genes). C. Network of the potential signaling pathways between the ligand IL1B and it predicted target genes, and the signaling/ 
transcriptional regulators in these paths were visualized in recovery stage. (red: ligand; yellow: target genes; green: signaling/transcriptional regulators; blue: re
ceptor). The thickness of edge line represented the weight of the interactions in the weighted integrated networks. Ligands of CD14+ Mono2, CD16+ Mono and their 
target genes in D. CD4+ Tn cells, E. CD8+ Tn cells in the acute stage compared with HCs (orange: ligand; purple: target genes). F. Network of the potential signaling 
pathways between the ligand IL1B and it predicted target genes, and the signaling/transcriptional regulators in these paths were visualized in acute stage. (red: 
ligand; yellow: target genes; green: signaling/transcriptional regulators; blue: receptor). The thickness of edge line represented the weight of the interactions in the 
weighted integrated networks. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Different immunological response presented between sepsis secondary to pneumonia induced by bacteria, influenza virus and SARS-COV-2. A. Violin plots 
showed the log2(TPM/10 + 1) expression of genes enriched in interferon gamma response of sepsis secondary to pneumonia induced by bacteria, influenza virus and 
SARS-COV-2 for each patient. B. Pie plots showed the ratio of major cell type composition in sepsis secondary to pneumonia induced by bacteria, SARS-COV-2 and 
influenza virus. C. Histogram showed the proportion of each cell type in sepsis secondary to pneumonia induced by bacteria, SARS-COV-2 and influenza virus. D. 
GSEA enrichment plot of interferon gamma response of CD14+ Mono1 cells, NK1 cells, CD4+ Tpm cells, CD8+ Tem cells, CD8+ Te cells, Bm cells and Bn cells in sepsis 
secondary to pneumonia induced by bacteria versus SARS-COV-2. E. Dot plots showed the scaled expression level and percentage of exhaustion and apoptotic genes 
of T/NK cells in sepsis secondary to pneumonia induced by influenza virus, SARS-COV-2 and bacteria. The colour key from gray to blue indicated low to high 
expression levels. The dot size indicated the percentage of cells that expressed genes. Bac, bacteria; SARS, SARS-COV-2; Influ, influenza virus. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2.7. Different immunological response presented between sepsis secondary 
to pneumonia induced by bacteria and viruses 

A recent study found that sepsis patients induced by bacteria and 
severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) were 
different in organ dysfunction, outcome, and counts of T lymphocytes 
and their subtypes [20]. However, their difference in immunological 
response was unclear. Thus, it is vital for comparing the immunological 
difference of different cause of sepsis in the acute disease stage. First, we 
downloaded the scRNA-seq data of two severe coronavirus distress 
syndrome (COVID-19) patients from a previously published study [21]. 
One severe COVID-19 patient was diagnosed with septic shock, while 
another one presented multi-organ failure. Second, to gain a more 
comprehensive knowledge about the difference in immunological 
response in sepsis of different causes, we also downloaded a public 
scRNA-seq dataset of sepsis secondary to pneumonia induced by influ
enza virus [15]. Thus, these three scRNA-seq datasets were further in
tegrated with two scRNA-seq datasets of the acute stage from sepsis 
secondary to bacterial pneumonia, of which, one dataset was from our 
data, another one was downloaded from a recently published study [15]. 

Pathway enrichment analysis showed that interferon gamma 
response was upregulated in SARS-COV-2 induced sepsis compared with 
bacterial sepsis, and in SARS-COV-2 induced sepsis compared with 
influenza virus induced sepsis, as well as in influenza virus induced 
sepsis compared with bacterial sepsis (Fig S6A-C). Additionally, the 
interferon response related genes such as IFITM2, IFITM3, ISG20 and 
ISG15 were highly expressed in all of the three causes of sepsis, among 
which, the altered expression of IFITM2 and IFITM3 among three causes 
of sepsis were in line with the alterations of interferon gamma response 
among them (Fig. 7A). These data suggested that the interferon gamma 
response may be aberrant with highest degree in SARS-COV-2 induced 
sepsis, secondly in influenza virus induced sepsis and last in bacterial 
sepsis. 

Next, we attempted to explore the cellular immunological difference 
behind viral sepsis and bacterial sepsis. For the purpose of an unbiased 
comparison, the cell subtypes of these downloaded scRNA-seq datasets 
were annotated according to the acute stage of sepsis secondary to 
bacterial pneumonia in our study with SciBet [22]. As a result, all of the 
cell subpopulations were annotated in these downloaded scRNA-seq 
datasets (Fig. 7B, C). The proportion of T/NK cells was lower in both 
SARS-COV-2 induced sepsis and influenza virus induced sepsis 
compared with bacterial sepsis (Fig. 7B). GO analysis showed that de
fense response to other organism; response to bacterium and apoptotic 
signaling pathway were enriched when differentially expressed genes 
were compared with SARS-COV-2 induced sepsis and bacterial sepsis 
(Fig S7A). Apoptotic signaling pathway and regulation of immune 
effector process were involved when differentially expressed genes were 
compared with SARS-COV-2 induced sepsis and influenza virus induced 
sepsis (Table S4). Moreover, cellular response to type I interferon and 
type I interferon signaling pathway were upregulated when differen
tially expressed genes were compared with influenza virus induced 
sepsis and bacterial sepsis (Table S4). However, the proportion of 
myeloid cells and B cells were higher in both SARS-COV-2 induced sepsis 
and influenza virus induced sepsis compared with bacterial sepsis 
(Fig. 7C). GO analysis showed that antimicrobial humoral immune 
response and response to virus were enriched in myeloid cells when 
compared with SARS-COV-2 induced sepsis and bacterial sepsis (Fig 
S7B). Apoptotic signaling pathway and process utilizing autophagic 
mechanism were involved when differentially expressed genes were 
compared with SARS-COV-2 induced sepsis and influenza virus induced 
sepsis (Table S4). In addition, activation of immune response and 
regulation of acute inflammatory response were upregulated when 
differentially expressed genes were compared with influenza virus 
induced sepsis and bacterial sepsis (Table S4). In B cells, complement 
activation, classical pathway; B cell receptor signaling pathway and B 
cell proliferation were enriched when compared with SARS-COV-2 

induced sepsis and bacterial sepsis (Fig S7C). Regulation of lympho
cyte activation and immune response-activating signal transduction 
were involved when differentially expressed genes were compared with 
SARS-COV-2 induced sepsis and influenza virus induced sepsis 
(Table S4). Furthermore, interferon-gamma-mediated signaling 
pathway and type I interferon signaling pathway were upregulated 
when differentially expressed genes were compared with influenza virus 
induced sepsis and bacterial sepsis (Table S4). We then focused on the 
immunological difference underlying cell subpopulations with a finer 
resolution. For innate immune response, the percentage of CD14+

Mono1 and NK cells especially NK1 cells was highest in SARS-COV-2 
induced sepsis, secondly in bacterial sepsis, and last in influenza virus 
induced sepsis (Fig. 7C). Moreover, the proportion of CD16+ Mono was 
higher in influenza virus induced sepsis compared with SARS-COV-2 
induced sepsis and bacterial sepsis (Fig. 7C). However, with regard to 
adaptive immune response, the proportion of CD4+ Tn cells was highest 
in bacterial sepsis, secondly in SARS-COV-2 induced sepsis and last in 
influenza virus induced sepsis, whereas the percentage of Bm cells was 
highest in influenza virus induced sepsis, secondly in SARS-COV-2 
induced sepsis and last bacterial sepsis (Fig. 7C). Additionally, the 
proportion of CD4+ Tpm cells, CD8+ Tn cells, and CD8+ Tem cells were 
highest in bacterial sepsis, secondly in influenza virus induced sepsis and 
last in SARS-COV-2 induced sepsis (Fig. 7C). Conversely, the percentage 
of Bn cells were highest in SARS-COV-2 induced sepsis, secondly in 
influenza virus induced sepsis and last in bacterial sepsis (Fig. 7C). 
Furthermore, the proportion of CD8+ Te cells was lower in SARS-COV-2 
induced sepsis compared with bacterial sepsis and influenza virus 
induced sepsis (Fig. 7C). 

Interestingly, pathway enrichment analysis revealed upregulated 
interferon gamma response in the above-mentioned cell subtypes when 
comparing three causes of sepsis. Interferon gamma response was 
upregulated in CD14+ Mono1, NK1 cells, CD4+ Tpm cells, CD8+ Tem 
cells, CD8+ Te cells, Bm cells and Bn cells in SARS-COV-2 induced sepsis 
compared with bacterial sepsis (Fig. 7D), whereas was upregulated in 
CD4+ Tn cells, CD4+ Tpm cells, CD16+ Mono, and Bn cells in SARS-COV- 
2 induced sepsis compared with influenza virus induced sepsis (Fig 
S8A). In addition, interferon gamma response was also upregulated in 
CD8+ Tem cells, NK1 cells, CD4+ Tn cells, Bn cells, CD4+ Tpm cells and 
CD8+ Tn cells in bacterial sepsis compared with influenza virus induced 
sepsis (Fig S8B), indicating that interferon gamma response may 
contribute to the immunological difference underlying sepsis secondary 
to pneumonia induced by gram-negative bacteria, SARS-COV-2 and 
influenza virus. Previous studies have suggested that T cells of SARS- 
COV-2 patients showed immune exhaustion and apoptotic features 
[23,24]. Thus, we investigated whether exhaustion and apoptotic fea
tures presented difference in T cells of bacterial sepsis, SARS-COV-2 
induced sepsis and influenza virus induced sepsis. Surprisingly, the 
exhaustion and apoptotic levels were highest in SARS-COV-2 induced 
sepsis, secondly in influenza virus induced sepsis and last in bacterial 
sepsis as reflected by the expression of PRDM1, CASP1, TNFSF10 and 
TNFRSF1B (Fig. 7E). 

3. Discussion 

It is established that sepsis altered both the innate and adaptive 
immune response for a long period after clinical “recovery” [5], which 
prompted us to explore the detailed alterations of immune response and 
discover potential therapeutic treatment. However, global picture of 
immune cell dysfunction cannot be obtained with regard to all sub
populations using conventional bulk RNA sequencing (bulk RNA-seq). 
The emerging of scRNA-seq technology helps us to understand the 
cellular and molecular features with higher resolution and accuracy in 
sepsis-induced immune dysregulation [14,15,25]. However, considering 
the highly heterogeneous properties of sepsis regarding primary cause 
and infecting pathogens, their immune response may be divergent. A 
study has shown that intra-abdominal sepsis and pneumonia-derived 
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sepsis presented different immune response, manifested by different 
number of immune cell subpopulations [7]. Thus, it is difficult to 
popularize findings of certain kind of cause to sepsis to the other 
divergent ones related to therapeutic target or mechanisms. Further
more, the timeline of immunological alterations during sepsis progres
sion was not known in single cell resolution, which is essential for the 
discovery of effective therapeutic target and diagnostic biomarkers. To 
address these limitations, we performed scRNA-seq to explore the global 
immunological changes in sepsis secondary to pneumonia infected by 
gram-negative bacteria, elucidating the dynamic cellular and molecular 
signatures along disease course, as well as the cellular interactions 
among immune cell subpopulations. 

The novelty of our work was that we illustrated the dynamic immune 
signatures in patients with sepsis secondary to pneumonia infected by 
gram-negative bacteria. First, the major immune cell subpopulations 
were changed during disease progression, with myeloid cell escalated, 
T/NK cells and B cells decreased, suggesting shifted phenotypic alter
ations of immune cells induced by sepsis. Second, patients with sepsis 
showed strong and sustained upregulation of IFN gamma response and 
TNFA signaling via NFκB in the whole immune cells and major cell 
subtypes. Third, immune activation was observed in many cell subtypes 
including CD8+ Te cells, CD8+ Tem cells and plasma cells, manifested by 
elevated proportions of these cell types. Interestingly, NK cells were also 
expanded in disease course, although slightly decreased in the acute 
stage, which was contradicted with a previous study suggesting the 
apoptosis of NK cells in sepsis [26]. However, this might because only 
the acute stage of sepsis was focused on in these studies, prompting 
further studies on why NK cells were expanded in the disease progres
sion especially at later recovery stage and their potential effects on 
sepsis. Here, we found NK cells might promote the proliferation of 
plasma cells, the potential mechanisms may depend on IFNG signaling 
pathway. Meanwhile, extensive immune exhaustion was observed in 
almost all T/NK cells subpopulations particularly in CD4+ Tn cells and 
CD8+ Tn cells across disease stages, further coupled with declined 
proportions of T/NK cells, indicating both quantitative and qualitative 
defects of T/NK cells in disease progression. Fourth, intracellular 
interaction analysis showed that monocytes subsets may facilitate the 
activation and exhaustion of T cells through IL1B signaling pathways 
with different target genes during recovery stage and acute stage, 
respectively. Fifth, the newly discovered CD24+ monocytes were almost 
exclusively existed in the recovery stage of the first patient, further 
cohort including sepsis patients of three stages with flow cytometry was 
also unable to validate the high proportions of this subset in the recovery 
stage (data not shown), indicating the heterogeneous nature of sepsis 
and emphasizing the importance of personalized and precision medi
cine. Finally, the immunological response in sepsis induced by gram- 
negative bacteria, SARS-COV-2 and influenza virus was different in 
the aspect of cellular composition and gene features, which indicated 
that further investigations on sepsis induced by different pathogens are 
warranted for the effective treatment of sepsis. 

The immunological features were different in sepsis secondary to 
pneumonia infected by gram-negative bacteria, SARS-COV-2 and influ
enza virus in the aspect of cellular composition and enriched pathways. 
Our data indicated that beside bacterial sepsis, interferon gamma 
response was also upregulated in sepsis induced bySARS-COV-2 and 
influenza virus, which was in agreement with previous findings in SARS- 
COV-2 and influenza virus. For instance, interferon related signaling 
pathways were also upregulated in severe COVID19 patients [27]. In 
addition, interferon gamma signaling was enriched in influenza virus- 
infected human nasal epithelial cells [28]. These findings indicated 
that interferon gamma response might be conserved in different cause 
induced sepsis with varying degrees, which might be serves as a prom
ising therapeutic target in treating sepsis induced by different causes. 
Moreover, features of immune exhaustion and apoptosis were highest in 
T and NK cells of SARS-COV-2 induced sepsis, secondly in influenza 
virus induced sepsis and last in bacterial sepsis, suggesting different 

degrees of immunosuppression may exist in different causes induced 
sepsis. 

Although the alterations of cell composition in major cell subtypes 
including T/NK cells, myeloid cells and B cells during disease progres
sion were consistent in the two sepsis patients (Fig S1B), the heteroge
neity still existed in subpopulations of T/NK cells, B cells and NK cells at 
a higher resolution (Fig S9A, B, C), emphasizing the significance of 
studying cellular immune response at a higher resolution. However, 
different from T/NK cells, B cells and NK cells, the alterations of cell 
composition in myeloid cells were in line with that in major cell sub
types (Fig S3), indicating T/NK cells, B cells and NK cells may endow 
with more diversity than myeloid cells. 

There were several limitations existed in our study. First, the sample 
size was relatively small and, regretfully, the sample of the acute stage 
for the first patient was not included for analysis due to bad cell quality. 
To address this limit, we increased the number of patient samples in 
three disease stages with bulk RNA-seq to infer the cell composition of 
major cell subtypes due to their consistency between two patients for 
scRNA-seq during disease course. However, the results from bulk RNA- 
seq was not coincide with that in scRNA-seq (Fig S9.D), which might be 
attributed to two reasons. First, inferring the cell composition with bulk 
RNA-seq may be less precise than that with scRNA-seq. Second, the 
patient cohort for bulk RNA-seq in three disease stage was collected 
from different patients, which was different from that for scRNA-seq. 
Thus, future studies with larger sample size along disease course 
would be beneficial for demonstrating the links of host immune response 
and specific pathogen, accordingly improving organ injury and prog
nosing disease outcome. In addition, the regulatory mechanisms of 
intracellular network revealed by cell-cell interaction analysis were not 
validated experimentally; because it is difficult to isolate so many im
mune cell subpopulations and co-cultured them to explore their in
teractions; on the other hand, due to methodology limitations, the 
analysis for cellular interactions only predicts ligand and its target 
genes, therefore, it’s hard to find a specific receptor for intervention. 
Further studies are warranted to explore the pathogenesis of sepsis 
secondary to bacterial pneumonia with more complete bioinformatics 
and experimental technologies. 

In conclusion, our study explored the dynamic alterations of the 
circulating immune cells in sepsis secondary to pneumonia induced by 
gram-negative bacteria in single cell resolution, which provided the 
preliminary findings about the potential mechanisms underlying 
immunological response during disease progression. 

4. Methods and materials 

4.1. Ethics statement 

The ethical consent of this study was approved by the Ethics Com
mittee of Zhujiang Hospital of Southern Medical University (Guangzhou, 
China). 

4.2. Patients information 

Whole blood samples were collected from patients who were diag
nosed as sepsis secondary to pneumonia induced by gram-negative 
bacterial infection with informed consent at Zhujiang Hospital, South
ern Medical University. The criterions of enrolled patients were as 
following: infection-induced organ dysfunction with SOFA sore ≥2 ac
cording to the international guidelines for management of sepsis and 
septic shock of 2016, and in combination of procalcitonin (PCT) ≥ 2 ng/ 
mL. For scRNA-seq, the patients came from two females. The first one 
was 48 years old while the second one was 68 years old. For bulk RNA- 
seq, the patients came from 6 females and 13 males. In Table S1, the 
definitions of different disease stages were as following: 1) acute stage: 
the same as the diagnostic criteria of SIRS, meeting over two criterions 
as followings: ① Body temperature: >38 ◦C or <36 ◦C; ② Heart rate: 
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>90 beats/min; ③Respiratory function: >20 times/min or PaCO2 < 32 
mmHg made by high ventilation; ④ Peripheral blood picture: immature 
WBC > 12 × 10 [9]/L or < 4 × 10 [9]/L; 2) stable stage: lymphocyte 
count <1.1 × 10 [9]/L; 3) recovery stage: resolution of infection and 
respiratory function, ascension of lymphocyte count. Detailed informa
tion of each sepsis patient and healthy control for scRNA-seq and bulk 
RNA-seq were listed in Table S1. 

4.3. PBMC isolation 

2 mL blood was collected from each patient and healthy control; 
PBMC was prepared with density-gradient centrifugation. Briefly, whole 
blood cells were diluted with 1× DPBS (1:1), layered on top of Ficoll- 
Paque Plus and then centrifuged at 500g for 20 min at room tempera
ture. The white layer containing PBMC was isolated and washed twice 
with DPBS, followed by removing erythrocyte with red blood cell lysate 
on ice. After centrifuged at 1000 rpm for 5 min, cells were resuspended 
and filtered with a 40 μm cell strainer. Cell viability was verified with 
trypan blue and was approached to 90% per sample. Cells with high cell 
viability were subjected to library preparation. 

4.4. ScRNA-seq library preparation and sequencing 

The prepared cell suspensions were subjected to 10× Chromium 
Single Cell 3′ library with Chromium Single Cell 30 v3 reagent (10×
Genomics) according to the manufacturer’s instructions. About 8000 
cells were loaded per sample. The followed sequencing was carried out 
with Illumina (Nova 6000) according to the manufacturer’s instructions. 

4.5. ScRNA-seq data preprocessing and quality control 

The single cell transcriptome data was processed with Cell Ranger 
Software Suite (Version 3.1.0) [29] to perform alignment, filtering, 
barcode separating, and UMI counting with default parameters. Raw 
reads were aligned to the human reference genome GRCh38 using Cell 
Ranger. Feature-barcode matrices per sample were generated for sec
ondary analysis. For quality controls, each sample was initially sub
jected to remove ambient RNA and doublets with SoupX R package [30] 
and scDblFinder R package(https://github.com/plger/scDblFinder), 
respectively. Then we filtered cells with the following criterions: 1) 500 
< nFeature_RNA < 5000; 2) 1000 ≤ nCount_RNA ≤ 20,000; 3) percent 
of mitochondrial genes <30%; 4) percent of hemoglobin genes <0.01%. 
The mitochondrial genes and ribosome genes were removed. After 
filtering, a total of 52,412 cells with high quality from 5 patient samples, 
a healthy control combined with other 4 healthy controls downloaded 
from 10× Genomic (https://www.10xgenomics.com/cn/) were ob
tained for further integrated analysis using integrated pipeline of Seurat 
R package with default settings [31] . 

4.6. Bulk RNA-seq library construction and sequencing 

3 μg RNA per sample was employed for library preparations with 
NEBNext® UltraTMRNA Library Prep Kit for Illumina® (NEB, USA) 
following the manufacturer’s instructions. Briefly, mRNA was extracted 
from total RNA with poly-T oligo-coupled magnetic beads. Then, frag
mentation was performed under heating to obtain 180 nt to 250 nt 
RNAs. After the first strand cDNA and the second strand cDNA were 
synthesized, the DNAs fragments were subjected to adenylation of 3′

ends, ligation of adaptor. Then, the DNAs library were purified with 
AMPure XP system (Beckman Coulter, Beverly, USA), followed by PCR 
amplification. Lastly, the Agilent Bioanalyzer 2100 system were applied 
to purify PCR products and evaluate library quality. The followed 
sequencing was performed with Illumina (Nova 6000) according to the 
manufacturer’s recommendations. 

4.7. Bulk RNA-seq data processing and quality control 

The raw data was filtered to obtain clean data with FASTQC software 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The 
clean data was then mapped to the human reference genome GRCh38 
with STAR (version = 2.7.6a) [32]. The read counts per gene were 
counted with “–quantMode” parameter implicated in STAR. 

4.8. Infer cell composition in bulk RNA-seq 

The Bisque r packages [33]were used to infer the cell composition in 
bulk RNA-seq of sepsis patients with the data of scRNA-seq in our study 
as reference, the default parameters were employed during analysis. 

4.9. Dimensionality reduction and clustering 

2000 highly variable features were obtained after integrated anal
ysis. The integrated data was subjected to scale and calculate PCA. The 
first 30 PCs were selected for the unsupervised cluster with “RunUMAP” 
function, the “FindClusters” function (resolution = 0.015) in the Seurat 
R package [24] was used to generate 3 clusters. To re-cluster the T/NK 
cells, “FindClusters” function (resolution = 0.4) was applied again and 
obtain 10 clusters. To re-cluster the NK cells, “FindClusters” function 
(resolution = 0.15) was used again to obtain 2 clusters. To re-cluster the 
myeloid cells, “FindClusters” function (resolution = 0.1) was applied 
again to obtain 8 clusters. To re-cluster the B cells, “FindClusters” 
function (resolution = 0.2) was applied again to obtain 3 clusters. UMAP 
was used to visualize the result of clustering. 

4.10. Differential expression analysis 

Differential expression analysis was performed with “FindMarkers” 
function in Seurat packages with default parameters. Adjusted p < 0.05 
and |log2FC| > 0.25 was used to defined significant DEGs. 

4.11. GO analysis 

DEGs of different groups in this study were subjected to Metascape 
webtools (https://metascape.org/gp/index.html#/main/step1) to 
perform GO analysis with the “biological processes” annotations [34] . P 
< 0.01 was considered as significantly enriched. 

4.12. Pathway enrichment analysis 

Pathway enrichment analysis was performed with fgsea R packages 
for all DEGs between groups. The hallmark gene sets were downloaded 
from Molecular Signature Database (MsigDB; https://www. 
gsea-msigdb.org/gsea/msigdb/collections.jsp#C2) [35] . Then, ‘fgsea’ 
function (nperm = 1000, minSize = 10, maxSize = 500) was performed 
to enrich biological pathways with P < 0.05, the results were explained 
by normalized enrichment score (NES) and adjusted p-value [36]. All of 
the gene signature list for GSEA Pathway enrichment analysis was 
provided in Table S3. 

4.13. Time-dependent expression pattern analysis 

TCseq [37] packages were exploited to identify time-dependent 
transcriptional alterations in disease progression. First, the average 
expression level log2(TPM/10 + 1) of each gene in each stage among 
single cells was calculated. Then, the ‘timeclust’ function was used to 
cluster different expression patterns. All of the gene signature list for 8 
clusters by TCseq was provided in Table S3. 

4.14. Cell-cell interaction 

The NicheNetr package was used to explore the intracellular 
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communication potentially lead to the differential gene expression be
tween different disease stages and healthy controls [19]. Nichenet could 
specifically predict prioritization from sender cells and their target genes 
in receiver cells that altered in expression level upon disease induction. 
Differential expression genes in receiver cells between disease condition 
and healthy controls were served as target genes, which were obtained 
with “Findmarkers” function. Genes with adjusted P < 0.05, average 
log2fold change >0.25, and expressed in more than 10% receiver cells 
were considered as differential expression genes. The ligand activity 
analysis was performed based on their target genes with default pa
rameters. The ligand activity was ranked with their Pearson correlation 
coefficient, the top20 ligand was selected for further analysis of ligand- 
target network. Only ligands from the top20 with enough regulatory 
potential scores will be predicted to have target genes (cut.off = 0.33). 
Ligands and target genes of interest were subjected to infer the potential 
signaling paths between them. The predicted signaling paths were 
visualized with Cytoscape (version 3.8.0) [38]. 

4.15. Supervised cell type annotation 

The SciBet package [22] was used to perform the supervised cell type 
annotation of SARS-COV-2 scRNA-seq data according to data of the 
acute stage of bacterial sepsis in this study. The ‘SelectGene’ function 
was used to supervised gene selection with k = 50. The ‘SciBet’ function 
with default parameters was used to single cell identification. 

4.16. Statistical analysis 

The statistical method and associated threshold for each analysis 
were described in the above method sections. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2021.01.026. 
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