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ABSTRACT

p53 transcriptional networks are well-characterized
in many organisms. However, a global understand-
ing of requirements for in vivo p53 interactions with
DNA and relationships with transcription across hu-
man biological systems in response to various p53
activating situations remains limited. Using a com-
mon analysis pipeline, we analyzed 41 data sets from
genome-wide ChIP-seq studies of which 16 have as-
sociated gene expression data, including our recent
primary data with normal human lymphocytes. The
resulting extensive analysis, accessible at p53 BAER
hub via the UCSC browser, provides a robust platform
to characterize p53 binding throughout the human
genome including direct influence on gene expres-
sion and underlying mechanisms. We establish the
impact of spacers and mismatches from consensus
on p53 binding in vivo and propose that once bound,
neither significantly influences the likelihood of ex-
pression. Our rigorous approach revealed a large p53
genome-wide cistrome composed of >900 genes di-
rectly targeted by p53. Importantly, we identify a core
cistrome signature composed of genes appearing in
over half the data sets, and we identify signatures
that are treatment- or cell-specific, demonstrating
new functions for p53 in cell biology. Our analysis
reveals a broad homeostatic role for human p53 that
is relevant to both basic and translational studies.

INTRODUCTION

The tumor suppressor p53 is a stress-activated transcription
factor (TF) that recognizes a 20-base pair (bp) degenerate
motif in chromatin consisting of two decamers of the struc-
ture 5′-RRRCWWGYYY-3′, where R = [A,G], W = [A,T]
and Y = [C,T] (1–3). Recently, we also identified the func-
tional recognition of single decamer half-sites as part of the
sequence repertoire that p53 binds in vivo (4). Because of its
role in suppressing human cancers, the protein, its gene, and
the networks it regulates have been intensively studied for
nearly 40 years. Nevertheless, it is unlikely that p53 primar-
ily evolved to be a tumor suppressor because it is present
in primitive organisms, and it has many other functions (5)
that may play a role long before the occasional appearance
of cancer. Hundreds of thousands of potential binding sites
(p53 motifs) exist in the human genome, yet any cell nucleus
contains only a few thousand p53 molecules even after p53
is stabilized in response to stress (6). Despite the vast litera-
ture, a paucity of information addresses sites bound by p53
in normal and cancer human cells after p53 induction rel-
ative to its target sequences and with respect to its direct
influence on transcription. More specifically, while there
have been many studies on p53 responses at specific sites
and genes, little is known at the genome level about bind-
ing and sequence relationships, binding versus expression as
well as the relevance of various stress signals or the extent
of commonality of responses. We anticipated that through
an extensive, rigorous analysis of the combination of natu-
ral binding, target sequence and expression in response to
different stresses across studies, we would have the opportu-
nity to address a variety of important p53 universe issues at
the mechanistic as well as the network level and to identify
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genes that are directly targeted by p53 for altered expres-
sion.

The advent of genome-wide chromatin immunoprecipi-
tation of DNA fragments followed by high-throughput se-
quencing (ChIP-seq) coupled with gene expression provides
a potential means to addressing the above issues. In the last
seven years, multiple studies have been published, often with
differences in results potentially due to biological variation,
technical issues, or method of analysis. Here, we examined
44 data sets from human p53 ChIP-seq studies that con-
tained activated or overexpressed p53 binding and associ-
ated gene expression. We also analyzed 17 data sets that cor-
respond to control, non-activated (no treatment or DMSO)
p53 (Table 1). To avoid variations resulting from differences
in methods of analysis between studies as well as the many
pitfalls that may occur in using conclusions to assemble in-
formation, the data sets were downloaded and reanalyzed
with a common ChIP-seq workflow (Table 1; Supplemen-
tary Figure SF1, Supplementary Table ST1). We assessed
the quality of the data and developed a uniform, unbiased
approach to analysis. The common workflow for all raw
data assures uniformity of analysis and, more importantly,
uniformity of conclusions. We note that our approach can
be applied to any sequence-specific transcription factor.

The ChIP-seq and gene expression data sets came from
20 publications as well as the first primary p53 ChIP-seq
and expression data on normal human lymphocytes, which
we report here. Included in the data sets are results from
13 cell types and 12 methods of inducing or activating p53
that span nine time points (from 1 to 48 h after treatment).
Among these binding data sets in which p53 is activated or
elevated, 16 also contained mRNA expression data. This
enabled us to directly assess the relationship between bind-
ing and expression.

We created a human p53 Binding And Expression
Resource (BAER) hub that can be accessed on the
University of California Santa Cruz (UCSC) Genome
Browser (26,27) alongside other publicly available anno-
tation tracks (https://orio.niehs.nih.gov/ucscview/nguyen/
p53BAER/hub.txt). The human p53 BAER hub contains
tracks for read depth for each data set, identified peaks (or
p53 bound sites) for each activated or control data set, and
changes in gene expression (Supplementary Figure SF2).

Through our knowledge of p53 binding motifs, includ-
ing half-sites, and the data in the p53 BAER hub, we a)
distinguished direct vs. indirect targets, b) assessed mech-
anistic relationships between binding and increased vs. de-
creased expression changes to c) reveal a greatly increased
number of p53 target genes (cistrome) and a core cistrome
signature. We describe a broad homeostatic role for human
p53 in diverse biological processes beyond its classical role
as guardian of the genome.

MATERIALS AND METHODS

Lymphocyte ChIP-seq and microarray sample preparation
and sequencing

Human lymphocytes were isolated with Histopaque-1077
(Sigma-Aldrich) from the blood of healthy volunteers per
the approved NIEHS institutional review board (IRB#07-
E-0023) protocol. All volunteers gave written informed con-

sent for blood donation. Cells were grown in 1.5% (v/v)
PHA for 72 h and treated with 0.3 �g/ml Doxorubicin,
10 �M Nutlin-3, or 0.1% DMSO for 24 h. 17–30 mil-
lion T-lymphocytes were used per each experiment, and
ChIP assays were performed as described in our previous
work (4) (also see Supplementary Materials and Methods).
RNA was isolated using the RNeasy Mini Kit (Qiagen,
Valencia, CA, USA), and microarrays were performed in
the Affymetrix GeneChIP Instrument system using proce-
dures as previously described (4). Sequencing and microar-
ray data for these data sets have been deposited in GEO un-
der accession GSE110370. ChIP-seq and microarray data
were processed according to their respective analysis work-
flow described below.

ChIP-seq analysis workflow

Relevant ChIP-seq and associated input data sets were
downloaded from publicly-available resources as listed in
Supplementary Table ST1. All reads were clipped to a
maximum length of 36 nucleotides (nt), then filtered to
retain only sequences with a mean base quality score of
at least 20. Filtered reads were aligned against the hg19
reference genome (excluding haplotype chromosomes) via
Bowtie v0.12.8 (28) with parameters ‘-m1 -v2’ to accept only
uniquely-mapped hits with a maximum of two mismatched
bases. Multiple replicates from the same sample were
merged, then duplicate reads were removed with Merge-
SamFiles.jar and MarkDuplicates.jar from the Picard
tool suite v1.86 (http://broadinstitute.github.io/picard). For
ChIP-seq data sets without an associated input sample, sur-
rogate inputs were generated by randomly selecting 20 mil-
lion uniquely-mapped, non-duplicate reads from other in-
put data sets of the same cell type. Specifically, a surro-
gate U2OS input was made by downsampling the com-
bined input data sets from DMSO, DXR, and Nutlin treat-
ment conditions from Menendez et al. (4), and a surro-
gate HCT116 input was made by downsampling the com-
bined 5FU-treated input data sets from Botcheva and Mc-
Corkle (18) and Wang et al. (15). Depth tracks were gen-
erated with BEDTools genomeCoverageBed v2.17.0 (29)
and UCSC utility bedGraphToBigWig (30), after extend-
ing each uniquely-mapped, non-duplicate read to a length
of 200 nt.

p53 peak calls

The SISSRs program (31) was used to identify p53 bound
peaks for each p53 ChIP-seq data set using its associated in-
put data set (or a surrogate input) as a control at default pa-
rameters (P < 0.001). The SISSRs output peaks were subse-
quently redefined as 200-mers centered on the called peak’s
midpoint. Merged peak lists were generated for the 41 ac-
tivated p53 ChIP-seq data sets and for the 17 control p53
ChIP-seq data sets by BEDTools mergeBed v2.24.0 (29),
where regions that had at least one nt overlap or were book-
ended were merged.

Peak annotation

Presence of a p53-like motif (with or without spacers be-
tween the two half-sites or just one half-site) was established
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Table 1. Matrix for analysis of cells and treatments for ChIP-seq and expression data sets. Rows give results for normal and cancer cells or cell lines as
indicated. Columns correspond to treatments: 5-FU, 5-fluorouracil; ActD, actomycin D; Cisp, cisplatin; DXR, doxorubicin; Etop, etoposide; IR, ionizing
radiation; nutlin, nutlin-3; RITA, reactivation of p53 and induction of tumor cell apoptosis; UV, ultraviolet radiation; p53 O/E, p53 overexpression; RA,
retinoic acid; Ras O/E, Ras overexpression; NT, no treatment; DMSO, dimethyl sulfoxide. Numbers in cells give reference citations, which are also found
in Supplementary Table ST1. * = this publication. Those with associated gene expression are highlighted in gray.

by scanning each p53 peak via MAST v4.9.0 (32) with pa-
rameter ‘-comp”; the position weight matrix (PWM) used
for this scan was the highest-scoring de novo motif within
the top 1000 sequences from the DXR-treated lymphocyte
peak set (GEO # GSM2988950) as identified by MEME
v4.9.0 (33) with parameters ‘-mod zoops -evt 0.1 -w 20 -
revcomp -minsites 25 -maxsites 1000 -maxsize 20000000’.
For the differentiation of potential direct versus indirect p53
targets in the cistrome analysis, a more relaxed identifica-
tion of p53-like sites was implemented, whereby individual
peak sequences were evaluated via p53scan (34) allowing for
spacers of size 0 through 15 bp, and a score >4.39.

Association of p53 peaks with other genomic features
were assigned by a simple distance heuristic. The ge-
nomic context of individual p53 peaks were assigned based
on proximity to hg19 RefSeq gene models, as down-
loaded from the UCSC Genome Browser 15 Decem-
ber 2014. Categories for genomic context are defined as
‘near TSS’ (5 kb upstream of TSS through end of first
intron), ‘intragenic’ (second exon through 3′ untranslated
region (UTR)), or ‘intergenic’ (everything else). Assign-
ment of specific genes to p53 peaks are made based on
this same assessment. p53 peaks defined as having ‘near
TSS’ or ‘intragenic’ status are considered associated with
those genes for the gene expression and cistrome analy-
ses. miRNA potentially associated with p53 peaks were
defined as miRBase v21 (http://www.mirbase.org/, 35) en-

tries within 5 kb of a peak. lincRNA transcripts po-
tentially associated with p53 peaks were defined as Hu-
man Body Map lincRNA (http://portals.broadinstitute.org/
genome bio/human lincrnas/, 36) entries within 5 kb of a
peak. eRNAs potentially associated with p53 peaks were
defined as Andersson et al.’s active enhancers (37) within
5 kb of a peak. G-quadruplexes (G4s) potentially associ-
ated with p53 peaks were defined as Hansel-Hertsch et al.’s
HaCat or NHEK G4s (38) within 1 kb of a peak.

Enriched motifs

Searches for enriched known or de novo motifs within peak
sets were performed by HOMER findMotifsGenome v4.9.1
(39). Known motif searches were performed with parame-
ters ‘-size given -nomotif ’; de novo motif searches were per-
formed with parameters ‘-size given -noknown -len 20,22 -S
10’.

Scanning genome for p53 consensus motifs

We downloaded the genomic sequences of the 24 hu-
man chromosomes from the UCSC genome browser
(build hg19). For each chromosome, we counted the
number of exact match of RRRCWWGYYY (10-mer),
RRRCWWGYYYRRRCWWGYYY (20-mer, 0-spacer) or
RRRCWWGYYYN(1–15)RRRCWWGYYY (for 20-mer,
1–15-spacer) using a custom C code. Similarly, we counted

http://www.mirbase.org/
http://portals.broadinstitute.org/genome_bio/human_lincrnas/
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the number of exact match of the 20-mer, 0-spacer with one
mismatch.

Enrichment of chromatin marks in p53 binding peaks that ap-
pear in ≥20 data sets

The ENCODE genome segmentation data for the 16
chromatin marks in nine cell lines (GM12878, H1-hESC,
HEP-G2, HNEC, HSMM, HUVEC, K562, NHEK
and NHLF) were downloaded from the UCSC site
(http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=
wgEncodeBroadHmm, 40). First, we counted the number
of p53 binding peaks that appear in ≥20 data sets and p53
binding peaks that appear in only two data sets that fell
into the each of the 16 chromatin states identified by hidden
Markov model (HMM) (41). Chromatin state enrichment
was then carried out on the resultant 2 × 2 contingency
table using Fisher’s exact test.

Microarray analysis

Microarray perfect match pixel intensity data from the
Affymetrix raw CEL files of a given study (see Supplemen-
tary Table ST1) were preprocessed in the Partek Genomics
Suite v6.13 software (Partek, St. Louis, MO, USA) using the
robust multichip average (RMA) approach (42,43) that in-
cludes log2 transformation, background correction, quan-
tile normalization, and summarization by median polish to
combine data from the probes in a probe set to get a single
data value. The data was then modeled with an N-way anal-
ysis of variance (ANOVA) where N denotes the number of
factors in the given study design. Fisher’s least significant
difference contrasts (44) between the mean of treated repli-
cates and the mean of the respective control replicates (not
treated [NT], mock/vehicle, DMSO, etc.) were performed
to identify statistically significant differentially expressed
genes (DEGs) using a Benjamini & Hochberg multiple test-
ing (45) false discovery rate (FDR) threshold <0.01 based
on two-sided nominal P-values and an absolute fold-change
(FC) >1.5.

RNA-seq analysis of downloaded data sets

RNA-seq data from previous studies (GSE55727,
GSE47042, GSE15780) (Supplementary Table ST1)
were downloaded from the Gene Expression Omnibus
(GEO) (46,47). Data quality was assessed with FastQC,
and the adapter sequences were removed (if detected) prior
to alignment. Preprocessed RNA-seq short reads were
aligned with TopHat (48) to human genome hg19 guided
with refseq-based gene model (time stamp as of Dec. 15th,
2014). The alignment .bam files were directly processed
with HTseq modules (49), and count level measurement was
produced based on refseq-based gene model. In the end,
count level data was used for further statistical analysis. To
test for biological hypotheses, pair-wise tests with replicates
were conducted with DEseq (50). Differentially expressed
genes at each comparison condition were obtained based
on the negative binomial test at a FC >|2| and P-value
<0.01.

Figure 1. p53 binding distribution across the genome. (A) Genomic distri-
bution of peaks relative to genic regions of the 44 activated p53 ChIP-seq
data sets: nearTSS (5 kb upstream through the first intron); intragenic (sec-
ond exon through 3′UTR); and intergenic (everything else). Each point is
a ChIP-seq data set. Tukey box plot: box = 25th–75th percentile, black
line = median, and whiskers = 1.5 * interquartile range (IQR). Open sym-
bols are outliers for each genomic region. (B) Distribution of called peaks
on chromosome 5 in some normal (GM00011, GM6170, HFK) and cancer
(MCF-7, U2OS) cells after DXR or Nutlin-3 treatment. Data set reference
citations are in () following the peak descriptions.

RESULTS

Nature and distribution of p53 peaks

For each activated p53 data set included in the meta-
analysis, we asked how all identified peaks are distributed
with respect to transcriptional start sites (TSS) (regions
from 5 kb upstream through the first intron), intragenic
(second exon through the 3′-UTR), or intergenic regions.
The TSS region comprises about 10% of the total genome.
However, nearly 35% of the peaks found in at least one
data set appear in the TSS region, while a smaller amount
(25%) were in the intragenic region, and more were inter-
genic (41%) (Figure 1A). (No differences could be detected
in terms of TSS or intergenic binding when data sets are di-
vided into normal cells, cancer cells or p53 overexpressing
cells (see Supplementary Figure SF3)). Thus, p53 presents

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeBroadHmm
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a strong bias to bind near a TSS, which is consistent with
its role as a TF.

We addressed the distribution of p53 binding across chro-
mosomes. As shown in Supplementary Figure SF4, peaks
are distributed across the genome in a non-random manner,
which may simply reflect the non-randomness of genome
structure. All chromosomes show a clustering of peaks in
several chromosomal regions, and the clustering was simi-
lar for all cell types examined. Importantly, as shown in the
example for Chromosome 5 (Figure 1B), peak regions were
distributed similarly in both normal and cancer cells (the av-
erage number of peaks for cancer and normal cells was 2923
and 3499, respectively, excluding the two p53 overexpres-
sion data sets (see Supplementary Figure SF5)), suggesting
a commonality for the potential for binding. This similarity
between cell types was observed for all chromosomes (see
p53 BAER hub).

Visualization of the p53 data sets with the UCSC genome
browser provides opportunities to identify major genetic
and epigenomic annotated elements, including gene density,
repeats, CpG islands, chromatin markers and promoters, as
well as p53 peaks across chromosomes. For example, as pre-
sented in Figure 1B and Supplementary Figure SF4, a sub-
stantial correlation exists among the p53 ChIP-seq peaks
and the appearance across the genome of CpG islands re-
gardless of the experimental conditions.

We examined peaks for the presence of a p53-like motif,
including half-sites and motifs with spacers between half-
sites, using the methods we described in Menendez et al.
(4). We previously established that p53 can bind half-sites
to modulate transcription. The range of peaks containing
a p53-like motif in the 44 data sets with activated p53 was
from 21 to 95%, except for three data sets (Figure 2A). (For
a summary of the distribution of p53-like motifs includ-
ing half-sites and spacers, see Supplementary Figure SF6.)
These three data sets were excluded from further assessment
due to an abnormally low frequency of peaks with a p53
motif (3%) or low number of total peaks (only 17) (iden-
tified as outliers in Figure 1A, Supplementary Figure SF6,
and Supplementary Table ST1). The remaining 41 data sets
associated with activated p53 are the focus of this meta-
analysis.

The peaks from the 41 activated p53 data sets were
merged to generate one master list of 54 947 peaks for
further analysis (we considered only peaks from canonical
chromosomes 1–22 and XY) (Supplementary Table ST2).
Of these, 23% (12 885 peaks) contain a p53-like motif con-
sisting of the commonly described p53 consensus 20-mer
with a 0–15 bp spacer or with only a half-site. We identi-
fied ∼770 000 corresponding sequences that were not bound
(see below). Thus, it appears that in this extensive sampling
of potential sites only ∼1.6% of the p53-like sequences in
the genome, at most, have the potential to bind activated
p53, which suggests multiple factors are required to enable
binding.

We then asked about peaks that appeared in at least two
(≥2) independent data sets. This analysis resulted in 19 088
peaks, of which 48% (9126) contained a p53-like motif (Sup-
plementary Table ST2). As the incidence of a given peak
increases across data sets, the likelihood that it contains
a p53-like motif also increases, implying less influence of

other factors on binding at sites bound in multiple data sets.
For example, increasing the minimum number of data sets
that identified a given peak to 5 or 11 increased the percent
of peaks with p53-like motifs to 82% (4923/6001) or 96%
(2324/2409), respectively (Figure 2B). Increasing the inci-
dence to at least 20 data sets resulted in 99% (1000/1011)
with a p53-like motif. The 1011 p53 peaks that appear in
≥20 data sets bind with a similar distribution across the
genome regardless of cell type, p53 activating agent, or time
after activation (Supplementary Table ST2). However, hier-
archical clustering of peaks in ≥20 data sets show clustering
by cell type and not by treatment or time (Supplementary
Figure SF7).

In the parallel 17 control p53 data sets, we found 16 209
p53 peaks, of which 2532 are peaks that appear in ≥2 data
sets (Supplementary Table ST3). Of these, 68% (1727 peaks)
contain a p53-like motif and are distributed disproportion-
ately in genic regions: 43% TSS, 20% intragenic and 37%
intergenic. Interestingly, 11% (111 peaks) of the activated-
p53 peaks in ≥20 data sets are also pre-bound in at least
eight control p53 data sets. Although the numbers are much
smaller, the distribution of the 111 peaks is similar to that
for the 2532 peaks: 34% TSS; 24% intragenic and 49% in-
tergenic.

While many studies have investigated p53 binding in vitro
and individual studies have addressed in vivo binding, our
study provides opportunities to evaluate common features
of human p53 binding in a variety of cell types and con-
ditions. For example, the more frequently a peak appears
across data sets the greater the ratio of ChIP reads to input
reads at that peak. Thus, the fold-change of ChIP reads over
input reads of peaks that appear in 75% or more of data sets
is higher than that which appears in only 25 or 50% of data
sets (Figure 2C) and correlates with the likelihood of con-
taining a p53-like motif (Figure 2B). We generated a single
p53 logo from our list of peaks in ≥2 data sets (Figure 2D)
that is comparable to other published logos, which include
a variety of conditions and cells, and displays a strong bias
for binding to motifs with no spacer.

We also examined the specific impact of sequence varia-
tion, spacers between decamer motifs, as well as half-sites
on p53 binding in vivo, by looking at the relative frequen-
cies of bound sites. Assuming an equal distribution of ATs
and GCs, we estimate that the 3 × 109 bp human genome
should contain ∼732 400 perfect p53 half-sites (10 bp) and
179 perfect full-sites (defined here as an exact match to the
20 bp consensus sequence RRRCWWGYYYRRRCWW-
GYYY). A scan of the genome sequence gave a value for
perfect half-sites similar to that expected (784 101), but the
number of perfect sites with no spacer, or a one-base spacer
between the two decamers was 550 and 373, respectively,
i.e. two–three-fold higher than expected, suggesting possi-
ble selection. The 550 perfect 20-mer sites with zero spacers
(20-mer, 0-spacer) were distributed across the genome in a
manner similar to all sites: 15% were near a TSS, 26% were
intragenic, while 59% were intergenic. There was a strong
preference for binding to perfect 20-mer, 0-spacer sites: 75%
(410/550) were bound in at least one data set (Figure 2E),
and 70% (386 sites) were bound in at least two data sets. Im-
portantly, among these perfect 20-mer, 0-spacer sites, nearly
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Figure 2. p53 motif analysis. (A) Tukey boxplot of the peaks from the 44 activated p53 ChIP-seq data sets based on the type of sequence bound: p53-like
motif (includes p53 consensus motif containing two decamers with no spacer sequence, with spacers of 1–15 bp between the decamers, or half-site/one
decamer) or no motif (no evidence of a half site in the 200 bp peak). (B) Tukey boxplot of the percent of p53-like motifs in peaks that are frequently bound
in multiple data sets as indicated. (C) Tukey boxplot of p53 ‘binding strength’ as measured by ChIP-over-Input fold enrichment of 54 947 peaks called in
the data sets. Symbols beyond the whiskers are outliers. (D) de novo consensus motif identified from peaks in ≥2 data sets; (E) the % sites bound in vivo
when there is a perfect motif with 0–15-spacer or just a half-site (HS); (F) the % sites bound when there is a perfect motif with 0-spacer with no mismatches
(no MM) or with single mismatches at each position of the p53 motif positions.

all (53/54) of those with CATG cores in both half-sites were
bound in at least one data set.

For in vitro binding studies, the effects of increased spacer
length on binding are variable (51,52). Here, we found that
only 36%, or 133 of 20-mer (two perfect decamers) sites
with a one-base spacer were bound in at least one data set;
the fraction binding in at least two data sets was 31% (115
sites). The greatly reduced binding observed with a one-base
spacer suggests an intimate relationship between sequence
organization and in vivo binding. Increasing the spacer to
two or more bp reduces the frequency of in vivo binding to
a range of just ∼2–11% (Figure 2E), suggesting that the sites
are detected similarly to half-sites (2%), consistent with our
previous report (4). Thus, presence of a spacer strongly in-
fluences the probability of p53 binding. Our meta-analysis
establishes p53 binding preferences in vivo that can be re-
lated to in vitro structural analyses of p53 binding (52–54).

The observation that perfect sequences with no spacers
have a high likelihood of binding led us to explore the con-
sequences of a single departure (i.e., mismatch) from the per-

fect consensus. The data presented in Supplementary Table
ST4 provides a genomic approach to evaluating the contri-
bution of each base to the potential for in vivo p53 bind-
ing. In essence, the frequency of bound sites for a given tar-
get sequence provides information on the relative impact
of individual base changes on the direct binding of p53 to
targets across the genome under a variety of conditions in
many cell types. As described above, ∼75% of the perfect
sites in the genome are bound in at least one data set. A
mismatch (i.e. R to Y) in position 1 and 2 or in the mir-
ror image direction 20 and 19 (1→RRRCWWGYYY← 10
11→RRRCWWGYYYRRR←20) reduced the binding of
these singly mismatched sites to ∼55–60% (as compared to
∼75%), whereas R to Y changes at 3 and 18 reduced the
sites bound to ∼35% (Figure 2F). As expected, changes in
the core C and G positions (4 and 7, or 17 and 14), which are
key contact positions for p53, reduced binding much more,
∼11% and ∼3%, respectively. Overall this unique approach
to assessing the influence of a mismatch on binding in vivo
in natural chromosomal contexts provides insights into the
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relationship between the p53 protein and its preferred target
sequences.

Over 52% (9962/19 088) of p53 peaks in ≥2 data sets do
not contain a p53-like motif within the peak region. The
binding of p53 to sites that lack a p53 motif could result
from a variety of factors, including p53 interactions with
other proteins bound to DNA such as other TFs (55) as
well as to specific DNA structures (56). A search for known
motifs in peaks that lack a p53 motif using HOMER iden-
tified sequences commonly bound by CTCF, and the bZIP,
ETS, and Runx family of TFs (Supplementary Figure SF8).
p53 has been shown to interact with some members of each
family (e.g. ATF3, ETS2 and Runx1, respectively) (57–59).
HOMER also identified 1350 peaks that contained a p53
motif, which we did not call, suggesting our method for
identifying p53 motifs is conservative. In vitro, p53 binds
various DNA structures in a non-sequence-specific manner.
By way of example, we chose to examine p53 interactions
with G-quadruplexes (G4s), which have been investigated
in vitro (38,60). G4s form when single-stranded guanine-
rich DNA sequences fold into stable four-stranded helical
(non-B DNA) structures. G4s have been detected in the hu-
man genome in vitro and recently more than 10 000 have
been mapped in vivo; these are enriched in gene regulatory
regions and open chromatin (38,60). We found that 20% of
all p53 peaks that appear in ≥2 data sets are within 1 kb of
a G4 structure that was identified in vivo (P-value < 0.0001;
Supplementary Table ST5). Of the p53 peaks that do not
contain a p53 motif, ∼28% are near G4s, which is consis-
tent with the view that p53 may be able to bind G4 struc-
tures based on in vitro studies (61,62).

p53 binding and potential for transcription

Using ingenuity pathway analysis (IPA), we addressed path-
ways that might be regulated by p53 based on p53 bound
peaks in ≥2 data sets that contained a p53-like motif near
a TSS. As expected, we found 93 genes known to be in-
volved in p53 signaling, molecular mechanisms of cancer,
and cell cycle regulation that could be directly targeted by
p53. In addition to these well-known pathways, we uncov-
ered additional pathways that include G-protein coupled re-
ceptor (GPCR) signaling, neurotransmitters and other ner-
vous system signaling, growth factor signaling, cellular im-
mune response, and cardiovascular signaling (Supplemen-
tary Figure SF9). Thus, there is the potential for stress-
responsive p53 to broadly influence cellular biology through
direct targeting of a wide range of genes. This finding sup-
ports current views that p53 functions as more than just a
tumor suppressor (5).

We also examined opportunities for DNA-bound p53 to
influence RNA expression by means other than direct tran-
scription. Recently, p53 transcriptional regulation has been
expanded to include microRNAs (miRNA) (63–65) and
other non-coding RNAs (ncRNA), such as long intergenic
non-coding RNAs (lncRNAs) and enhancer RNAs (eR-
NAs) (8,20,66,67), which together are five times more nu-
merous than protein coding genes. miRNAs regulate gene
expression post-transcriptionally by RNA interference. The
lncRNAs, while less well understood, are emerging as key
regulators of diverse cellular processes. A p53 peak in ≥2

data sets was found within 5 kb of ∼12% of all annotated
ncRNA regions (see Materials and Methods), such that 256
miRNA and 973 lncRNA coding sequences were near a p53
peak in ≥2 data sets (Supplementary Table ST5). In addi-
tion, we identify the following putative p53 targets near p53
peaks that appear in ≥20 data sets: miR-2116, -4774, -6512,
-6867 and lnc-ADSS-2, -HMP19.1-1, -C9orf69-2, -ATAD1-
1. While the extent to which p53 may transcriptionally reg-
ulate these ncRNAs and downstream gene expression re-
mains to be determined, our findings with bound p53 sug-
gest a broad potential impact of p53 on expression dynam-
ics across the genome.

We extended our p53 binding analysis to sites that might
associate with enhancers or enhancer RNAs. p53 peaks
in ≥20 data sets were significantly enriched in transcrip-
tional enhancers based on chromatin state data from EN-
CODE (41) (Supplementary Figure SF10). In addition,
6820 (∼16%) of the ∼43 000 annotated active enhancers in
the human genome (37) are within 5 kb of a p53 peak in ≥2
data sets (Supplementary Table ST5). Thus, p53 also may
bind preferentially to enhancers with the consequent acti-
vation of transcription of distant genes through chromatin
looping, supporting selection for its broad role in transcrip-
tion. Indeed, a recent study showed that p53 is stably bound
to hundreds of enhancers including many that are within in-
accessible chromatin regions in normal human cells (68).

The transcriptome within p53 ChIP-seq gene expression data
sets

We addressed changes in expression within the p53 ChIP-
seq gene expression data sets. Of the 41 data sets that passed
all filters in our p53 ChIP-seq meta-analysis, only 22 had
associated gene expression data (microarray or RNA-seq).
However, of these only 16 contained replicate samples and
met our criteria for inclusion in our meta-analysis (see Ma-
terials and Methods). Among these 16 data sets, 7880 genes
were differentially expressed in at least one data set as com-
pared to controls following p53 activation (Supplementary
Table ST6). This information also has been incorporated
into the human p53 BAER hub. Of these differentially ex-
pressed genes (DEGs), 3613 appear in ≥2 independent data
sets. Among these p53-associated DEGs in ≥2 data sets,
47% are solely upregulated, 38% are solely downregulated,
and 15% are either upregulated or downregulated across
multiple data sets.

p53 cistrome–p53 binding targets with associated changes in
gene expression

While independent binding and transcriptome analyses can
identify genes potentially subject to transcriptional regu-
lation by p53, we wanted to identify the universe of gene-
specific p53 binding targets with a p53 motif that had asso-
ciated changes in gene expression. Combining the informa-
tion above for p53 bound peaks with the activated p53 tran-
scriptome, we extended our meta-analysis to genes at which
p53 bound at a p53 motif near the TSS and for which as-
sociated changes in expression were described in the same
study. We refer to these DEGs, which are potential direct
p53 targets, as p53 cistrome genes. Alternatively, they could
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be indirect p53 targets (possibly p53 associated with another
TF or structure, as described above).

Consistent with the previous analysis of Riley et al.,
which identified p53 binding sites that might directly affect
gene expression (3), we identified p53 binding peaks near a
TSS. In the 16 data sets, a total of 16 882 peaks were found
near a TSS, and 7880 genes were differentially expressed
as noted above (Supplementary Table ST7). Only 11%, or
1840 peaks, were associated with differential gene expres-
sion in at least one data set. This number corresponds to
1291 unique p53-associated DEGs, since some genes were
associated with several peaks. We then identified the p53-
associated DEGs that contained a p53-like motif based on
a modified p53 scan algorithm (4). This analysis gave 943
unique p53 cistrome genes corresponding to ∼73% of the
DEGs. HOMER analysis within peaks that did not con-
tain a p53 motif but also resulted in differential gene ex-
pression found sequences commonly bound by the bZIP
family of TFs (P-value 1 × 10−13). However, manual eval-
uation of each of the remaining 27% of peaks (348 genes)
indicated that most (307 genes) contained a p53-like mo-
tif, such as a half- or three-quarter-site or sites with mul-
tiple mismatches from the perfect consensus. We also an-
alyzed within +/- 1kb of the TSS or within the p53 peak
region (∼200 bp) of the cistrome genes for other TF bind-
ing sites. Only the p53 motif was found in both analyses.
Additionally, the bZIP family of TFs (P-value 1 × 10−31),
such as Fra1, JunB, BATF, Fra2, Atf3, AP-1, Fosl2, was
also found when the analysis is done within the p53 binding
peak regions. Among the 943 p53 cistrome genes, 70% are
upregulated, 27% are downregulated, and 3% were either
upregulated or downregulated (Figure 3A and Supplemen-
tary Table ST8). The association between p53 peaks, DEGs,
and cistrome genes for each of the 16 data sets are shown in
Supplementary Figure SF11. To make this cistrome analysis
more accessible, we have developed an interactive R Shiny
application of the data presented in Supplementary Table
ST8a.

We also examined whether p53 cistrome genes were more
likely to contain a perfect p53 consensus motif. Even though
54 perfect motifs located near a TSS were frequently bound
across data sets, only 25 are associated with changes in ex-
pression, corresponding to 24 cistrome genes (the perfect
motif with one spacer has a similar ratio (11/22)) (Supple-
mentary Table ST8). This result establishes that even with
an ideal sequence that is bound by p53, the likelihood of
changes in expression is similar regardless of the p53 se-
quence motif, suggesting the importance of factors in addi-
tion to binding that influence expression. Expression char-
acteristics of the cistrome genes with a perfect motif were
similar to the expression characteristics of the rest of the
cistrome genes: 14 were upregulated, 8 were downregulated
and 2 were upregulated or downregulated in different data
sets.

We then asked how p53 bound motifs for the 943 cistrome
genes were distributed with respect to distance from the TSS
compared to the 2375 genes, with a p53-motif-containing
peak in ≥2 data sets, in the same region (from -5 kb through
the 1st intron) that did not exhibit a change in expression

(Figure 3B). For the cistromes, similar numbers of p53 mo-
tifs were found within 5 kb upstream or downstream of the
TSS. Among all cistromes, 73% have a motif within this re-
gion; the remainder were further downstream of the TSS.
This distribution is similar to that reported by Riley et al.
(3). Moreover, the majority of bound motifs fell within 1 kb
upstream or downstream of the TSS. However, bound mo-
tifs near the TSS for genes that did not exhibit a change in
expression upon p53 activation exhibited a very similar dis-
tribution, again emphasizing the conclusion that binding is
not sufficient for the induction (or possible repression) of
transcription.

No p53 cistrome genes were found across all 16 data sets.
While p53 was found to bind 30 sites near a TSS in all 16
data sets, none of these sites resulted in changes in expres-
sion in all data sets. Yet for three of these sites, a change
in expression was found in 14 of the 16 data sets. Thus, al-
though p53 binding and associated expression is frequent
across data sets, binding does not always result in changes
in expression.

Among the 943 cistrome genes, 713 are newly identified
p53 targets (Figure 3C). The remaining 230 (22%) corre-
spond to most of the previously identified p53 target genes
(69). Of the 713 new genes, 441 exhibited enhanced expres-
sion, 252 showed repression and 20 had enhanced or re-
pressed expression in different data sets (Supplementary Ta-
ble ST8). These 713 genes fall into the following broad bi-
ological categories based on IPA analysis: neurotransmit-
ters and other nervous system signaling, cellular immune
response, GPCR signaling, cardiovascular signaling, cellu-
lar stress and injury, and cancer and cell junction signaling
(Figure 3D). We saw no apparent differences in pathways
between the upregulated and downregulated cistromes. As
examples, upregulated p53 targets include the RhoA in-
hibitor gene RIPOR2 (or FAM65B) that is involved in neu-
trophil polarization (70) and PDLIM1, a negative regulator
of actin cytoskeleton organization (71) and more recently of
NF-�B-mediated inflammatory responses (72). Downregu-
lated p53 cistrome genes include the adaptor protein gene
APBB2 that enhances the generation of the amyloidogenic
peptide A� associated with Alzheimer’s disease (73) and the
GPHN gene coding for a scaffold protein (Gephyrin) in the
postsynaptic protein network of inhibitory synapses (74).

We asked if there is a core cistrome signature that identifies
common, directly responsive p53 target genes. As shown in
Figure 4A, 28 p53 core cistrome signature genes were iden-
tified as appearing in at least eight of the 16 data sets. Un-
like for the bulk of the p53 cistrome genes where a third
are downregulated, the core cistrome signature genes only
exhibited upregulation. Eight of these genes (CDKN1A,
DCP1B, DDB2, MDM2, PLK2, RPS27L, TNFRSF10B
and TRIAP1) are bound in p53 control cells as well. We sug-
gest that these genes may be pre-bound for rapid upregula-
tion after p53-induction regardless of mechanism. Included
in the 28 core cistrome signature genes responsive to p53 ac-
tivation are genes involved in cell cycle, apoptosis, DNA re-
pair, p53 feedback, metabolism and survival/proliferation.
Additionally, we identify mRNA decay/protein degrada-
tion, immune, and motility genes.
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Figure 3. The p53 cistrome. (A) Distribution of the 943 p53 cistrome genes with respect to direction of expression regulation. (B) Distance of p53 motifs
from TSS of cistrome genes. The ‘-0’ category corresponds to -1 to -999 bp and the ‘0’ corresponds to 1–999 bp from the TSS. The distribution for p53
motifs beyond 10 kb downstream are not shown. The inset summarizes the distribution of p53 motifs for the 943 cistrome targets and for the 2375 genes,
with a p53 motif containing peak in ≥2 data sets near the TSS, that had no change in expression. (C) Overlap of p53 cistrome genes with previously
identified p53 targets. (D) IPA signaling pathways of the 713 potential new p53 cistrome target genes (with a Fisher’s Exact test P-value < 1 × 10−3).

DISCUSSION

Although p53 may be the most extensively studied TF, much
about its function and its targets remains unknown. Be-
cause of its importance as a human tumor suppressor and
its other recently discovered functions (e.g. Figure 3D and
4A), identifying the universe of p53 direct transcriptional
targets is clinically relevant, especially since many of these
may have therapeutic value. Over the past seven years, sev-
eral studies have used genome-wide, next-generation se-
quencing approaches to identify p53 binding sites in the hu-
man genome, and in some studies genome expression also
was analyzed. The individual studies have had limited suc-
cess in identifying new, direct p53 transcriptional targets.
Subsequent meta-analyses that have compared conclusions
between studies (reviewed in (69)) have resulted in little in-
crease in p53 cistromes or underlying mechanisms. We have
taken a different, more rigorous approach by reanalyzing
all the raw data from the individual ChIP-seq studies using
a single analysis workflow, then combining information us-
ing a common set of criteria. The 16 studies in which both
binding and associated expression could be compared were
similarly analyzed. Our approach provides a uniform anal-
ysis of the large body of p53 binding and expression infor-
mation.

Factors influencing p53 binding

Our meta-analysis information provides opportunities to
address factors that influence in vivo p53 binding at endoge-
nous sites and to compare with previously described in vitro
interactions between p53 and various target sequences as
determined kinetically (52,75,76) or by structural interac-
tions (53,54). We found that the more frequently a site is
bound across data sets, the more likely it contains a p53-
like motif. Most sites bound by p53 contain at least one mis-
match with respect to the perfect consensus sequence as sug-
gested from previous studies (77). For instance, only 15%
of our p53 binding sites that are seen in ≥20 p53 ChIP-seq
data sets contain a perfect consensus, while the remaining
85% have at least one mismatch. However, even if a site has
a perfect consensus sequence, p53 binding to the site is not
guaranteed as 25% of the perfect sites that exist in the hu-
man genome do not show enriched ChIP-seq signal in any
of the 41 data sets.

We addressed the influence of specific mismatches from
consensus (see Supplementary Table ST4), role of core
CWWG sequences, as well as proposed p53/DNA contacts.
Nucleotide changes in the C and G core dramatically affect
binding across data sets unlike mismatches at other posi-
tions. Interestingly, the in vivo differences in binding to a
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Figure 4. p53 core cistrome signature. (A) The p53 core cistrome signature
(genes that appeared in eight or more of the 16 data sets that had both
p53 binding and associated expression) is composed of genes functioning
in multiple effector networks. The core cistrome signature genes were sep-
arated into functional categories based on their GeneCards summary. (B)
A word cloud representation of 124 cistrome genes that appear frequently
(common in at least four data sets). The size of each word indicates its
frequency of overlap across data sets.

target with a single mismatch at the C (4 and 14) position vs.
the G (7 and 17) position of the core CWWG in Figure 2F
can be explained in terms of structural relations. Based on
the findings of Kitayner et al. (78), mismatches at the core C
and G positions highly impede DNA binding as these base
pairs anchor p53 to the DNA via two strong interactions be-
tween the G base and Arg280. The differential effects (4,14
versus 7,17) could be related to the different DNA envi-
ronments of the G/C bases (Shakked, personal communi-
cation). The four p53 core domains interacting with DNA
have the shape of a parallelogram with two internal and two
external p53 monomers across the DNA (referred to as A,
C and B, D, respectively, in Kitayner et al. (53)). The inter-
nal monomers closer to the center of the DNA interact with
the G/C base pairs at positions 7 and 14 and play a greater
role in stabilizing the tetramer on the DNA relative to the
external monomers that interact with the C/G base pairs at
positions 4 and 17, which explains the greater reduction in
binding of mismatches at 7,14 relative to 4,17.

We also explored possible reasons for binding to sites
without a p53-like motif. Many could be due to crosslink-
ing artifacts (especially if they do not appear in ≥2 data
sets (79,80)), interaction with other chromatin-associated
proteins, or binding to DNA structures such as G4s. As
described in the clutch-like model of TF binding (81),
molecules that undergo rapid turnover at non-motif sites
that may be non-functional (called ‘treadmilling’) may be-
come fixated during the ChIP-seq protocol. Quantitation

of p53 after activation or stabilization (6) indicates that cell
nuclei contain roughly a twentieth as many p53 dimers as
there are half-sites (780 000) in the human genome. p53
likely spends the vast majority of its time in the nucleus
closely associated with DNA, but only a fraction of this
time is it bound specifically to its motif (82,83). As noted
above, 52% of the p53 peaks in ≥2 data sets do not con-
tain a p53 motif, and half of these are near a TSS. p53 is
known to bind in vitro to several DNA structures, and it
may well be that it spends longer in association with cer-
tain non-specific sequences or possibly is confined within
chromatin structures during its search for specific binding
sites. Thus, the existence of p53 peaks in ≥2 data sets with-
out a motif but with similar ChIP-seq signal as peaks with a
motif may not be surprising. Analysis of how p53 is bound
at commonly bound sites should be possible using current
mass spectrometry techniques to determine the bases and
amino acid residues crosslinked.

p53 binding and transcription

Many questions about p53 and its transcriptional network
are addressable through our meta-analysis and p53 BAER
hub. For example, we investigated the influence of p53 mo-
tif and non-motif binding sites on expression as well as the
potential effect of other p53 targets (such as lncRNAs and
miRNAs) on gene expression, whether p53 is a direct tran-
scriptional repressor, as well as the significance of the exten-
sive p53 whole genome binding revealed by multiple ChIP-
seq studies that, so far, has not been associated with changes
in gene expression.

In addition to determining the role of sequence and spac-
ers in binding (Figure 2E), our analysis of p53 binding sites
allowed us to address a possible role for p53 bound se-
quences in expression across the genome. While the ability
to bind would obviously influence the level of expression,
there remains the question of whether the sequence itself,
including spacers, might influence expression. Although the
number of perfect sites (with no spacer) bound and near
a TSS is not large, nearly half of them (25/54) are associ-
ated with a change of expression. As noted in Figure 2E,
the likelihood of binding is greatly reduced by a spacer.
However, associated expression for bound sites near a TSS
does not appear to change. For a one base spacer 11/22 had
associated expression changes. Summing up all the bound
perfect motifs with 2–15 bp spacers near a TSS, we found
∼45% (17/38) are associated with expression changes. From
this we propose that while spacer greatly affects binding,
the likelihood of expression is independent of spacer (or
spacer sequence). The results were similar when this ap-
proach was extended to the 943 cistrome genes where the
p53 motifs contain multiple mismatches to the consensus.
Among these, 449 had no spacer, 72 had a single spacer
and for the remaining 422 cistrome genes they were approx-
imately evenly distributed between p53 motifs containing
2–15 bp spacers (average 30 cistrome genes).

Based on our summary results, binding of p53 to a motif
in a promoter region is not sufficient for transcription, as
only 11% of all p53 bound sites near the TSS of genes re-
sult in differential expression. Additionally, the bound mo-
tifs near the TSS of genes that did not exhibit a change
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in expression upon p53 activation were distributed simi-
larly to those of the cistrome genes, with respect to distance
from the TSS. Overall, the incidence of bound motifs is
greatly enhanced in the region within 1 kb of the TSS. Thus,
the lack of correspondence between binding and expression
suggests that additional context-dependent signals are re-
quired for a transcriptional response for many p53 regulated
genes.

An example of the differences in binding versus associ-
ated transcriptional program is demonstrated by comparing
data sets from doxorubicin (DXR)- versus nutlin-3-treated
cells. For DXR treatment, our meta-analysis contains 10
binding data sets, of which six included gene expression
data sets, compared with 10 and 5, respectively, for nutlin
treatment. While there is a 70% overlap between the DXR-
and nutlin-3-treated peaks in ≥2 data sets, only 36% of the
transcriptome DEGs in ≥2 data sets and 22% of cistrome
changes were common between these two treatments (Sup-
plementary Table ST9). Thus, each condition/cell type can
be considered as having its own group of p53 cistrome tar-
gets.

Our approach also provides the opportunity to examine
DEGs that do not have an associated p53 motif target se-
quence. Gene expression analysis following p53 activation
from 16 data sets revealed 3613 p53-associated DEGs that
appear in ≥2 independent data sets. Only 25% of these genes
have a p53 binding site near the TSS leaving ∼2700 genes
with no direct connection to p53 regulation, as defined by
binding near the TSS of the gene. It is possible that p53
may regulate some of these 2700 genes, but via mechanisms
other than binding near their TSS. One such mechanism
may involve regulation of other expression regulatory nodes
or ncRNAs. p53 is able to actively influence transcription
from distal sites containing p53 binding sequences that are
located in regions classified as closed chromatin based on
chromatin histone modifications profiles (12) as well as at
active enhancers (84). Our meta-analysis reveals that p53
binds and may regulate 12–15% of all ncRNAs, namely
miRNAs, lncRNAs, and eRNAs or enhancers. Therefore,
future studies to determine whether p53 regulates the ex-
pression of the ncRNAs that p53 binds and the subsequent
gene targets of these ncRNAs will greatly expand the p53-
influenced network/universe.

Since p53 peaks that appear in ≥20 data sets are enriched
in enhancer marks and p53 peaks in ≥2 data sets are near
15% of active enhancers, understanding the 3D architecture
of the genome and how chromosomal folding and loop-
ing bring distant enhancers in close contact with promoters
of target genes may also increase the p53 responsive uni-
verse. Thus, chromosome conformation capture studies to
map topologically associating domains (TADs) in various
cell types and conditions to determine the neighborhood of
target genes that p53 enhancers could target would greatly
benefit the p53 field. While enhancers usually regulate ex-
pression within TADs and not between neighboring TADs
(85), it would be interesting to examine whether p53 gain-
of-function cancer mutants could ignore boundary regions
to regulate across neighboring TADs (86). Therefore, map-
ping the spatial configuration of the genome may reveal that
some of these 2700 genes are additional p53 direct targets.

Recent studies suggest p53 binding may play a role in
opening chromatin (12,87). p53 recognition and interaction
with genome regions associated with epigenetic changes
such as CpG islands may induce global redistribution of the
p53 binding and reprogram its transcriptional network de-
pending on the context of the stress detected. In our meta-
analysis, we found that approximately a third of the p53
cistrome targets have a peak within or near CpG islands.
Future studies could determine if accessible chromatin is
required for p53 binding or p53-mediated transcriptional
regulation and whether this affects target gene transcription
in a cell- or treatment-dependent manner. Such studies will
facilitate interpretations of the p53-dependent tumor sup-
pression program as well as other emerging functions in the
context of dynamic chromatin and potentially would reveal
novel TF-epigenomic global patterns.

p53 cistrome genes

In this study, we establish that the direct, targeted influence
of p53 on gene expression is much larger than previously in-
dicated. We identified 943 human p53 cistrome genes, which
corresponds to a nearly three-fold increase in the number
of p53 target genes (69). The increase is due in part to our
method of p53 motif analysis that goes beyond the more
traditional approaches that primarily employ 20 base posi-
tion weight matrix methods to identify p53 binding. We also
include half-sites as well as half-sites separated by up to 15
bases (4). Recalling that all 16 expression studies were rig-
orously analyzed using the same criteria (see Materials and
Methods), the DEGs in each study represent potential valid
p53 regulated genes regardless of the number of studies in
which they appear.

Among the cistrome genes, 659 (70%) are upregulated,
256 (27%) are downregulated and 28 can be either upreg-
ulated or downregulated. Downregulation has been pro-
posed to be through an indirect mechanism. Recently, di-
rectly bound p53 was proposed to function only as an acti-
vator (88,89). Repression by activated p53 was suggested to
occur through the DREAM repression complex (DP, RB-
like, E2F4, and MuvB) in a manner that requires p21 in-
duction (90) or through the miRNA-mediated pathway (65)
rather than by direct binding of p53 to motif targets. Of
the p53 transcriptome genes in ≥2 data sets in our study,
533 (15%) correspond to DREAM targets (Supplementary
Figure SF12A) identified by Fischer et al., (90). Consistent
with that study, 88% of the 533 genes were downregulated.
Thus, repression related to p53 activation can be indirect
through the DREAM complex. Among the 943 cistrome
genes, about one-fourth (256 genes) were only downregu-
lated. However, only 37 of the p53 downregulated cistrome
genes are DREAM targets (Supplementary Figure SF12B).
In addition, HOMER analysis for sites within +/- 1 kb of
the TSS or within the p53 peak region of the 256 repressed
cistrome genes did not identify a DREAM-associated mo-
tif.

The mechanism(s) of downregulation of repressed
cistrome genes requires further investigation, since all of
these genes contain p53 binding at a p53 motif. We note
that there is a difference in the frequency of downregu-
lated vs. upregulated cistromes. While none of the 256 re-
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pressed cistrome genes appeared in more than three studies,
122 upregulated p53 cistrome genes were found in four or
more studies. Furthermore, 3% of the p53 cistrome targets
were found to be activated in some experimental conditions
while repressed in others, suggesting repression may be cell
or treatment specific. Contrary to what has been proposed,
from our analysis we cannot exclude that p53 mediates di-
rect gene repression at sites with or without the p53 motif.
Repression could also be due, for example, to recruitment
of co-repressors, or by displacement of specific activators
from promoters due to the presence of overlapping binding
sites.

The p53 cistrome is likely modulated by the nature and
duration of the stress signal, the cell type, other TFs and
cofactors, chromatin, etc. Consequently, other factors may
be required to coordinate and cooperate with p53 to turn
on the transcriptional program. For example, the cistrome
compilation from our meta-analysis contains several data
sets employing various exposure times to a common agent,
such as DXR (six data sets) or nutlin-3 (five data sets), or
collected at the same time point (24 hr) but treated with a
variety of agents (ten data sets). Identification of those p53
cistrome genes appearing in at least 50% of the data sets
identified 84 cistrome targets after DXR treatment, 38 tar-
gets after nutlin-3 treatment, and 21 cistrome targets 24 hr
after treatment with various agents (Supplementary Figure
SF13 and Supplementary Table ST8). A similar approach
can be used to compare normal vs. cancer cells. Thus, there
appear to be cistrome genes that are common (Figure 4B) as
well as specific to each treatment condition (Supplementary
Figure SF14).

From the many cistrome genes, we identified a p53 core
cistrome signature of 28 genes regardless of the experimen-
tal conditions, suggesting a more universal functional im-
portance of the corresponding genes (Figure 4A) in the p53
transcriptional network. The observation that all of them
are upregulated in response to activated p53 may indicate
a special biological role, possibly a more rapid response for
upregulation versus downregulation, or a need to coordi-
nate pathways. Our meta-analysis also allowed us to con-
firm that p53 binds cistrome genes in the absence of ex-
ternal stress stimuli (no treatment or DMSO), suggesting
that these sites are pre-bound or ‘poised’ for rapid regula-
tion after p53-induction to stress. p53 binding at some of
these sites also may influence the basal expression of nearby
genes (91). Included among the 28 core cistrome signature
genes eight were also poised, including CDKN1A (92,93).
This would be consistent with the idea of a rapid response
by core signature genes.

Many factors in p53 biology have been evolutionarily se-
lected that are expected to influence the p53 network be-
yond just tumor suppression (94). As summarized in this
meta-analysis, p53 can induce qualitatively different pro-
grams that produce various biological outcomes depend-
ing on cell type and stimulus. For fully successful biolog-
ical responses to p53, crosstalk is required between input
and output pathways. An emerging number of pathways
modulated by p53 also may modulate p53, for example, the
Hippo pathway, DREAM repression, and NF-�B signaling

(90,95–97). Thus, a core set of genes that touch the various
pathways as a p53 super-hub (94) could provide a coordi-
nated and integrated response system across biological pro-
cesses. Knowledge of the 28 core cistrome signature genes,
the overall p53 cistromes, as well as the p53 network has sev-
eral utilities including assessing p53 determined responses
across tissues and exposures in clinical studies and the iden-
tification of therapeutic targets.

Our approach has led to the identification of new poten-
tial p53 transcriptional targets involved in processes not im-
mediately related to classical p53 outcomes, for example, the
immune response. Furthermore, in this work we presented
the first p53 binding and associated transcription in human
T lymphocytes, a central component of immune responses.
We identify 50 potential cistrome genes directly involved in
cellular immune processes, including CD14, IL12A, IL33,
and TRAF5. Our recent studies have emphasized the influ-
ence of p53 in modulating the immune system, which de-
fends against external and internal threats as well as tu-
morigenesis. DNA damage can trigger p53 dependent in-
flammatory responses that contribute and help orchestrate
the clearance of tumor cells triggering a senescence program
and influencing tumor suppression. Activation of p53 leads
to the transcriptional regulation of two of the major innate
immune gene families: APOBEC3 and Toll-like receptor
(98,99). We also show that p53 and the immune master regu-
lator NF-�B coregulate proinflammatory gene responses in
human macrophages (100). Others have reported that p53
transcriptional targets include several interferon stimulated
immune genes such as IRF5, IRF9 and ISG15, as reviewed
in (101). Therefore, the existence of p53 immune cistrome
genes reveals p53 as a central mediator and amplifier of the
global innate immune responses and highlights its impor-
tant physiological role in the immune system, providing a
new dimension to the broad role that p53 plays in human
biology.

Overall, our meta-analysis provides the opportunity to
identify signatures for p53 binding and for associated ex-
pression, thereby enhancing our understanding of similar-
ities and differences in directly driven changes, as well as
potential changes, in the p53 universe. The resulting human
p53 BAER hub we developed, which can be merged with
any UCSC data, provides ready access to many aspects of
the human p53 universe including p53 binding, changes in
expression as well as cistrome genes. Additionally, we cre-
ated a p53 analysis page on the ORIO web application (102)
and a p53 cistrome R Shiny application to provide a re-
source for users to interactively analyze and compare p53
ChIP-seq and cistrome data, respectively. Applying this in-
formation to biological networks, we identified new roles
for p53 in several pathways that go beyond the traditional
view as guardian of the genome. There is a commonality of
bound sites and cistromes across normal and cancer cells
as well as p53 activating agent or time after activation. Our
analysis has created a basal and activated p53 binding map
of the human genome. The information can be used to test
concepts developed from in vitro studies. Questions that ad-
dress the influence of sequence and chromosome structure
on p53 binding at endogenous sites are now accessible.
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Eckman,C.B., Tanzi,R.E. and Guénette,S.Y. (2003) Generation of
the �-amyloid peptide and the amyloid precursor protein C-terminal
fragment � are potentiated by FE65L1. J. Biol. Chem., 278,
51100–51107.

74. Tretter,V., Mukherjee,J., Maric,H.-M., Schindelin,H., Sieghart,W.
and Moss,S.J. (2012) Gephyrin, the enigmatic organizer at
GABAergic synapses. Front. Cell. Neurosci., 6, 23.

75. Veprintsev,D.B. and Fersht,A.R. (2008) Algorithm for prediction of
tumour suppressor p53 affinity for binding sites in DNA. Nucleic
Acids Res., 36, 1589–1598.

76. Weinberg,R.L., Veprintsev,D.B., Bycroft,M. and Fersht,A.R. (2005)
Comparative binding of p53 to its promoter and DNA recognition
elements. J. Mol. Biol., 348, 589–596.

77. Menendez,D., Inga,A., Jordan,J.J. and Resnick,M.A. (2007)
Changing the p53 master regulatory network: ELEMENTary, my
dear Mr Watson. Oncogene, 26, 2191–2201.

78. Kitayner,M., Rozenberg,H., Kessler,N., Rabinovich,D., Shaulov,L.,
Haran,T.E. and Shakked,Z. (2006) Structural basis of DNA
recognition by p53 tetramers. Mol. Cell, 22, 741–753.

79. Baranello,L., Kouzine,F., Sanford,S. and Levens,D. (2016) ChIP
bias as a function of cross-linking time. Chromosome Res., 24,
175–181.

80. Verfaillie,A., Svetlichnyy,D., Imrichova,H., Davie,K., Fiers,M.,
Kalender Atak,Z., Hulselmans,G., Christiaens,V. and Aerts,S.
(2016) Multiplex enhancer-reporter assays uncover unsophisticated
TP53 enhancer logic. Genome Res., 26, 882–895.

81. Lickwar,C.R., Mueller,F., Hanlon,S.E., McNally,J.G. and Lieb,J.D.
(2012) Genome-wide protein-DNA binding dynamics suggest a
molecular clutch for transcription factor function. Nature, 484,
251–255.

82. Tafvizi,A., Huang,F., Fersht,A.R., Mirny,L.A. and van Oijen,A.M.
(2011) A single-molecule characterization of p53 search on DNA.
Proc. Natl. Acad. Sci. U.S.A., 108, 563–568.

83. Tafvizi,A., Mirny,L.A. and van Oijen,A.M. (2011) Dancing on
DNA: kinetic aspects of search processes on DNA. Chemphyschem.,
12, 1481–1489.
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