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Abstract

Motivation: A major goal of drug development is to selectively target certain cell types. Cellular de-

cisions influenced by drugs are often dependent on the dynamic processing of information.

Selective responses can be achieved by differences between the involved cell types at levels of re-

ceptor, signaling, gene regulation or further downstream. Therefore, a systematic approach to de-

tect and quantify cell type-specific parameters in dynamical systems becomes necessary.

Results: Here, we demonstrate that a combination of nonlinear modeling with L1 regularization is

capable of detecting cell type-specific parameters. To adapt the least-squares numerical optimiza-

tion routine to L1 regularization, sub-gradient strategies as well as truncation of proposed optimiza-

tion steps were implemented. Likelihood-ratio tests were used to determine the optimal regulariza-

tion strength resulting in a sparse solution in terms of a minimal number of cell type-specific

parameters that is in agreement with the data. By applying our implementation to a realistic dy-

namical benchmark model of the DREAM6 challenge we were able to recover parameter differ-

ences with an accuracy of 78%. Within the subset of detected differences, 91% were in agreement

with their true value. Furthermore, we found that the results could be improved using the profile

likelihood. In conclusion, the approach constitutes a general method to infer an overarching model

with a minimum number of individual parameters for the particular models.

Availability and Implementation: A MATLAB implementation is provided within the freely avail-

able, open-source modeling environment Data2Dynamics. Source code for all examples is pro-

vided online at http://www.data2dynamics.org/.

Contact: bernhard.steiert@fdm.uni-freiburg.de

1 Introduction

The progress in the development of experimental assays like the es-

tablishment of high-throughput measurement techniques raised new

demands on statistical methodology. Many scientific questions in

the field of Bioinformatics and Systems Biology nowadays require

large models with hundreds or even thousands of parameters or

variables. Therefore, a major issue in many applications is feature

selection, i.e. determination of informative parameters or variables,

which are required to explain experimental observations, for identi-

fication of differential expression and/or for making reliable

predictions.

Selecting parameters of interest is one of the most important

tasks during modeling as it heavily influences predictions. In many

cases, feature selection is equivalent to model discrimination (Box

and Hill, 1967) since a set of features corresponds to a specific

model with a corresponding set of parameters. In multiple linear re-

gression, as an example, feature selection corresponds to choosing

appropriate prediction variables used to fit an experimentally

observed response variable. The traditional approach for choosing a

suitable level of detail and the respective optimal set of features is it-

eratively testing many models (Thompson, 1978), i.e. different sub-

sets of features by forward- or backward selection or combinations

thereof (Efroymson, 1960; Hocking and Leslie, 1967). However, if

the number of potential predictors is large, the number of possible

combinations increases dramatically as shown in Figure 1, rendering

such iterative procedures as infeasible.

Regularization techniques have been suggested as an alternative

approach for selecting features and fitting parameters in a single

step. The idea is to estimate the parameters by optimizing an appro-

priate objective function, e.g. by maximizing the likelihood. If then,

in addition, the impact of individual features is penalized, the opti-

mal solution becomes sparse and the level of sparsity can be con-

trolled by the strength of penalization. It has been shown that such

penalties are equivalent to utilization of prior knowledge supple-

mental to the information provided by the data.
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The additional information provided by penalties reduces the

variance of the estimated parameters but at the same time introduces

a bias. This effect has been termed as shrinkage. If the regularizing

penalties are chosen appropriately, e.g. if the L0- or L1-norms are

applied, a second effect occurs which can be utilized for selection.

Because the L0- and L1-norms penalize parameters unequal to zero,

only parameters remain in the model, which are mandatory for ex-

plaining the data. Since the penalized likelihood is discontinuous for

L0 regularization, L1 penalties are usually preferred.

The concept of using the L1-norm for data analysis and for cali-

brating a model has been applied in several fields like for deconvolu-

tion of wavelets (Taylor et al., 1979), reconstruction of sparse spike

trains of Fourier components (Levy and Fullagar, 1981), recovering

acoustic impedance of seismograms (Oldenburg et al., 1983) as well

as for compressed sensing (Candes and Wakin, 2008; Cheng, 2015)

and clinical prediction models (Hothorn and Bühlmann, 2006).

Additionally, it has been used to establish statistical methods which

are robust against violations of distributional assumptions about

measurement errors (Barrodale and Roberts, 1973; Claerbout and

Muir, 1973). Moreover, L1 penalties have been utilized to incorpor-

ate Laplacian priors (Kab�an, 2007). Despite this variety of applica-

tions, the usability for feature selection and a comprehensive

statistical interpretation was not established until introduction of

the LASSO (least absolute shrinkage and selection operator). This

prominent approach for linear models was published in Tibshirani

(1996) when the first affordable high-throughput techniques were

available and the necessity of new approaches for analyzing high-

throughput data became inevitable.

The standard LASSO has been generalized and adapted specific-

ally in several directions. Feature selection via LASSO was discussed

for the regression case in more detail in Tibshirani (1996), for Cox-

regression in Tibshirani (1997), and for clustering e.g. in Witten and

Tibshirani (2010). The elastic net has been introduced as a combin-

ation of L1 and L2 regularization (Zou and Hastie, 2005). The so-

called group-LASSO has been established to select between prede-

fined groups of features (Ming Yuan, 2006), the fused LASSO has

been introduced to account for additional constraints of pairs of

parameters (Tibshirani et al., 2005), and the generalized LASSO has

been developed to regularize arbitrary prespecified parameter linear

combinations (Tibshirani and Taylor, 2011).

Mechanistic ordinary differential equation (ODE) models are

applied in Systems Biology for describing and understanding cellular

signal transduction pathways, gene regulatory networks, and metab-

olism. For such ODE models, the selection issue occurs when several

cell types are considered. Since each cell type has different concen-

trations of intracellular compounds and diverse structures, each par-

ameter of a reaction network could potentially be different. We

suggest L1 regularization in this setting to predict parameter differ-

ences between cell types. In contrast to the usual context of L1 regu-

larization, cell type-specific parameters instead of variables are

selected. All components of mechanistic models have counterparts

in the biological pathway of interest. Therefore, the models are large

and the effect of the parameters on the dynamics is typically strongly

nonlinear. For estimating parameters in such ODE models, only a

small subset of optimization routines in combination with appropri-

ate strategies for calculating derivatives of the objective function,

dealing with non-identifiability, handling of local minima etc. are

applicable (Raue et al., 2013). We therefore augment an existing

and well-tested implementation for parameter estimation for such

systems (Raue et al., 2015) to perform selection of cell type-specific

parameters based on L1 regularization. For this purpose, trust-

region optimization (Coleman and Li, 1996) was combined with a

suitable strategy as presented in Schmidt et al. (2009) to enable effi-

cient optimization in the presence of L1 penalties in nonlinear

models.

Since shrinkage, i.e. decreasing the variance by introducing a

bias is not intended for mechanistic models, we only use L1 regular-

ization for selection, i.e. determining the cell type-specific param-

eters, and then use the resulting parsimonious model to estimate the

unbiased magnitude of all parameters in a second step. An appropri-

ate strategy for choosing the optimal regularization strength in this

setting is presented. The applicability is demonstrated using a bench-

mark model from the DREAM (Dialogue for Reverse Engineering

Assessment and Methods) parameter estimation challenge (Meyer

et al., 2014). The presented approach constitutes a suitable method-

ology to infer cell type-specific parameters. In addition, these could

be used to predict cell type-specific sensitivities for drugs, which is a

prominent challenge in cancer research.

2 Problem statement

Given a modelM describing the kinetics of c reaction network com-

ponents xq with q 2 ½1; . . . ; c� by a system of ODEs

_xðtÞ ¼ f ðxðtÞ; uðt; puÞ; pxÞ (1)

with a solution vector x(t) representing concentrations of molecular

compounds, for external inputs u(t). States x are mapped to experi-

mental data y using an observation function g, yielding

yðtÞ ¼ gðxðtÞ;pyÞ þ �ðrðpr; xðtÞÞÞ: (2)

The measurement error � � Nð0; r2Þ is assumed to be normally

distributed according to an error model rðpr;xðtÞÞ, although the

presented approach is not limited to this assumption. Initial concen-

trations p0, as well as parameters px of the ODE, pu of the input, py

of the observation function, pr of the error model, are subsumed in

the parameter vector

p ¼ ½p0;px; pu;py; pr�: (3)

The expressions (Equations 1–3) fully specifyM. To ensure posi-

tive values and improve numerical stability, all parameters are log-

transformed.

Fig. 1. Naı̈ve approach to select cell type-specific parameters. Each parameter

pi for two cell types could be either cell type-independent or -specific. Then,

the log fold-change ri ¼ log10ðpi ;ct2=pi;ct1Þ is either ¼ 0, or 6¼ 0, respectively.

Hence, the number of model candidates (circles) grows exponentially with

the number of potential cell type-specific parameters (x-axis)
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Given data from two cell types can be described by a common

ODE structure (Equation 1). Then, in general, the parameters p are

specific for each cell type (ct), i.e. pct1 6¼ pct2. However, some of the

components of pct1 and pct2 may be independent from the cell type.

Discovering which of the components in pct1 and pct2 are most likely

to be cell type-specific is the main topic of this manuscript. A naı̈ve

approach is to simply test all possibilities for cell type-specific par-

ameters. However, as depicted in Figure 1, the number of model

candidates grows exponentially with the number of parameters, ren-

dering such an approach as infeasible.

2.1 Unbiased parameter estimation
To estimate parameters p for n data points yj, given the correspond-

ing observation function observation gðxðtjÞ; pyÞ, which is dependent

on the ODE solution, the negative 2-fold log-likelihood

�2 logLðpÞ ¼
Xn

j¼1

ðyj � gðxðtjÞ;pyÞÞ2

r2
j

¼: v2 (4)

is optimized, resulting in the maximum likelihood estimate

bp ¼ arg min v2ðpÞ
� �

: (5)

In general, the ODE system cannot be solved analytically.

Therefore, numerical methods as implemented in the

Data2Dynamics modeling environment (Raue et al., 2015) are used

for calculating ODE solutions and performing maximum likelihood

estimation. In addition, we employ multi-start deterministic local

optimization as an established approach to ensure that bp is in fact

the global optimum, as presented in Raue et al. (2013).

2.2 Regularization
Regularization constitutes a prominent method to incorporate prior

knowledge, for parameter selection, or to improve numerics of par-

ameter estimation. Here, we use Lk regularization by a penalty to as-

sess the fold-change ~ri of parameters between cell type 1 and cell

type 2, i.e. pi;ct2 ¼ ~ri � pi;ct1. Therefore, the penalized likelihood

v2
Lk
ðp; rÞ ¼ v2ðpÞ þ k

X
i

jlog ~rijk
 !1=k

(6)

is implemented consisting of the likelihood (Equation 4) and a Lk

regularization term weighted by k. In the following, we substitute

ri :¼ log ~ri. The regularization term corresponds to a prior in a

Bayesian framework: e.g. for k¼1 the L1 prior is a Laplacian func-

tion, and for k¼2 the L2 prior is a Gaussian function. Using the

definition

jjrjjk :¼
X

i

jrij
k

 !1=k

(7)

of a Lk-norm, we derive properties of Lk for ranges of k 2 Rþ, simi-

lar to Vidaurre et al. (2013). L0 is the apparent choice for parameter

selection due to its direct penalization of the number of ri 6¼ 0.

However, L0 is not recommended because the associated optimiza-

tion problem is known to be NP-hard, i.e. the exact solution cannot

be obtained within polynomial computation time. In general, for

k<1, the Lk metric is non-convex which severely hampers numer-

ical methods for parameter estimation. On the positive side, k � 1,

for example L0 and L1, induces sparsity with the results usually

being similar. In contrast, the Lk metric for k>1 does not lead to

sparse results. L2, which is the metric used for the well-known least

squares, can be handled efficiently but does not produce sparse

results without introducing heuristics. In that sense, the L1 metric is

unique because it is the only one that combines both features, con-

vexity and sparsity. Therefore, L1 is the natural choice for parameter

selection and is used in the following.

Figure 2 demonstrates how sparsity is induced by the L1-norm.

In the upper row, the data contribution (v2) is depicted by the solid

black line, representing a hypothetical model. The L1 contribution is

shown by the dashed blue line. With increasing k from panels left to

right, the influence of the L1 term is increased. The lower row shows

the penalized likelihood (Equation 6) for k¼1, i.e. the sum of the

two lines in the corresponding upper panel. For k ¼ 0:5, the min-

imum is shifted towards zero (middle panel) in contrast to the

unregularized minimum (left panel) but still different from zero. In

contrast, the minimum is exactly at zero for k¼2 (right panel).

2.3 Regularized parameter estimation
Optimization in context of partially observed nonlinear coupled

ODEs is challenging. However, methods have been developed to ef-

ficiently compute solutions of this problem (Raue et al., 2013). To

augment the existing implementations with L1 regularization, i.e. to

minimize the penalized likelihood

v2
L1
ðp; r; kÞ ¼ v2ðpÞ þ k

X
i

jrij (8)

the adaptations described in the following were implemented.

Efficient optimization routines like Gauss-Newton or Levenberg-

Marquardt exploit the quadratic form in Equation (4). For example,

the implementation of a trust-region method lsqnonlin in MATLAB

requires residuals

resj ¼
yj � gðxðtjÞ; pyÞ

rj
(9)

for data points yj as input and implicitly calculates the value of the

objective function by summation over squares of all residuals. To

enable optimization of the penalized likelihood (Equation 8),

resi ¼

ffiffiffiffiffiffiffiffi
jrij
1=k

s
(10)

is appended to the residuals vector for each fold-change ri. The asso-

ciated sensitivities

Fig. 2. Sparsity and bias introduced by L1 regularization. Regularization

weight k is increased from panels left to right. In the upper row, the contribu-

tions from the data (v2—black line) and a L1 regularization term (dashed blue

line) are shown. Their sum is plotted in the lower row. For k ¼ 0:5, a bias is

introduced shifting the minimum towards zero (middle column). When k is

increased to 2, the minimum is exactly at zero, i.e. sparsity is induced (right

column)
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sresij :¼ @resj

@pi
(11)

to the regularization residuals resi are calculated as

sresii ¼
sgnðriÞ
2
k

ffiffiffiffiffiffi
jri j
1=k

q : (12)

The gradient components

rri
v2

L1
¼ 2 resi � sresii ¼ 6k (13)

coincide with the slope 6k induced by the L1 term. For ri¼0,

Equation (12) is not defined. In this case, the convergence criterion

ðbp;brÞ ¼ arg max
ðp;rÞ

v2
L1
ðp; r; kÞ (14)

()
rpi

v2 ¼ 0; 8i

rri
v2 þ k signðbriÞ ¼ 0; for jbrij > 0

jrri
v2j � k; for bri ¼ 0

8>><>>: (15)

is implemented for ri¼0 by setting

sresii ¼ 0; for jriv2ðriÞj > k

sresij ¼ 0 8j; for jriv2ðriÞj � k:

(
(16)

The rationale behind Equation (15) is that in addition to the clas-

sical optimization criterion of vanishing gradient, the L1 gradient ei-

ther compensates the data gradient, or the L1 contribution

dominates the data gradient and constrains the estimate to its centerbri ¼ 0. During optimization, this parameter-wise convergence criter-

ion is checked for each candidate ri at every optimization step. If the

latter criterion is fulfilled, the derivative of each residual resj with re-

spect to ri is set to zero, i.e. sresij ¼ 08j. Thereby, ri is fixed to zero

for the next iteration step. If at a certain optimization step, the con-

vergence criterion is violated, only the ith L1 contribution to the gra-

dient is set to zero. This in turn enables ri that were zero to be

released during optimization if there is enough evidence in the data.

Both options are formulated in Equation (16).

The L1 metric has a discontinuous derivative at zero. Therefore,

the optimization routine encounters sudden jumps of the derivatives

as the sign of ri changes. For n parameters, there exist 2n combin-

ations of signs. These hyper-quadrants are called orthants. For an ef-

ficient optimization, proposed optimization steps from one orthant

to another have to be avoided. There are several methods that cope

with this problem. They have in common that they split a proposed

optimization step into two: first a step towards zero, then potentially

a step away from zero. Their major difference is the strategy how

zero-values are achieved. To mimic most of the original behavior of

trust-region based methods, we implemented the truncation, i.e.

scaling, of an optimization step such that the orthant is maintained.

Both convergence and truncation are depicted in Figure 3.

2.4 Regularization strength k

To choose the optimal value k� of the regularization strength, k is

scanned from low to high values and the unregularized likelihood is

re-optimized until the mismatch between model and data is too large

to accept the associated simplification. Thus, likelihood-ratio statis-

tics are employed to discover admissible values. For L1 based par-

ameter selection, cross validation has been suggested as an

alternative approach to choose the final value for the regularization

weight k. However, for nonlinear models, leaving data out could

produce non-identifiabilities and the effect on the prediction error

can be ambiguous. Therefore, we decided to use an information the-

ory based test criterion. The most prominent methods are the likeli-

hood ratio test (LRT; Wilks, 1938), the Akaike information

criterion (AIC; Akaike, 1974) and the Bayesian information criter-

ion (BIC; Schwarz, 1978). In certain settings these are equivalent:

AIC resembles LRT for fixed a ¼ 15:6% and one degree of freedom.

Further, AIC is known to select systematically too large models and

is thus not a consistent model selection criterion, especially for many

data points. BIC considers the number of data points and is a con-

sistent model selection criterion. Moreover, BIC is equivalent to

LRT with an adjusted a level. Therefore, we only use the LRT in the

following without loss of generality.

For certain values of k, each ri is estimated either to zero or non-

zero by optimizing Equation (8). Then, using Equation (4) the

unbiased maximum likelihood estimate is calculated, under the con-

straint that fold-changes with bri ¼ 0 are fixed to zero. The value of

the objective function for this constrained but unbiased solution is

denoted as v2
k . The LRT statistic

DðkÞ ¼ v2
k � v2

k¼0 (17)

quantifies the discrepancy to the full model with solely cell type-

specific parameters. The cut-off for determining the parsimonious

model, i.e. the model with a minimal number of differences for a

given a level which allows fitting the data, is given by the v2
mk ;a

distri-

bution with degrees of freedom mk ¼ #ri � #ðbri ¼ 0Þk. Thus, the

parsimonious model is given by

k� ¼ max k s:t: DðkÞ < v2
mk ;a

(18)

We use the significance level a ¼ 0:05 in the following.

2.5 Profile likelihood
The profile likelihood (PL) constitutes a method to calculate confi-

dence intervals (CI) of parameters or predictions, see Raue et al.

(2009) and Kreutz et al. (2012) for an overview. It only requires

weak assumptions and therefore performs well even for strongly

nonlinear problems where asymptotic methods based on the Fisher

Information matrix fail. The basic idea is to fix a certain model

quantity of interest, e.g. a parameter, and re-optimize all remaining

parameters. This re-optimization procedure is iterated for different

Fig. 3. Convergence criterion and truncation for an optimum of v2
L1

at zero.

Left panel: the implementation considers a L1 regularized parameter ri¼0 to

be converged if the gradient from the data (v2—black line) is smaller than the

slope of the L1 term (dashed blue line). For ri¼ 0, the algorithm compares the

red line, which is the slope of the black line at this point, to the blue dashed

line. In this example, the slope of the L1 term is larger than that of the v2 term,

hence the minimum is at zero and the corresponding entries in the sensitivity

matrix are set to zero. Right panel: The black arrows from top to bottom give

a cartoonish representation of optimization steps. To avoid jumping back and

forth, i.e. numerical instability by changing the sign of ri due to discontinu-

ously changing slope of L1, optimization steps are truncated to the boundary

of the orthant as indicated by the red arrow
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fixed values of the quantity of interest. By comparing the increase in

v2 with respect to the maximum likelihood the CI is calculated.

Here, we use the PL to check the parameter differences dis-

covered by our L1 based implementation. Thus, the unregularized

PL of a fold-change parameter ri that has been proposed using L1

regularization is calculated. If selection was successful, the PL

should not be compatible with zero. This interpretation is equivalent

to a likelihood ratio test between the null model ri¼0 and the alter-

native model ri 6¼ 0. Note that we did not use the PL in the first

place, as the combinatorial issue shown in Figure 1 is not solved by

this approach.

In addition, the PL can be used to investigate the uniqueness of

the solution. In a non-unique setting there are multiple alternatives

to select parameter differences. For instance, a selected cell type-

specific parameter could be exchanged with another parameter that

was not selected as different. For testing uniqueness, the PL for each

ri with estimate bri ¼ 0 is calculated. This is equivalent to testing a

model with one additional free parameter (ri) in comparison to the

parsimonious model (bri � 0). If inside the CI of ri, another param-

eter that was originally different to zero is then compatible with

zero, one cannot decide, based on the given data, which one is differ-

ent. To resolve such an ambiguity, either additional experimental

data needs to be collected, or the biologically more reasonable solu-

tion could be chosen.

3 Approach

The approach presented in this manuscript extends the available

methodology as implemented in the Data2Dynamics modeling en-

vironment (Raue et al., 2015) by L1 regularization. Data2Dynamics

is a state-of-the-art software package that has been used in a variety

of applications (Bachmann et al., 2011; Becker et al., 2010; Beer

et al., 2014) to perform parameter estimation, uncertainty analysis,

and experimental design of partially observed nonlinear ODE sys-

tems. In the following, we summarize the L1 specific enhancements

in addition to the established modeling routine as implemented in

our approach for discovering cell type-specific parameters.

Given an overarching model that is able to describe two cell

types with two independent parameter vectors pct1 and pct2 for cell

types 1 and 2, respectively. Fold-changes ri are calculated to express

the parameters of cell type 2 relative to cell type 1, i.e.

pi;ct2 ¼ ~ri � pi;ct1. Equation (8) is used to L1 penalize deviations of the

fold-change parameter vector r to zero. In contrast to many other

LASSO-like techniques, our method consists of two consecutive

steps:

(i) Determination of cell type-specific parameters using the regu-

larized v2
L1

(ii) Determination of the parsimonious model and parameter es-

timates using the unregularized v2

In the first step, k is scanned and the cell type-specific parameters

are determined for each value of k. Then, in the second step, for

choosing the optimal k� the unregularized Equation (4) is optimized,

under the constraint that parameters with bri ¼ 0 are shared between

both cell types. The full model with all parameters specific for each

cell type is compared by the likelihood ratio test to each of the mod-

els that were selected using L1 regularization. Thereby, the parsimo-

nious model is defined as the minimal unbiased model that cannot

be rejected by the likelihood ratio test.

To cope with diverging terms in the Hessian matrix, we imple-

mented a heuristic that tests each L1 parameter ri against zero in the

order of their magnitude of deviation from zero. If the likelihood did

not increase by more than one, the correction was accepted.

Potential alternatives to such a strategy are provided in the

discussion.

Additionally, the PL can be utilized to further reduce the number

of cell type-specific parameters, which we illustrate exemplarily.

Further, we show investigation of uniqueness using the PL.

However, since the calculation of profiles for each parameter and k

can take up to several hours for each of the N¼500 runs, these steps

were not included for performance assessment of L1 regularization.

When applied in practice, usually only a single experimental setup is

analyzed. Then, results can be further improved by calculation of

the PL pointing out even smaller and/or biologically more plausible

solutions.

4 Application

4.1 Model description
In the following, we use model M1 from the DREAM6 (Dialogue

for Reverse Engineering Assessment and Methods) challenge as

benchmark for our approach (Steiert et al., 2012). The model repre-

sents a gene-regulatory network and was chosen because it enables

testing many observation setups and parameter differences. It was

used in 2011 to evaluate the performance of experimental design

strategies to optimize parameters and predictions. The model in-

corporates transcription and translation of six genes. Therefore, the

dynamic variables represent six mRNAs, as well as the six associated

proteins with known initial concentrations. Genes can positively

and/or negatively regulate each other. Taken together, the model

consists of 29 kinetic parameters. 13 are associated with synthesis

and degradation of molecules: 1 protein degradation rate which is

shared among all proteins; 6 ribosomal strengths determining the

synthesis rate of mRNAs; 6 protein synthesis strengths which define

how strongly mRNA presence induces protein production. The re-

maining 16 parameters define the interaction of genes by Hill kin-

etics, thus 8 KD values and 8 Hill coefficients are assumed.

DREAM6 M1 was simulated with gold-standard parameters

that were made publicly available after completion of the challenge.

We used this gold-standard as cell type 1. When complete data is

provided, i.e. all observables measured at all possible experimental

conditions, all parameters are identifiable, except for one Hill coeffi-

cient which is only restricted to lower values. Thus, we conclude

that determining parameter differences between cell types is possible

in principle. Next, we assumed one third of all parameters to be cell

type-specific. We therefore randomly simulated fold-changes r 2 f1
=10; 1=5;1=2; 2; 5; 10g for non-Hill parameters. For Hill coeffi-

cients, fold changes r 2 f1=4; 1=2;2;4g were assumed such that Hill

coefficients are within the interval ½1; 4� for both cell types. This

range is motivated biologically as thereby the number of binding

sites on a molecule is considered. Taken together, the number of

possible models is 229, i.e. more than 108.

We chose the following two observation types from the original

DREAM6 challenge setup: (i) mRNA measurements for all mRNAs

with 21 data points each, and (ii) protein measurements for two se-

lected proteins, each with 41 data points. The observation function

is the identity, i.e. the molecular compounds are observed directly

without scaling or offset parameters. The error model contains an

absolute term as well as a relative term with fixed weighting. In add-

ition to wild type data, there is the option of performing three pos-

sible perturbations for each of the six nodes:

(i) knock-out ðmRNA syni ¼ Prot syni ¼ 0Þ
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(ii) knock-down ðmRNA degi ! 5 �mRNA degiÞ
(iii) over-expression ðmRNA syni ! 2 �mRNA syniÞ

In total, this results in 18 possible experimental conditions. Wild

type data, i.e. mRNA and protein data for all observables, was

included for parameter estimation to have a reference for perturb-

ations. Within the challenge, an identifiable setting has been

achieved using 9 additional data sets out of 331 possibilities. To

allow variability in the number of experiments, we randomly (50%)

selected for each of the 18 conditions whether it was observed or

not. To mimic the partial observation, which was one task of the

DREAM6 challenge, we chose randomly whether mRNA (one-

third) or proteins (two-third) were observed for a given condition.

Given the latter, two out of six proteins were randomly selected. We

chose the same experimental conditions and observables for both

cell types.

After implementing the fold-changes between cell types, as well

as perturbations and observations, we used a L1 regularization for

all fold-change parameters and scanned along k for parameter selec-

tion. To choose the optimal regularization strength k� we used the

unregularized v2. Thus, we could select the parsimonious model and

ensure unbiased estimates of the fold-change parameters.

4.2 Performance assessment
The procedure of selecting fold-changes and observations was re-

peated N¼500 times, representing 500 different cell type compari-

son studies. Afterwards, the presented algorithm for L1 regularized

parameter selection was applied in an unsupervised manner for each

data setting. The performance is summarized in Figure 4. For each

run, a receiver operating characteristic (ROC) curve is calculated by

scanning k from 10�4 to 106. The black line depicts the arithmetic

mean ROC curve and the shading the standard deviation over all

N¼500 repetitions. For each of these, the blue dot shows the parsi-

monious model selected by the likelihood-ratio test. Usually, for a

given ROC curve the selection criterion is chosen to maximize both

sensitivity and specificity simultaneously, which is the point on the

ROC curve closest to the upper left corner. Because the blue dots ap-

pear centered around this ‘kink’, we consider the LRT based selec-

tion criterion appropriate. On average, the implementation results

in an around 74% true positive rate (TPR) and an around 20% false

positive rate (FPR) for the given setting. The overall accuracy (ACC)

is around 78%. Despite this imperfect accuracy and related classifi-

cation errors, 91% out of the inferred differences, and 93% out of

the true positives were estimated closest to their true fold-change.

Within the subset of parameters that were modified and afterwards

detected as different, 99.5% had the correct sign. Thus, we conclude

that the strategy to calculate unbiased estimates for selected fold-

changes is robust against misclassification.

We further evaluated the performance of our L1 fold-change de-

tection routine for different parameter types. The results are sum-

marized in Table 1. The protein degradation rate is shared among

all proteins. It is detected in 100% as different when there was a dif-

ference simulated. On the other hand, this parameter also had the

highest FPR with approximately 46%. A possible explanation is

given by the fact that our method is data driven and hence differ-

ences are more likely to be detected in points of the network with

more data available. This is the case for the protein degradation rate

because it influences all proteins in the network. The individual

mRNA and protein synthesis strengths have a FPR around 20% and

a TPR of approximately 80%. In contrast, Hill regulation param-

eters (KD and Hill coefficient) are detected less frequently as differ-

ent. This is due to identifiability issues as KD values and Hill

coefficients are only identifiable if the corresponding regulator is in

the concentration range around KD, which is often only given for a

small subset of perturbations.

4.3 Supervised examination
In the following, we select one representative setup out of the

N¼500 given by a minimal deviation of its ROC curve to the aver-

age ROC curve for supervised examination. The regularization path

is plotted in the left panel of Figure 5. With increasing k, fold-

change parameters are shrinked towards zero, and at some point

eventually estimated equal to zero. Thus, the number of cell type-

specific parameters decreases for larger k. The dependency of the

likelihood ratio D(k), i.e. the decrease of the unregularized v2
k

compared with the full model with only cell type-specific param-

eters, is shown by the blue line in the right panel of Figure 5. The

statistical threshold v2
mk ;0:05 is depicted by the dashed red line. The

regularization strength k* at which both lines cross marks the parsi-

monious model that has minimal complexity but cannot be statistic-

ally rejected.

Fig. 4. Averaged ROC curve. For each of the N¼500 runs, the ROC curve is

calculated in dependence of k. The black line depicts the arithmetic mean

ROC curve and the shading the standard deviation. Blue circles denote the se-

lected model for each repetition. Because the dots appear on average near

the maximum of sensitivity and specificity (upper left corner), we consider

the LRT based selection criterion as appropriate. The points ð0; 0Þ and ð1; 1Þ
are the limiting cases of no and all, respectively, parameters cell type-specific

Table 1. Performance of algorithm for DREAM6 M1

Parameter class Ntest Nmod FPR TPR ACC

Protein degradation rate 500 181 0.4577 1.0000 0.7080

mRNA synthesis strength 3000 1032 0.2393 0.7965 0.7730

Protein synthesis strength 3000 986 0.1927 0.7982 0.8043

KD value 4000 1365 0.1624 0.6989 0.7903

Hill coefficient 4000 1311 0.1852 0.6461 0.7595

All 14 500 4875 0.2006 0.7366 0.7783

On average, one-third of the parameters that could potentially be cell type-

specific (Ntest) were drawn to actually be cell type-specific (Nmod). Overall,

parameter differences are inferred with 78% ACC. The model contains a

shared degradation rate for all proteins, which is often diagnosed as different.

Protein production and ribosomal strengths are on average for FPR and TPR.

KD and Hill coefficients are difficult to detect because the concentration range

around KD has to be covered to see an effect on the dynamics. 500 repetitions

were computed. Each run, i.e. L1 regularized scan and subsequent unregular-

ized scan to identify the parsimonious model, took 28.8 min on average on an

Intel Xeon E5-1620 3.60 GHz desktop computer.
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We checked by calculating the PL of the unregularized fold-

change parameters whether parameters predicted as cell type-

specific are indeed not compatible with zero (Fig. 6). False positive

fold change parameters are shown in panels A, D and F. When the

PL (black line) crosses zero (black vertical dashed line) below the

statistical threshold (red horizontal dashed line), the parameter is a

candidate for supervised removal. Here, this procedure enables the

detection of three additional parameters that could be independent

from cell type. Interestingly, all these were false positives. In com-

parison to the automatically inferred parameter differences, the re-

sult of the supervised examination increased the ACC from 79 to

86%. We elaborate more detailed on the origins and consequences

of this observation in the discussion.

Further, we checked uniqueness of the solution as shown in

Figure 7. The unregularized PL of fold-change parameters ri that

were estimated to zero (gray asterisk) is calculated (upper row, black

line). Inside the 95%-CI, which is defined by the x-interval for

which the PL (black line) is below the statistical threshold (red hori-

zontal dashed line), the value of the remaining fold-change param-

eters ri is observed (lower row). Then, two scenarios may occur:

i. none of the ri is estimated to zero

ii. one or more ri is estimated to zero

For the PL and CI shown in the upper left panel, the re-

optimized parameters ri in the lower panel are not compatible with

zero. This corresponds to the first scenario. In contrast, as depicted

in the right panels, another fold-change parameter ri (here: r Hill8)

may be compatible with zero (circle) if the parameter shown on the

x-axis (r mRNA syn4) is allowed to deviate from zero. This corres-

ponds to the second scenario. Therefore, based on the data, it is not

possible to decide which of these two parameters is in fact cell type-

specific and which one is independent from cell type. Interestingly,

the underlying truth (r Hill8 ¼ 0 and r mRNA syn4 6¼ 0) is con-

trary to the originally selected difference (r Hill8 6¼ 0 and

r mRNA syn4 ¼ 0). Thus, although the PL cannot provide which

solution is correct it enables to generate alternative hypotheses that

are in statistical agreement with the data. Using these hypotheses,

experiments could be designed as described in Steiert et al. (2012) to

eventually obtain an unique solution.

Due to the presented benefits and additional insights, we advise

a supervised examination of the results in a real world application to

maximize the performance of the method.

5 Discussion

In this manuscript, we used L1 regularization to predict cell type-

specific parameters in systems of coupled partially observed ODEs.

When compared with the classical LASSO, which was designed for

Fig. 5. Left: Regularization path of a representative setup. On the x-axis, the

regularization weight k is depicted. As k is increased, the number of fold-

change parameters unequal to zero is reduced and the estimates are shrinked

towards zero. The labels are not exhaustive. As expected for nonlinear mod-

els, the individual paths are not necessarily monotonous. The vertical dashed

line depicts the parsimonious model. Right: Selection of k. The likelihood-

ratio test statistic D is calculated for each value of k (blue solid line). The value

where D crosses the statistical threshold v2
mk ;0:05 (dashed red line) marks the

parsimonious model (dotted black line). To allow plotting in log-space, one is

added to all quantities

Fig. 6. Determining fold-changes that are compatible with zero (dashed black

vertical line) using the PL. The parameters in panels B, C, E, G, H, I and J are

significantly different from zero, whereas the parameters in panels A, D and F

are compatible with zero. These latter ones are actually false positives that

could be transformed into true negatives by this supervised examination.

Two small diagonal lines depict a discontinuous x-axis

Fig. 7. Uniqueness and exchangeability. The results of the supervised examin-

ation example are shown. We used the PL to check whether (ri¼ 0 and rj 6¼ 0)

gives equivalent results as (ri 6¼ 0 and rj¼0) for i 6¼ j. In the upper row, the PL

of a fold-change parameter that was estimated to zero is shown. The optimum

(asterisk) may not be exactly at the minimum because the model has one add-

itional degree of freedom over the parsimonious model. On the lower row, the

respective values of the other frig are shown. When along the profiled param-

eter (x-axis), a parameter that was originally non-zero (y-axis) is compatible

with zero, it is marked with a circle. On the left hand side, the fold-change par-

ameter r Kd1, which is a true negative, cannot be exchanged with any other

parameter. However, on the right hand side, a false negative fold-change

r mRNA syn4 could be exchanged with the false positive Hill coefficient

r Hill8. Thus although the solution is incorrect in classifying these two param-

eters, the PL pinpoints the alternative of the correct solution. Given the avail-

able data, both cases cannot be distinguished and experimental design would

be necessary to decide which one of the parameters is cell type-specific
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linear models, many pitfalls emerge for parameter estimation in non-

linear ODE systems. Therefore, we augmented an available imple-

mentation by L1 peculiarities and thereby focused on optimization

routines that can efficiently handle nonlinearity. Conversely, the

popular LARS algorithm (Efron et al., 2004) sequentially adds pre-

dictors to the model, which is not likely to produce a globally opti-

mal solution in the nonlinear setting. Further, pathwise coordinate

optimization (Friedman et al., 2007) exploits that a linear model can

be efficiently evaluated, while solving the ODE system is the major

bottleneck in our application. Although we cannot completely ex-

clude that the presented methodology may be improved in terms of

numerical performance by concepts presented in the vast amount of

literature on extending LASSO, we could implement a robust and

numerically stable algorithm. In our example, cell type-specific par-

ameters were reliably predicted for 500 different data setups.

Because model predictions nonlinearly depend on parameters,

the regularization paths depicting the dependency of the cell specific

parameters on the regularization strength are not linear between

knots. Therefore the regularization paths have to be calculated by

discretely scanning k instead of calculating the paths for whole inter-

vals as it is feasible for linear systems.

Local optima are of major concern in partially observed nonlin-

ear ODE systems. An established method to discover local optima is

to perform multi-start deterministic optimization and compare the

results. For different k, other local optima could become globally op-

timal or even new, additional optima could emerge for a specific

range of k. To circumvent such issues, the multi-start optimization

could be applied for each value of k. However, comprehensively

sampling the parameter space by such a strategy is usually computa-

tionally infeasible for most realistic models. Therefore, the approach

we applied is finding the global optimum for each cell type individu-

ally and then gradually increasing k using the previous fit as initial

guess.

Identified differences between cell types may not be unique, i.e. a

difference could be exchanged with a parameter that is cell type-

independent without significantly changing the fit. Only subgroups

of such coupled parameters are necessary to be different. However,

this ambiguity is not a shortcoming of the L1 regularization but ra-

ther a manifestation of lacking informative data to uniquely deter-

mine cell type-specific parameters.

Most nonlinear optimization algorithms efficiently handle least

squares problems but have shortcomings for L1 regularized opti-

mization. A key challenge that we faced was that numerics became

problematic for parameters in the vicinity of zero. For Gauss-

Newton steps, the Hessian

Hij 	 sresii � sresjj ¼
sgnðriÞ
2
k

ffiffiffiffiffiffi
jri j
1=k

q � sgnðrjÞ
2
k

ffiffiffiffiffiffi
jrj j
1=k

q : (19)

is approximated by the first-order derivatives sresii. In this case, ri

appears in the denominator. Therefore, as ri approaches zero, the

Hessian

lim
ri!0

Hij ¼ lim
rj!0

Hij ¼ 61 (20)

diverges. For large entries in the Hessian, the optimizer decreases the

step size and therefore may get stuck when approaching zero.

Thereby, the FPR is increased since parameters compatible with

zero shrink but may not be able to actually reach zero. We conclude

that the FPR could be further improved if such numerical issues

were completely solved. To overcome these limitations, norms with

k>1 could be employed. Although in the proximity of zero L1 dom-

inates the Hessian, an additional L2 term like in the elastic net could

provide enough directional information to come closer to zero. We

postpone this analysis to future research.

Another remaining open question is to which extent cross-

validation strategies are applicable in the Systems Biology setting. A

basic assumption for cross-validation is that the drawn subsets con-

tain qualitatively the same information than the original, full data

set. This assumption, however, is violated for pathway models and

manifests in a strong dependency of parameter identifiability on

resampled data and the experimental setup. The latter originates

from the complex grouping structure of measurements given by

common treatment conditions, jointly observed dynamic states, as

well as by available sampling times.

We chose a benchmark model from the DREAM6 parameter es-

timation challenge to demonstrate applicability of our implementa-

tion because it provides a variety of predefined realistic

experimental setups. For assessing the performance, cell type

dependencies of parameters were introduced and then recovered in

an unsupervised manner. When compared with typical pathway

models, the DREAM6 setting exhibits two major simplifications.

First, the components of the reaction network are directly observed,

i.e. there are no scaling parameters. Second, the initial concentra-

tions were assumed as known. However, we do not expect issues if

both simplifications are relaxed because the unregularized param-

eter estimation implementation is well-tested for such cases.

In partially observed nonlinear ODE systems, it has been shown

that non-identifiability is of major concern. A non-identifiable par-

ameter can be associated with a flat PL, i.e. the effect on observed

quantities by changing one parameter can be compensated by

others. If the range of a fold-change parameter is compatible with

zero, the L1 regularization will force the estimate to zero. Hence, the

presence of non-identifiabilities may decrease the TPR. One example

for such a behavior are Hill kinetics, i.e. Hill coefficients and KD val-

ues, which also appeared as most difficult to detect. We conclude

that identifiability is limiting the TPR in this setting. Since the subset

of available data sets was randomly drawn from the predefined set

of experiments, it is not expected that all subsets contain compre-

hensive information for estimating all parameters. Therefore, identi-

fiability issues naturally occur and appear as false negatives in the

parameter selection step. In general, the magnitude of both, correct

and incorrect predictions depends on the amount and quality of

data, as well as on the size of the underlying differences.

It has to be stated that cell type differences are detected only if

there is evidence in the data. Therefore, unobserved components and

specific, incomplete measurement conditions increase the chance of

missing biologically relevant cell-specific characteristics. However,

we could show that the unbiased estimates of true positive fold-

changes are robust to misclassification of others. Nevertheless, the

final model should always be checked for biological completeness

and plausibility.

In summary, we demonstrated the usage of L1 regularization in

combination with nonlinear models based on ODE systems.

Theoretical considerations were given and the approach was tested

for random designs of a DREAM benchmark model. The ability to

improve the results using the PL was demonstrated. Concludingly,

the presented methodology is shown to facilitate detection of rele-

vant differences between dynamical models of cell types, which is an

L1 regularization facilitates detection of cell type-specific parameters i725
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important step towards discovering drug targets specifically affect-

ing cells of interest.
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