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Human basonuclin 2 up‑regulates a 
cascade set of interferon‑stimulated genes 
with anti‑cancerous properties in a lung cancer 
model
Egon Urgard1,3*, Anu Reigo2, Eva Reinmaa4, Ana Rebane3 and Andres Metspalu1,2

Abstract 

Background:  Human basonuclin 2 (BNC2) acts as a tumor suppressor in multiple cancers in an as yet unidentified 
manner. The role and expression of the BNC2 gene in lung cancer has not yet been investigated.

Methods:  BNC2 expression was studied in the A549 and BEAS-2B cell lines, as well as in lung cancer tissue. Illumina 
array analysis and a viability assay were used to study the effects of transient transfection of BNC2 in A549 cells. Inge-
nuity pathway analysis and g:Profiler were applied to identify affected pathways and networks. RT-qPCR was used to 
validate the array results.

Results:  We showed the reduced mRNA expression of BNC2 in non-small cell lung cancer tissue and lung cancer cell 
line A549 compared to non-cancerous lung tissue and BEAS-2B cells, respectively. Further array analysis demonstrated 
that the transfection of BNC2 into A549 cells resulted in the increased expression of 139 genes and the down-regula-
tion of 13 genes. Pathway analysis revealed that half of the up-regulated genes were from the interferon/signal trans-
ducer and activator of transcription signaling pathways. The differential expression of selected sets of genes, including 
interferon-stimulated and tumor suppressor genes of the XAF1 and OAS families, was confirmed by RT-qPCR. In addi-
tion, we showed that the over-expression of BNC2 inhibited the proliferation of A549 cells.

Conclusion:  Our data suggest that human BNC2 is an activator of a subset of IFN-regulated genes and might 
thereby act as a tumor suppressor.
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Background
Lung cancer is the most malignant tumor and the leading 
cause of cancer deaths worldwide, with 1.8 million new 
cases in 2012 [1]. In Estonia, the incidence rate for lung 
cancer per 100,000 was 71 for men and 14 for women in 
2012 [2]. Non-small cell lung cancer (NSCLC) accounts 
for 80–85% of all lung malignancies. In contrast to the 
steady increase in survival for most cancers, advances 
have been slow for lung cancer, with a corresponding 

5-year relative survival of 18% [3]. Depending on the 
stage of cancer, treatment options for people with 
NSCLC include surgical resection, chemotherapy, radia-
tion therapy, targeted therapy and immunotherapy [4, 
5]. Increasing focus has been placed on the development 
of immunotherapies, including the directed targeting of 
specific immune suppressors, such as cytotoxic T-lym-
phocyte antigen-4 protein (CTLA-4) and programmed 
cell death-1 protein receptor (PD-1) [5–7]. Another 
important group of immunotherapeutics have been 
developed based on interferons (IFNs). IFNs are natu-
rally occurring cellular cytokines that activate immune 
responses and have been shown to have anti-prolifera-
tive, anti-angiogenic and pro-apoptotic effects [8, 9].
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IFN receptor signaling induces the up-regulation of 
many ISG-s (interferon stimulated genes), including 
genes with antiviral properties, such as protein kinase R 
(PKR), 2,5-oligoadenylate synthetase (OAS) and myxo-
virus resistance protein (MX) family genes [10–14]. In 
addition to the ISG-s implicated in anti-viral, anti-angi-
ogenic, immunomodulatory and cell cycle inhibitory 
effects, oligonucleotide microarray studies have identified 
ISG-s with apoptotic functions, such as XIAP associated 
factor-1 (XAF1), caspase-4, caspase-8, death activating 
protein kinases (DAPKs) and IRFs [15–18].

Human BNC2 is an evolutionarily conserved C2H2 zinc 
finger protein, which has been suggested to be involved in 
the regulation of mRNA splicing, processing [19, 20] or 
transcription [19–21]. BNC2 has been detected in a wide 
range of tissues: it is abundantly expressed in the ovary, 
skin, uterus, and kidneys, and its expression has also 
been detected in the testis, prostate, and lung [19, 20, 22]. 
BNC2 expression has been detected in cell lines, includ-
ing primary human keratinocytes, the keratinocyte cell 
line HaCaT, and HeLa and HEK293 cells [19].

Little is known about the expression and function of 
BNC2 in tumor progression. Genetic variations in the 
BNC2 gene have been associated with skin cancer risk 
[23–25], susceptibility to ovarian cancer [26–28] and 
prostate cancer development [29, 30]. The deletion of the 
BNC2 gene and the corresponding decreased expression 
of BNC2 mRNA have been detected in Barrett’s esopha-
gus [31], hepatocellular carcinoma [32] and high-grade 
serous ovarian carcinoma [33]. In esophageal adenocar-
cinoma cells, the stable expression of BNC2 caused the 
growth arrest of tumor cells [31], suggesting that BNC2 
might also be a tumor suppressor gene. Thus far, there is 
no evidence of the role of BNC2 in lung cancer.

In this study, the mRNA expression of BNC2 was ana-
lyzed in lung squamous cell carcinoma tissue samples 
and a lung cancer cell line. In addition, the effect of trans-
fected BNC2 on gene expression and cell viability was 
investigated in the human lung carcinoma cell line A549.

Methods
Tumor samples
Lung squamous cell carcinoma (SCC) and corresponding 
adjacent non-tumor tissue samples were collected from 
8 patients who had undergone curative resection and 
been histologically characterized by a clinical patholo-
gist in Tartu University Lung Hospital (Tartu, Estonia). 
The study was approved by the Research Ethics Commit-
tee of the University of Tartu, and written informed con-
sent was obtained from all patients. Tissue specimens of 
appropriate sizes (1–2 cm3) were cut from tumorous and 
morphologically tumor-free lung tissue. One half of each 
sample was fixed in formalin and used for pathological 

examination. The other half of each specimen was snap 
frozen and stored at −80 °C until use.

Cell culture
The adenocarcinomic human alveolar basal epithelial 
cell line A549 and human normal lung epithelial cell line 
BEAS-2B were purchased from the American Type Cul-
ture Collection (Manassas, VA, USA). A549 cells were 
grown in RPMI-1640 medium (PAA Laboratories, Linz, 
Austria) supplemented with 10% fetal bovine serum (FBS) 
(Biochrom AG, Berlin, Germany) and penicillin/strep-
tomycin (PAA Laboratories, Linz, Austria). BEAS-2B 
cells were grown in DMEM (Lonza, Cologne, Germany) 
medium supplemented with 3% FBS (Biochrom AG, Ber-
lin, Germany) and penicillin/streptomycin (PAA Labo-
ratories, Linz, Austria). Both cell lines were cultured in a 
humidified tissue culture incubator with 5% CO2 at 37 °C.

Plasmids and transfections
The expression plasmid containing full-length human 
BNC2 coding sequence and corresponding empty plas-
mid pCMV-HA (https://www.addgene.org/32530/) were 
kindly provided by Dr. Satrajit Sinha (State University of 
New York, NY, USA). For transient transfection, 106 A549 
cells were electroporated with 5 µg plasmid DNA in 250 µl 
Ingenio electroporation solution (Mirus Bio LLC, Madi-
son, WI, USA) using the Gene Pulser Xcell Electroporation 
System (Bio-Rad, Stockholm, Sweden) under the following 
conditions: 280 V, 950 µF and ∞ Ω. After electroporation, 
cells were plated and harvested every 24 h for 3 days.

Cell viability assay
For the viability assay, 2 × 104 A549 cells per well were 
seeded in a 24-well plate. The next day, cells were trans-
fected with expression plasmid containing a full-length 
human BNC2 coding sequence and corresponding empty 
plasmid pCMV-HA using Lipofectamine 2000 (Invit-
rogen, Carlsbad, CA, USA) according to manufacturer’s 
instructions. Cell proliferation was measured 48  h after 
transfection using CellTiter-Glo® Luminescent Cell Via-
bility Assay (Promega, Madison, WI, USA), where the 
Luciferase activity was proportional with the quantity of 
cellular adenosine triphosphate (ATP).

RNA extraction and RT‑qPCR
Total RNA was isolated using the Ambion RNA extrac-
tion kit (Ambion Inc., Austin, TX, USA) according to 
the manufacturer’s instructions. One microgram of total 
RNA was converted to cDNA using the First Strand 
cDNA Synthesis kit (Fermentas, Vilnius, Lithuania). 
Real-time PCR was performed using SYBR Green ROX 
mix (Fermentas, Vilnius, Lithuania) and ABI 7900HT 
Sequence Detection System (Applied Biosystems, Foster 

https://www.addgene.org/32530/
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City, CA, USA). Data were analyzed using SDS 2.2.2 soft-
ware (Applied Biosystems, Foster City, CA, USA). The 
primer sequences for RT-qPCR amplifications are shown 
in Table  1. Gene expression levels were determined by 
the 2−ΔΔCT method [34] after normalization to ESD 
(Esterase D) [35]. Relative gene expression was calculated 
as a fold change compared to the control transfection.

Array analysis
The Illumina® TotalPrep™ RNA Amplification Kit 
(Ambion Inc., Austin, TX, USA) was used to generate 
biotinylated amplified RNA for hybridization with Illu-
mina HumanHT-12 v4 Expression BeadChip (Illumina 
Inc., San Diego, CA, USA) and the Illumina BeadChip 
platform (Illumina Inc., San Diego, CA, USA). Experi-
ments were performed according to the manufacturer’s 
instructions. Raw expression data were collected and 
background subtracted by Illumina GenomeStudio Gene 
Expression Module v1.8.0 (Illumina, Inc., San Diego, CA, 
USA). Data were transformed by variance-stabilizing 
transformation and quantile normalization using the 
Lumi package (v 2.14.0) [36] from Bioconductor (https://
www.bioconductor.org/). Differentially expressed genes 
were identified using the Limma package (v 3.18.1) [37]. 
A p value of 0.05 was used as threshold for differential 
expression after multiple testing correction by the Benja-
mini-Hochberg method [38].

Gene enrichment analysis
Pathway and gene ontology (GO) enrichment analyses 
were performed with ingenuity pathway analysis (IPA) 

Ingenuity Systems (http://www.ingenuity.com) (Qia-
gen, Redwood City, CA, USA) and g:Profiler (http://biit.
cs.ut.ee/gprofiler/) [39] using the default settings and the 
g:SCS method for statistical analysis. The g:SCS method 
computes multiple testing corrections for p values from 
GO and pathway enrichment analysis using a threshold 
of 0.05. All reported pathways and biological processes 
are listed according to their GO enrichment score pro-
vided by the two software packages as −log (p values) 
and with a false discovery rate (FDR) <0.05%.

Statistical analysis
Statistical significance between the different groups and 
conditions was assessed with Student’s t-test, the Wil-
coxon matched pair test was used to analyze the rela-
tive mRNA expression in tumor and matched adjacent 
non-tumor tissues. Results were considered significant 
at p < 0.05 (*) and highly significant at p < 0.01 (**). Sta-
tistical analysis was performed using GraphPad Prism5 
(GraphPad Software, San Diego, CA, USA).

Results
Decreased expression of BNC2 in the lung carcinoma cell 
line and in lung cancer tissue
To study whether the expression of BNC2 is altered in 
lung cancer, similarly to other tumors [26, 31–33], first, 
RT-qPCR was used to analyze the mRNA expression 
level of BNC2 in the human adenocarcinomic alveolar 
epithelial cell line A549 and the normal lung epithelial 
cell line BEAS-2B. As shown in Fig. 1a, significantly lower 
expression levels of BNC2 were detected in the A549 cell 

Table 1  List of oligonucleotide primers

Gene Forward primer Reverse primer

Esterase D (ESD) ATTTGCTCCAATTTGCAACC TCACAAGGTGGGTAGCATCA

Basonuclin 2 (BNC2) TGTGAAACTTCACTACAGGAACG GAGGCGTCTTCCCTGACATC

Guanylate binding protein 1, interferon-inducible (GBP1) CCAGATGACCAGCAGTAGAC AAGCTAGGGTGGTTGTCCTT

Myxovirus (influenza virus) resistance 2 (mouse) (MX2) TGAGTGCTGTGTAAGTGATGG GGACCGGCTAACAGTCACTA

2′-5′-oligoadenylate synthetase 2, 69/71 kDa (OAS2) GGTAGCGCATCTTGATTCCA GAGTATGTAGGGTGGCAAGC

Interferon regulatory factor 7 (IRF7) ATCTTCAAGGCCTGGGCTG CAGCGGAAGTTGGTTTTCCA

Interferon induced transmembrane protein 1 (IFITM1) CTGCAACCTTTGCACTCCA TGTAGACAGGTGTGTGGGTA

Aconitase 1, soluble (ACO1) GCTCACAGGGCAAGAACGAT TCATGACAGCCTGGAAGGTC

Differentiation antagonizing non-protein coding RNA (DANCR) ACTATGTAGCGGGTTTCGGG TTCCGCAGACGTAAGAGACG

Leucine rich repeat containing 20 (LRRC20) CTGCTTGGAGAGTTTGCCCT GCTTAGGGGCTCACTCACTG

5′-nucleotidase domain containing 2 (NT5DC2) CATCTTCCGCACCTTCCACA TGAAGTCCACGCGGTAGTTG

Thioredoxin domain containing 12 (endoplasmic reticulum) (TXNDC12) GCTTGAGCTTCCCTGTTTGC TGGCTACACCTAGGGCTTGA

2′-5′-oligoadenylate synthetase 1, 40/46 kDa (OAS1) CGGACCCTACAGGAAACTTG GAGGTCTCACCAGCAGAATC

2′-5′-oligoadenylate synthetase 3, 100 kDa (OAS3) AGAGTTCTGAGCAGGGCCTA TGGAAAGAGCCACCTAACTGC

2′-5′-oligoadenylate synthetase-like (OASL) ATTCCAAGGCCAAGTCCTG TCTTCGAGAGGATGAGAGTGT

XIAP associated factor 1 (XAF1) GGTTTGCCCAAGGACTACAA GGGTGTAGGATTCTCCAGGT

https://www.bioconductor.org/
https://www.bioconductor.org/
http://www.ingenuity.com
http://biit.cs.ut.ee/gprofiler/
http://biit.cs.ut.ee/gprofiler/


Page 4 of 10Urgard et al. Cancer Cell Int  (2017) 17:18 

line compared to BEAS-2B cells. Next, we tested the 
expression of BNC2 in 8 pairs of matched SCC and adja-
cent non-tumor tissues. Consistent with the results in 
the A549 cell line, the BNC2 expression level in cancer-
ous SCC tissues were lower than in corresponding non-
tumor tissues (Fig. 1b).

Transient transfection of BNC2 affects cancer cell 
proliferation and global gene expression patterns
Although the reduced expression of BNC2 has been 
detected in several tumors [26, 31, 32], the role of BNC2 
in the suppression of the cancerous processes in the lung 
has not been studied before. Thus, we analyzed whether 
BNC2 over-expression has an effect on the cell prolifera-
tion rate and global gene expression pattern in the A549 
cell line. A greater than 20-fold increase in BNC2 mRNA 
expression was detected in A549 cells transfected with 
BNC2-coding plasmid (Fig. 2a), which led to the reduced 
proliferation rate of A549 cells compared to the control 
after 48 h of transfection (Fig. 2b).

Next, total RNA samples from both conditions were 
harvested and subjected to Illumina Expression Bead-
Chip containing 47,000 probes for more than 31,000 
annotated genes. Out of the more than 24 000 expressed 
genes (detection p  <  0.05), 152 genes (195 transcripts) 
were altered in response to BNC2 over-expression (139 
genes (181 transcripts) up-regulated, 13 genes (14 tran-
scripts) down-regulated). The heatmap in Fig. 2c contains 
the top 30 genes with the largest fold change. The full list 
of all significantly changed genes (p  <  0.05) is provided 
in Additional file  1. A set of the differentially expressed 
genes was then validated by means of RT-qPCR. For the 
validation, we chose two strongly up-regulated genes, 
OAS2 and IFITM1, and randomly selected three other 
up-regulated and five down-regulated genes. Although 
some variation in the extent of fold changes was 
observed, the RT-qPCR analysis substantially confirmed 
the results of microarray analysis (Fig. 2d).

Pathway and network analysis of BNC2‑influenced genes
Subsequently, we analyzed which gene networks and 
functional pathways are influenced by BNC2 in A549 
cells using 2 different analysis programs, IPA and 
g:Profiler. IPA pathway analysis software identified 148 
statistically significant canonical pathways, of which the 
top 15 enriched signaling pathways with a p value <10−5 
are shown in Additional file  2. The top three signaling 
pathways by IPA were interferon signaling, antigen pres-
entation and the activation of IRF by cytosolic pattern 
recognition receptors. The signaling pathway that was 
affected the most, interferon signaling, and associated 
genes are shown in Fig.  3. Among gene regulatory net-
works, three networks, each consisting at least 40% of the 
affected genes, were identified by IPA. These three net-
works were associated with the inflammatory response, 
infectious diseases, immunological diseases and derma-
tological diseases and conditions (Additional file 3).

G:Profiler analysis revealed 188 statistically signifi-
cant functional groups, of which over 100 had a p value 
less than 10−5. The top 20 BNC2-influenced functional 
groups are listed in Additional file 4. The most significant 

Fig. 1  The expression of BNC2 is reduced in the lung carcinoma cell 
line A549 and lung cancer tissue. a Relative BNC2 mRNA expression 
in A549 and BEAS-2B cell lines. The mean expression of BNC2 in BEAS-
2B cells was normalized to 1. Data represent the mean ± SEM from 
four transfections. Student’s t-test, ***p value < 0.001. b Expression of 
BNC2 in 8 pairs of squamous cell carcinoma (SCC) and adjacent non 
tumor tissues (NL). Wilcoxon matched pair test, *p value <0.05

(See figure on next page.) 
Fig. 2  The effect of BNC2 transfection in A549 cells. a Relative BNC2 mRNA expression was measured 48 h after the transfection. Human A549 
cells were transfected with either BNC2 expression vector or the control (empty vector). Data represent the mean ± SEM of four transfections. 
Student’s t-test, **p value <0.01. b The proliferation rate of A549 cells was measured 48 h after transfection. A549 cells were transfected with either 
BNC2 expression vector or the control (empty vector) followed by Luminescent Cell Viability Assay. Student’s t-test, **p value <0.01. c Heatmap 
of the top 30 of the most differentially expressed genes from array data chosen based on fold changes. Red represents the lower and yellow the 
higher expression of each gene in all six samples. Data represents the quantile normalized expression values across all of the samples in heatmap. 
The column-side dendrogram represents the hierarchical clustering of control and BNC2-transfected samples using the complete linkage method 
with Euclidean distance measures. The samples were collected from two sets of transfections performed in triplicate both times. d Comparison of 
microarray and RT-qPCR results. Data are normalized to the control-transfected cells and are shown as a log2-transformed mRNA fold change. The 
RT-qPCR results represent four independent transfections with the error bar indicating SEM
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overlap was determined for the type I interferon signal-
ing pathway, the cellular response to type I interferon and 
the cytokine-mediated signaling pathway.

BNC2 induces the expression of ISGs with anti‑cancerous 
properties
Several ISGs, such as OAS family members and the tumor 
suppressors XAF1 and IRF7, have been shown to play cru-
cial roles in counteracting cancer progression, and their 
increased expression is associated with the inhibition of 
cell growth and the promotion of the apoptosis of cancer 
cell lines [40–43]. Concordantly, the reduced expression 
of XAF1 and OAS family members has been observed in 
several cancer cell lines [44–47]. Our microarray data 
analysis revealed (Additional file  1) and RT-qPCR con-
firmed (Fig. 4) the increased mRNA expression of all of the 
OAS gene family members (OAS1, OAS2, OAS3, OASL) 
and XAF1 and IRF7 in the lung cancer cell line A549 after 
transfection with BNC2. Notably, the increased expression 
of the studied ISGs was persistent and could be detected 
72 h after the transfection of the A549 cells with BNC2.

Discussion
Lung cancer is a leading cause of cancer-related death 
worldwide [48]. Although improvements in molecular 
diagnostics and targeted therapies have been achieved in 

recent decades, the average 5-year survival rate for lung 
cancer is still below 20% [3]. New therapeutic targets are 
eagerly needed for this disease. In the current study, we 
demonstrate that human BNC2 is down-regulated in the 
adenocarcinomic alveolar epithelial cell line A549 and in 
SCC tissue compared to non-cancerous cells and tissue, 
respectively. The transfection of BNC2 to A549 cells led 
to the up-regulation of numerous ISGs, of which a sub-
set (XAF1, IRF7, OAS family) is known to inhibit cancer 
growth and promote the apoptosis of cancer cells.

BNC2 was discovered as a gene with a similar domain 
structure as basonuclin 1, with a serine-rich region, 
nuclear localization signal (NLS) and three pairs of dis-
tinct C2H2 zinc fingers [20]. BNC2 is evolutionarily con-
served in vertebrates: there is a remarkable conservation 
of the amino acid sequence of BNC2 across species as 
distant as the zebrafish, chicken, and mammals. The level 
of similarity of amino acids between human and mouse 
BNC2 is 97% [20, 21].

Early studies suggested that BNC2 might act as a tran-
scription regulator [19, 20]. Later, it was proposed that 
BNC2 has a function in RNA processing [21] and may 
regulate the expression of genes essential for the devel-
opment of craniofacial bones [49]. Multiple studies have 
demonstrated the down-regulation of BNC2 in numer-
ous cancers [31–33]. Akagi and colleagues detected the 

Fig. 3  The functional network of the interferon signaling pathway by IPA. Genes that were significantly up-regulated in BNC2-transfected A549 cells 
are shown in red. The intensity of red corresponds to an increase in fold change
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decreased expression of BNC2 mRNA in esophageal ade-
nocarcinoma cells and showed that the stable expression 
of BNC2 caused the growth arrest of tumor cells, which 
suggests that BNC2 is a tumor suppressor [31, 32]. Our 
results show that BNC2 was significantly down-regulated 
in the lung adenocarcinoma cell line A549 compared to 
the human normal bronchial epithelial cell line BEAS-2B, 
as well as in lung tumor tissue compared to non-tumor 
tissue. In addition, we also show that the over-expression 
of BNC2 inhibits the proliferation of A549 cells. Thus, 
our data are in line with previous studies that report the 
down-regulation of the BNC2 gene in cancers of epithe-
lial origin and indicate that BNC2 has a tumor-suppres-
sive function.

Microarray technologies have been intensively used in 
cancer research [50–53] and are useful to profile gene 
expression patterns to facilitate diagnosis, predict the 
response to therapy, find new biomarkers and examine 
the development of drug resistance in cancer [54–56].

Microarray data from A549 cells transfected with 
BNC2 show the relationship of BNC2 with the modu-
lation of immune system. Increased BNC2 expression 
in Th22 cells compared to other T cell subsets [57] and 
the suppression of NF-κB basal activity in HEK293 cells 
[58] have been reported previously. We determined the 
relationship of BNC2 with immune regulation with two 

different pathway analysis programs: IPA and G:profiler, 
which both revealed that the increased expression of 
BNC2 primarily affects genes associated with the inter-
feron signaling pathway. Several ISGs with increased 
expression in BNC2-transfected cells have been associ-
ated with the restriction of tumor growth and develop-
ment. For example, XAF1 has been shown to inhibit 
proliferation and to induce the apoptosis of cancer cells 
as it negatively regulates the caspase-inhibiting activity of 
XIAP [42, 47]. Along with XAF1, we discovered the up-
regulation of a subset of genes with the capacity to inhibit 
cell proliferation and to stimulate cancer cells to undergo 
apoptosis (IRFs, IFIT1-3, ISG12a, IFITM and the OAS 
family members) [59–61].

The use of interferons (IFNs) could be a potential strat-
egy in the treatment of lung cancer [8]. Type I IFNs (the 
IFN-α family and IFN-β) have been used with some suc-
cess for the treatment of different cancers, including 
hematological malignancies and solid tumors [62–65]. 
Type II IFN, IFN-γ, also has antitumor effects in various 
types of cancers [66, 67]. In addition to in vitro studies, 
several pre-clinical and clinical in  vivo studies demon-
strate the efficacy of type I IFNs alone or in combination 
with other treatments in cancer therapy [68–74].

Thus, our results suggest that BNC2 has the capacity 
to increase the expression of IFN-regulated genes and 

Fig. 4  The over-expression of BNC2 induces the expression of ISGs associated with the repression of cancer development. Human A549 cells were 
transfected with either BNC2 or the control. Data represent the mean ± SEM of four transfections
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thereby act as a tumor suppressor gene in lung epithelial 
cells.

Conclusion
Our results suggest that BNC2 is a tumor suppressor 
gene with reduced expression in lung cancer cells and 
with the capacity to inhibit cell proliferation and to up-
regulate IFN-regulated genes.
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