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Abstract 19 

The explore/exploit tradeoff is a fundamental property of choice selection during reward-guided 20 
decision making. In perceptual decision making, higher certainty decisions are more motorically 21 
precise, even when the decision does not require motor accuracy. However, while we can 22 
parametrically control uncertainty in perceptual tasks, we do not know what variables - if any - 23 
shape motor precision and reflect subjective certainty during reward-guided decision making. 24 
Touchscreens are increasingly used across species to measure choice, but provide no tactile 25 
feedback on whether an action is precise or not, and therefore provide a valuable opportunity to 26 
determine whether actions differ in precision due to explore/exploit state, reward, or individual 27 
variables. We find all three of these factors exert independent drives towards increased 28 
precision. During exploit states, successive touches to the same choice are closer together than 29 
those made in an explore state, consistent with exploit states reflecting higher certainty and/or 30 
motor stereotypy in responding. However, exploit decisions might be expected to be rewarded 31 
more frequently than explore decisions. We find that exploit choice precision is increased 32 
independently of a separate increase in precision due to immediate past reward, suggesting 33 
multiple mechanisms regulating choice precision. Finally, we see evidence that male mice in 34 
general are less precise in their interactions with the touchscreen than females, even when 35 
exploiting a choice. These results suggest that as exploit behavior emerges in reward-guided 36 
decision making, individuals become more motorically precise reflecting increased certainty, 37 
even when decision choice does not require additional motor accuracy, but this is influenced by 38 
individual differences and prior reward. These data uncover the hidden potential for touchscreen 39 
tasks in any species to uncover the latent neural states that unite cognition and movement. 40 
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Introduction 43 

Sequential reward-guided decision making tasks, such as multi-armed bandit tasks, are well 44 
known to engage explore/exploit tradeoffs (Addicott et al., 2017; Chen et al., 2023a, 2021b; 45 
Ebitz et al., 2019, 2018; Stephens, 2008; Wyatt et al., 2023). Across species, exploration 46 
represents periods of variable choice selection and heightened learning about the environment, 47 
relative to exploit behaviors, which show consistent choice selection that is less sensitive to trial-48 
to-trial feedback (Badre et al., 2012; Cavanagh et al., 2012; Daw et al., 2005; Frank and 49 
Fossella, 2011; Ting et al., 2023; Trudel et al., 2021). Explore/exploit tradeoffs therefore reveal 50 
that superficially similar choice behaviors (for example left vs right choice) can be driven by 51 
highly distinct neural states (Ebitz et al., 2020, 2019, 2018; Wang et al., 2023; Wyatt et al., 52 
2023), likely reflecting differences in the certainty of choices. However, certainty in reward-53 
guided tasks is individual and subjective, and we do not have good ways of measuring it without 54 
self report.  55 
 56 
Perceptual decision making tasks reveal that higher certainty decisions are more motorically 57 
precise, even when the decision does not require motor accuracy (Follman et al., 2023; Palser 58 
et al., 2018; Sanchez et al., 2024; Wolpert and Landy, 2012). However, while we can 59 
parametrically control uncertainty in perceptual tasks, we do not know what variables--if any--60 
shape motor precision during other forms of decision-making. This is an especially significant 61 
omission in the case of reward-guided decision-making because precision could be influenced 62 
either by prior rewards (which increase certainty about the correct action) or by decision-making 63 
states (which may or may not increase certainty). We do have reason to believe that 64 
explore/exploit states reflect differences in certainty - for example, exploitative choices are faster 65 
than exploratory ones (Addicott et al., 2017; Chen et al., 2023a, 2021a, 2021b; Ebitz et al., 66 
2018; Hassall et al., 2013; Laureiro-Martínez et al., 2010; Walker et al., 2022; Wershbale and 67 
Pleskac, 2010).  Although explore and exploit strategies are defined at the broadest level by the 68 
options chosen in a decision making task, these findings strongly imply that explore/exploit 69 
balance is also reflected in the fine-grained execution of the task. 70 
 71 
Touchscreen operant chambers in animal models offer a powerful and novel approach in 72 
exploring the kinetics of a choice response by logging the precise coordinates and timing of 73 
each choice that is made on the screen, across thousands of choices. Screens by default offer 74 
no immediate, tactile feedback about choice accuracy, requiring that longer trial-and-error 75 
processes influence touch similarity. Pigeons and other birds have shown an awareness of 76 
spatial location of touches on touchscreens and make minute adjustments of touches as the 77 
task evolves, suggesting that the same might be evident for rodents (Capshew, 1993; Goodale, 78 
1983; Jager and Zeigler, 1991; Peterson, 2004; Skinner, 1960; Spetch et al., 1992). We took 79 
advantage of this rich but underutilized data to analyze the location of decision touches across 80 
sexes from explore/exploit data in mice we have previously published (Chen et al., 2021b), 81 
asking if explore/exploit balance governed how similar choice touches were from one trial to the 82 
next. We found that actions become more precise in exploit state behavior compared to explore 83 
state. This effect was independent of a similar effect of reward on touch location, suggesting 84 
parallel mechanisms by which explore/exploit state and prior outcomes influence the precision 85 
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of the next action execution. Because male and female mice employ different strategies in the 86 
two-arm restless bandit task, we tested whether the precision of choices to the screen was 87 
modulated by sex, and found that actions were more precise in females compared to males, 88 
also independent of the impact of explore/exploit state and reward experience, suggesting 89 
individual differences regulating action precision over and above other cognitive features of the 90 
task. Overall, this novel analysis capitalizes on the hidden potential for touchscreens to measure 91 
not only choice behaviors but the motor actions that generate them, informing the neural states 92 
that unite movement and cognition. 93 

Results 94 

To understand how actions in the chamber are influenced by internal states in the animals and 95 
external events, we took advantage of a previously collected dataset examining sex differences 96 
in explore/exploit balance in mice in a touchscreen bandit task. Decision making data from the 97 
experiments analyzed here were originally shared in Chen et al. 2021. These data were 98 
collected from age-matched male and female wild-type mice (n = 32, 16 per sex, strain 99 
B6129SF1/J). Mice were trained in a two-arm spatial restless bandit task (Figure 1a, 1c) in a 100 
trapezoidal shaped touchscreen operant chamber. In this bandit task the probability of reward of 101 
each left and right choice changes independently and randomly of the other, with a 10% chance 102 
of probability change on each trial (Figure 1c: example probability walk). The unpredictability of 103 
this task encourages mice to continually learn and survey their choices, exploring to find the 104 
best option and exploiting a good rewarding option across a 300 trial session. Explore and 105 
exploit trials were labeled using a Hidden Markov model (HMM) approach (Chen et al., 2021b; 106 
Ebitz et al., 2018) where a mouse could either explore, exploit left choice, or exploit right choice 107 
(Figure 1c). Each trial nosepoke response on the touchscreen can therefore be identified as an 108 
explore or exploit choice (Figure 1b).  109 

Exploit states and female sex are associated with reduced action variability 110 

Using previously assigned explore/exploit states for each trial, we examined the action 111 
associated with each choice, taking advantage of logging the coordinate locations of nosepokes 112 
in our touchscreen operant chambers. This allowed us to have a two dimensional location for 113 
each decision a mouse made across the entire touchscreen space. We started with an 114 
Euclidean analysis to quantify the distance between successive touch responses where T1 was 115 
compared to T2, T2 was compared to T3, T3 was compared to T4, so long as all touches were 116 
from the same choice aperture and state (Figure 1d; (Ebitz and Hayden, 2021; Walther et al., 117 
2016)). One mouse was excluded from Euclidean analyses as they never had a sequence of 118 
choices on the same side in the same state consecutively. Distance between successive exploit 119 
touches was smaller and therefore less variable than successive explore touches (Figure 1e, 120 
GLM, main effect of state, p < 0.001). However, sex also played a role - female mice had 121 
shorter distances between successive touches than male mice (Figure 1e, GLM, main effect of 122 
sex, p = 0.01). These results suggest that exploit touches are more stereotyped and perhaps 123 
represent a more automated behavioral response than the same choice made during 124 
exploration, and suggests that these behaviors are more stereotyped overall in females than in 125 
males. 126 
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 127 
Although these data suggest that exploit choices are more stereotyped than exploration, 128 
Euclidean analysis can only compare distances between touches that are consecutively 129 
occurring on the same side, and in the same explore/exploit state. An alternative approach for 130 
calculating distance that permits all touches to remain in analysis is the Mahalanobis distance, a 131 
method for finding the distance between a point and the center of a distribution (Figure 1f) 132 
(Ebitz and Hayden, 2021; Walther et al., 2016). With Mahalanobis distance the entire cluster of 133 
data points was analyzed for each choice aperture, including both explore and exploit touches. 134 
We separated the population of touch responses into those happening in explore states and 135 
those in exploit states, and calculated separate Mahalanobis distances for exploit and explore 136 
touches from centroids within each left/right choice aperture, combining the data from both 137 
apertures across all trials and sessions and getting an average distance for each animal. The 138 
Mahalanobis distance of an average exploit touch from the centroid of all exploit touches was 139 
smaller and less variable than the distance of an average explore touch from the explore 140 
centroid (Figure 1g, GLM, main effect of state, p < 0.001). Unlike Euclidean analysis, we do not 141 
find significant sex differences in Mahalanobis distances (sex was dropped in the GLM model 142 
with the lowest AIC value). The difference between sex influences on Euclidean and 143 
Mahalanobis distances may reflect the trial-to-trial variability that Euclidean analysis captures 144 
versus the overall distribution captured by Mahalanobis analysis. However, both analyses reveal 145 
a main effect of explore/exploit state on touch variability - that exploit touches occur closer 146 
together in space with less variability than explore touches. 147 
 148 
In maze tasks, as animals approach a choice point, they exhibit a behavior called vicarious trial 149 
and error (VTE) in which they move their head while surveying options to guide flexible decision 150 
making, that is reduced as choices become repetitive (George et al., 2023; Johnson and 151 
Redish, 2007; Redish, 2016; Tolman, 1948, 1939). This raised the possibility that in a 152 
touchscreen environment, flexible decision making may be reflected in the approach to the 153 
screen, allowing them to survey choices from a central location while exploring versus 154 
approaching directly towards one option when exploiting. To determine whether our mice might 155 
be exhibiting physical signs of deliberation between the left and right choice apertures during 156 
the explore state, we calculated the distance from the midpoint of the entire touchscreen 157 
between the two response apertures (Figure 1h). Explore touches happen significantly closer to 158 
the center of the screen, and thus closer to the opposite response aperture, than exploit touches 159 
(Figure 1i, GLM, main effect of state, p < 0.001). This did not differ by sex (GLM, no main effect 160 
of sex, p = 0.767). These results suggest that in an explore state mice exhibit a VTE-like 161 
behavior as they approach an area equidistant from both response apertures and deliberate 162 
between left and right choice. Conversely, in an exploit state, mice make responses committed 163 
to one aperture at a farther distance from the center of the screen. 164 

Previous reward is associated with reduced action variability separate from the effect of 165 
explore/exploit state 166 

One potentially significant difference between explore and exploit states that might influence 167 
animal actions is a differing rate of reward across states. Exploit behavior is likely to result from 168 
prior success in obtaining reward, and thus exploit states might be expected to be associated 169 
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with higher reward. Alternatively, reward may have a separate impact on action precision that is 170 
unrelated to explore/exploit state influences (Abe et al., 2011; Cashaback et al., 2017; Galea et 171 
al., 2015; Hasson et al., 2015; Izawa and Shadmehr, 2011; Nikooyan and Ahmed, 2015; 172 
Ramkumar et al., 2016; Therrien et al., 2016; Trommershäuser et al., 2003). To examine the 173 
impact of reward on touch location we separated trials by outcome: rewarded/not rewarded. To 174 
determine the impact of being rewarded on a previous trial, distance measurements were taken 175 
between one trial back (T-1) - labeled as rewarded or non-rewarded - and the current trial (T0). 176 
Euclidean and Mahalanobis distances for touches on trials following rewarded choices was 177 
smaller and less variable than those following non-rewarded touches (Figure 2a, GLM, main 178 
effect of reward, p < 0.001; Figure 2c, GLM, main effect of reward, p < 0.001). However, the 179 
effect of reward on action precision was independent of an effect of explore/exploit state on 180 
action precision, with both previous trial reward and explore/exploit state contributing main 181 
effects on the precision of choice responses (Figure 2b, GLM, main effect of reward, p < 0.001; 182 
Figure 2d, GLM, main effect of state, p < 0.001). Euclidean effects were stronger in females 183 
(Figure 2b, GLM, main effect of sex, p = 0.01 and a sex by state interaction Figure 2b, GLM, 184 
sex/state interaction, p = 0.039). As expected from prior Mahalanobis analysis, there was no 185 
influence of sex on Mahalanobis distances. These results suggest that while reward impacts 186 
touch location and minute adjustments in responding on the touchscreen, it does not overpower 187 
the state effects shown in Figure 1. 188 
 189 
In addition to modeling decision making behavior via Hidden Markov Models, we previously 190 
used reinforcement learning models to assess sex differences in latent parameters that could 191 
influence choice behavior, including learning rate parameter (alpha). We previously found in the 192 
animals in the current dataset that the alpha parameter was significantly higher in females, 193 
suggesting greater trial-to-trial influences of outcome on a female mouse’s next choice than on 194 
a male’s. Euclidean distance between touches is reduced by female sex, reward, and exploit 195 
behavior, and is a measure of trial-to-trial action variability. Therefore, we asked whether trial-to-196 
trial action variability as measured by Euclidean distance between sequential touches on either 197 
aperture was correlated with trial-to-trial outcome sensitivity as measured by the alpha 198 
parameter for the best fit reinforcement learning model from (Chen et al., 2021b). With sex, 199 
distance, and alpha parameters as fixed effects, and individual mouse as a random effect, the 200 
GLM revealed a higher alpha parameter, indicating more rapid outcome sensitivity/value 201 
updating/learning rate, was associated with smaller distances between successive touches 202 
(GLM, main effect of alpha, p = 0.046), suggesting that animals that were more sensitive to 203 
outcomes in their choice behavior as measured by a reinforcement learning model also show 204 
greater precision of their actions. Additionally, we replicated the sex difference in touch 205 
precision with females having shorter distances (GLM, main effect of sex, p = 0.018).  206 

Exploit states and female sex reduce centroid shifting across session 207 

Given the difference between sex influences and the consistency of state influences on 208 
Euclidean (Figure 1e) and Mahalanobis (Figure 1g) distances, we wanted to determine if the 209 
pattern of responding shifts differently across a session for male/female mice and 210 
explore/exploit state. Given that during exploration, animals are more likely to make choices 211 
closer to the midpoint of the screen (Figure 1j), it could be the case that exploration can be 212 
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seen in terms of not only which aperture is chosen, but what section of the aperture responses 213 
in an explore state center on. Although we observe animals sampling between two response 214 
locations (right and left) in our decision task, it is not clear whether animals are behaving as 215 
though they are sampling two discrete options versus sampling touching an area in space. To 216 
measure this we separated each session into state bouts. A bout is defined as a period of 217 
touches within one state on a particular choice aperture. State transition trials from either 218 
explore to exploit or exploit to explore trigger a new bout. To determine how our mice use the 219 
available space within the choice aperture we calculated area and perimeter associated with 220 
each state bout. Bouts of touches were plotted and overlaid onto 2D contour plots from Plotly 221 
Graphing Libraries (Figure 3a). For each bout, Open Source Computer Vision (OpenCV) was 222 
used to capture the contours (bin traces) along continuous boundaries of the contour plots and 223 
calculate area and perimeter for the outermost bin - which is recognized as the outer range of 224 
nosepoke responses.  225 
 226 
Regarding the area of the touchscreen choice apertures used by the mice, exploit bouts 227 
occupied a smaller area (mm2) on the screen and were less variable than explore bouts (Figure 228 
3b, GLM, main effect of state, p = 0.006). Female mice used significantly less area of the 229 
screen per bout than males (Figure 3b, GLM, main effect of sex, p < 0.001). The model used 230 
included an interaction term between state and sex, which was not significant (Figure 3b, GLM, 231 
interaction state/sex, p = 0.989). Perimeter of the touchscreen choice apertures used by the 232 
mice, exploit bouts occupied a smaller boundary (mm) on the screen and were less variable 233 
than explore bouts (GLM, main effect of state, p < 0.001). Female mice occupied a smaller 234 
boundary on the screen and were less variable than bouts by male mice (GLM, main effect of 235 
sex, p = 0.004). The model used included an interaction term between state and sex, which was 236 
not significant (GLM, interaction state/sex, p = 0.168). Further suggesting differences in 237 
touchscreen navigation across state and sex, where exploration and males interact with more 238 
overall area of the screen. 239 
 240 
Each new bout of responding includes its own centroid, and these centroids may minutely move 241 
across the screen throughout a session, adjusting based on past experience. In a combination 242 
of analysis techniques, Figure 3c shows how the distance between successive centroids is 243 
calculated using the x,y centroid coordinates - as determined by the Mahalanobis analysis. 244 
Distances between centroids for successive exploit bouts were smaller and less variable than 245 
distances between centroids for successive explore bouts (Figure 3d, GLM, main effect of 246 
state, p < 0.001). We found that touches occurring during one bout of exploration were farther 247 
and more variable in distance from other bouts of exploration compared to more similar touch 248 
patterns across bouts of exploitation. Given that mice are using more overall screen space 249 
during explore than exploit trials, this further increases the likelihood that mice may be exploring 250 
individual touch locations over and above sampling just the left/right options we define. 251 

Discussion 252 

The explore/exploit tradeoff is a fundamental property of choice selection during reward-guided 253 
decision making. Explore and exploit states are mediated by distinct neural circuit activity and 254 
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reflect slower versus faster decision processes (Ebitz et al., 2020, 2019, 2018; Wang et al., 255 
2023; Wyatt et al., 2023) and so likely reflect different levels of subjective certainty in a choice. 256 
Here, we take advantage of the observation that higher certainty actions in perceptual tasks are 257 
more precise to ask whether exploit states, reward feedback, or other factors lead to increased 258 
precision of choices. Using touchscreen operant chambers in mice we asked whether 259 
explore/exploit balance governed the precision of actions during decision making, finding 260 
independent effects of (1) explore/exploit state, (2) prior reward, and (3) sex on increasing 261 
similarity of touches. These data suggest multiple independent mechanisms regulate the 262 
precision of actions associated with choices and that the explore/exploit state is visible at the 263 
level of motor performance. 264 
 265 
Perceptual decision making tasks reveal that higher certainty decisions are more motorically 266 
precise, even when the decision does not require motor accuracy (Follman et al., 2023; Palser 267 
et al., 2018; Sanchez et al., 2024; Wolpert and Landy, 2012). One striking result from our study 268 
is that exploit states reduce action variability in choice location. This suggests that exploit 269 
touches reflect higher certainty in the animal. The similarity of touch locations suggests that 270 
exploit decisions are more repetitive, stereotyped, or automated behavioral responses (Dezfouli 271 
and Balleine, 2012; Dolan and Dayan, 2013; Gillan et al., 2016; Yin et al., 2004). Exploit choices 272 
happen faster in comparison to explore choices (Chen et al., 2023b, 2021c; Ebitz et al., 2018), 273 
an expression of these cognitive strategies at the motor level (Carsten et al., 2023; Chen et al., 274 
2017). Stereotyped performance of a behavior has previously been linked to a lack of 275 
deliberation (Foster, 1998; Graybiel, 2008; Mitchell and Etches, 1977; Smith and Graybiel, 276 
2016). Our findings are broadly consistent with the idea that exploit choices reflect behavioral 277 
automation of a higher confidence response, while explore reflects deliberation. 278 
 279 
Exploration and deliberation processes involve the subject surveying options (Gilbert and 280 
Wilson, 2007; Payne et al., 1993; Rangel et al., 2008). Deliberation is physically expressed 281 
through pausing, slower decision making, and “vicarious trial and error” behavior, reflecting 282 
forward thinking and prospective deliberation (Dolan and Dayan, 2013; George et al., 2023; 283 
Johnson and Redish, 2007; Redish, 2016; Tolman, 1948, 1939). We observed that explore 284 
touches happen significantly closer to the center of the screen than exploit touches, which 285 
implies animals are approaching exploratory choices between the two apertures, rather than 286 
from off to one side. In addition, we found that touches occurring during one “bout” of 287 
exploration were farther from other bouts of exploration compared to exploit. Given that mice 288 
are using more overall screen space during explore than exploit trials, this suggests mice may 289 
be exploring individual touch locations across the screen over and above sampling just the 290 
left/right options we define. Self-directed exploration may reflect an increasingly fine-grained 291 
goal-directed search for the most rewarding action, similar to autoshaping. 292 
 293 
A potential confound between explore/exploit state and action precision is that exploit actions 294 
are more likely to be reinforced. However, exploit states and prior reward independently 295 
reduced action variability. This suggests that while reward may cause trial-to-trial adjustments in 296 
responding on the touchscreen, reward does not overpower the state effect. Reward-triggered 297 
changes in response precision may be a function of individual reward sensitivity. Animals with a 298 
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higher learning rate derived from a reinforcement learning model showed smaller distances 299 
between successive touches, suggesting that reward sensitivity varying across individuals is 300 
associated with increased action precision. This effect was larger in females than in males, 301 
highlighting sex as a third independent factor governing choice precision. 302 
 303 
The data in this manuscript were previously used to reveal a sex difference in the balance of 304 
explore/exploit strategies (Chen et al., 2021c). Because male and female mice employ different 305 
strategies in the two-arm restless bandit task, we sought to test whether motor responses 306 
associated with the different strategies were physically different in distribution and spatial 307 
location. We found that actions were more precise in females compared to males, independent 308 
of the impact of explore/exploit state and reward experience, suggesting individual differences 309 
regulating action precision over and above moment to moment features of the task. However, 310 
not all explore/exploit differences were sex different. In particular, there was no sex difference in 311 
how close animal responses were to the center of the screen during exploration. This suggests 312 
that the overall deliberative process of an exploratory decision is probably similar across sexes, 313 
but the sequential execution of these decisions are more similar in females than males. Overall 314 
these findings agree with a growing literature that finds male decision and/or motor behavior to 315 
be more variable than females in rodents (Chen et al., 2021a; Levy et al., 2023) and humans 316 
(Dosenbach et al., 2017).  317 
 318 
Touchscreens are increasingly used not only by rodent researchers, but by people working with 319 
humans via smartphone-mediated ecological assessments. Our analysis reveals a powerful way 320 
to evaluate the distribution and consistency of motor behaviors in choice responding. Motor 321 
abnormalities are a common feature across patients with psychosis (Walther and Mittal, 2017), 322 
autism (Mody et al., 2017; Mosconi and Sweeney, 2015), and depression (Sobin and Sackeim, 323 
1997), and explore/exploit tradeoffs reveal neuropsychiatric influences (Addicott et al., 2017; 324 
Wyatt et al., 2023). The increasing prevalence of touchscreen phone testing in human 325 
neuropsychiatric research raises the distinct possibility of analyses of touch responses (Azenkot 326 
and Zhai, 2012; Gosling and Mason, 2015; Harari et al., 2016; Intarasirisawat et al., 2019; 327 
Miller, 2012) as a novel cross-species translational measure of explore/exploit tradeoffs. 328 
 329 

Methods  330 

Subjects 331 

Animals were thirty-two 129/B6J F1 mice (16 male and 16 female) from The Jackson 332 
Laboratory. Behavioral data from these mice running this task were previously published by the 333 
lab (Chen et al., 2021b). Colony rooms were temperature controlled (20.5oC; 69oF) and on a 334 
light-dark cycle of 12 hours with the lights off at 9am. Mice were housed in groups of four with 335 
water ad libitum. Mice were food restricted to no lower than 85% of their free-feeding body 336 
weight. All animals were cared for according to the guidelines of the National Institution of 337 
Health and the University of Minnesota (UMN) and UMN IACUC approval.  338 
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Behavioral Data 339 

Details on the methods for behavioral training and the restless bandit task are published in 340 
(Chen et al., 2021b). Behavioral testing was carried out in the same touchscreen chambers for 341 
all mice throughout the present study (Lafayette Instrument Company, Lafayette, IN). 342 
Computational models were fit to mouse data in this paper, including a hidden Markov model 343 
(HMM) and an RLCK reinforcement learning model (Chen et al., 2021b). The HMM was used to 344 
determine when animals were exploring or exploiting their options in the restless bandit task, 345 
where P(exploration) is the probability of mouse exploration between choices. The previous 346 
manuscript compared several different RL models and identified the strongest fit to animal 347 
behavior from an RLCK model, which captures both value-based and value-independent 348 
decisions using the following four parameters: learning rate, decision noise, choice bias, and 349 
choice stickiness. Here we use this RLCK model’s alpha parameter compared to distance 350 
between successive touches to assess how learning rate impacts micro adjustments to spatial 351 
touch locations across sex. For validation of both models please see (Chen et al., 2021b) eLife 352 
publication. 353 

Coordinate Analysis 354 

The Bussey-Saksida touchscreen apparatus (Lafayette Instrument Company) is sensitive to 355 
continuous and rapidly repeated touches in the same location and across the entirety of the 356 
screen (Heath et al., 2015). Each touchscreen represents the x,y coordinates of each response 357 
an animal makes on the screen from IR beam technology where IR emitters are positioned 358 
along two sides of the screen (i.e. top and right sides) and IR receivers are positioned along the 359 
other two sides of the screen (i.e. bottom and left sides). In this configuration, IR beams are 360 
ideally suited to determine the shadow of the touch to triangulate the location of choice 361 
response. IR beam configuration results in a touch resolution that matches the monitor 362 
resolution of 800x600 pixels. Figure 1b visualizes this data, representing the choices of four 363 
different mice selecting between two options on the touchscreen over 300 trials, with explore 364 
responses in the lighter purple and exploit responses in the darker purple. Figure 1b provides 365 
an example of nosepoke responses for one mouse across a session and the change in touch 366 
pattern between explore/exploit touches as identified by our HMM. Left and right touchscreen 367 
choice apertures are 240x240 pixels each, never change position or size, and x,y coordinates 368 
are separately generated for each touch aperture. Throughout all analyses we have transformed 369 
pixels into millimeters. 1 pixel is 0.29 millimeters. Unless mentioned otherwise, for all data, a 370 
GLM stepwise model selection analysis was used to determine the optimal model with the 371 
lowest AIC value and p values are shared from those most optimal models.  372 

Distance from the Center of the Screen 373 

The spatial split in exploration and exploitation visualized by these plots suggested that explore 374 
trials were closer to the center of the touchscreen than exploit trials were, prompting us to 375 
quantify the distances (Figure 1i). With the center of the screen being 400 out of 800 total pixels 376 
(width of the screen), the difference between the x pixel coordinate of the x,y location of each 377 
touch response and 400 pixels was calculated and converted into millimeters. An absolute value 378 
is applied so that the distance away from the center of the screen is always a positive value to 379 
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reflect distance. This calculation was done across all touches in every session. Trials were split 380 
by explore and exploit and all data was averaged across all eight restless bandit sessions for 381 
graphing purposes. 382 
 383 

Example (x,y) is (34,208).  384 
Distance from the center of the screen = |400 - x|  385 
Distance from the center of the screen = |400 - 34| = 366 pixels. 386 

Euclidean Analysis 387 

The first method we used to quantify the distance between nosepoke touches was a Euclidean 388 
Analysis (Ebitz and Hayden, 2021; Walther et al., 2016) in which we used the pythagorean 389 
theorem to calculate the hypotenuse between two points with (x,y) coordinates that were 390 
successive, from the same choice aperture (left/right), and within the same HMM decision state 391 
(explore/exploit) (Figure 1d). In python this calculation was done using numpy.hypot(). A 392 
drawback of this analysis is the amount of data points that get excluded given that the included 393 
data points must be consecutively from the same choice aperture side and within the same 394 
state. Distances were split by explore and exploit and all data was averaged across all eight 395 
restless bandit sessions for graphing purposes. In the example below “T” represents touch 396 
(nosepoke).  397 
 398 

Example T1 is (x1,y1) and T2 is (x2,y2).  399 

Distance Between Successive Touches (hypotenuse) =  √((x2 - x1)
2 + (y2 - y1)

2) 400 

Mahalanobis Analysis 401 

The second method we used to quantify touch patterns was a Mahalanobis analysis (Ebitz and 402 
Hayden, 2021; Walther et al., 2016) where, unlike the Euclidean analysis, we didn’t have to 403 
exclude any touch data points. With this analysis we were able to calculate separate centroids 404 
based on the data clusters for both the left side touches and right side touches and calculate the 405 
distance of each touch coordinate from each overall centroid (Figure 1f). The centroid is the 406 
central point in the data field that can be considered the overall mean for multivariate data given 407 
that this is the point where all means from all variables intersect. The further away a data point 408 
(touch) is from the centroid, the larger the Mahalanobis distance value. Distances were split by 409 
explore and exploit and all data was averaged across all eight restless bandit sessions for 410 
graphing purposes. In the formula below XA and XB represent a pair of objects, which are the x 411 
and y coordinates; C is the sample covariance matrix, calculated using numpy.cov() in python; 412 
and T is the transposition of the matrix over its diagonal, calculated using numpy.linalg.inv() in 413 
python.  414 
 415 

Mahalanobis Distance =  [(XB - XA)T* C-1* (XB-XA)]0.5  416 

Reward  417 

To determine whether being rewarded in the restless bandit task impacts touch location, we 418 
compared trial outcome (rewarded or non-rewarded) from the previous trial (T-1) to the change 419 
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in touch location on the current trial (T0). This was done using both Euclidean and Mahalanobis 420 
analyses. 421 

Distance Between Successive Bouts 422 

To understand how touches were organized within and across periods of exploration or exploit 423 
as defined by HMM, we divided the data into “bouts”. Rather than looking at our nosepoke data 424 
clusters throughout an entire session, a “bout” is described as a period of touches within one 425 
HMM defined behavioral state on one particular choice aperture. Thus, explore states may 426 
contain separate bouts on the left or right side, but these are analyzed separately. State 427 
transition trials from either explore to exploit or exploit to explore trigger a new “bout.” By looking 428 
at individual state bouts of choice responding, we can investigate whether explore or exploit 429 
centroids on a given response area are shifting more throughout a session. This analysis 430 
combines both Euclidean and Mahalanobis methods previously described. Mahalanobis 431 
analysis is used to determine the centroid of each individual “bout.” From here, the distance 432 
between successive centroids is calculated using the Euclidean analysis, which employs the 433 
pythagorean theorem (Figure 3c). Distances were split by explore and exploit and all data was 434 
averaged across all eight restless bandit sessions for graphing purposes. In the example below 435 
“C” represents centroid.   436 
 437 

Example C1 is (x1,y1) and C2 is (x2,y2).  438 

Distance Between Successive Touches (hypotenuse) =  √((x2 - x1)
2 + (y2 - y1)

2) 439 

Contour Plots and Area Calculations  440 

In order to calculate the amount of space occupied by each bout we calculated the area and 441 
perimeter of the bouts. In Python, 2D contour plots from Plotly Graphing Libraries were fit over 442 
our nosepoke touch locations to visualize the density and range of choice responding. Bins 443 
edges were designated by numpy.histogram and filtered at every-other bin so they were twice 444 
as big as the standard output. The color bar was fixed from 0 to 1 across all generated plots to 445 
ensure consistency of calculations (Figure 3a). Contour fill was removed, leaving just the 446 
outlines at a thickness of “3” so the trace would be better recognized by OpenCV.   447 
 448 
Once a contour plot was generated for each bout, Open Source Computer Vision (OpenCV) 449 
was used to capture the contours along continuous boundaries and calculate area 450 
(cv.contourArea) and perimeter (cv.arcLength) for each bin. While tracing the contours, 451 
cv.threshold was set to cv.THRESH_BINARY and cv.findContours was set to 452 
cv.CHAIN_APPROX_SIMPLE. Contour Approximation was used when it was necessary to 453 
approximate the area between two separate contour groups. We focused on the dimensions of 454 
the outermost bin as the best representation for the spread of data throughout a bout (Figure 455 
3a). The outermost bin was filtered using the structure hierarchy, or rather the nested orientation 456 
of the contours labeled numerically with “parent” and “child” identifications. Areas and 457 
perimeters of bouts were split by explore and exploit and all data was averaged across all eight 458 
restless bandit sessions for graphing purposes.Finally, area and perimeter were calculated for 459 
the correctly identified contour bin. OpenCV was run through Minnesota Supercomputing 460 
Institute (MSI).    461 
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Figures 644 
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Figure 1: Exploit states and female sex reduce action variability during decision making. 646 
a) schematic depicting the timeline of a single trial. White squares indicate left/right spatial 647 
choice. b) An example of touch screen responses from one animal and one session, where light 648 
purple indicates explore touches and dark purple indicates exploit touches. c) Schematic 649 
depicting the hidden Markov model (HMM) and labeling explore trials along an example two-arm 650 
restless bandit probability walk. Orange traces indicate the probability and choices of left side 651 
touches. Blue traces indicate the probability and choices of right side touches. Gray shaded 652 
regions indicate HMM labeled explore trials. d) Schematic of Euclidean distance where the 653 
distance is calculated between touch 1 and touch 2, touch 2 and touch 3, touch 3 and touch 4, 654 
and so on. Shown here are possible left/right touches in blue and the distance relationship from 655 
one to another represented by black lines. e) Average Euclidean distance split by state (left) and 656 
sex (right). Exploit touches and females had significantly reduced Euclidean distance. Light 657 
purple indicates distance between explore touches and dark purple indicates distance between 658 
exploit touches. Red indicates female and blue indicates male mice. In violin graphs, individual 659 
data points are data from one mouse averaged across all sessions. f) Schematic of 660 
Mahalanobis distance where the individual data points are measured from the overall centroid of 661 
the dataset. Shown here are possible left/right Mahalanobis clusters (light blue circles) and 662 
centroids (stars) and the Mahalanobis distance relationship from each touch (darker blue 663 
circles) in a cluster to the centroid represented by black lines. g) Average Mahalanobis distance 664 
split by state (left) and sex (right). Exploit touches had significantly reduced Mahalanobis 665 
distance. Light purple indicates Mahalanobis distance between explore touches and dark purple 666 
indicates Mahalanobis distance between exploit touches. Red indicates female and blue 667 
indicates male mice. h) Schematic of distance from the center of the screen where touch 668 
distance from both left and right choice apertures is measured from the midpoint of the operant 669 
screen. Shown here are possible left/right touches in blue and the distance of each from the 670 
center of the touchscreen represented by black lines. i) Average distance from the center of the 671 
screen split by state (left) and sex (right). Explore touches were significantly closer to the center 672 
of the screen. Light purple indicates distance from the center of the screen for explore touches 673 
and dark purple indicates distance from the center of the screen for exploit touches. Red 674 
indicates female and blue indicates male mice. For simplicity of visualization, all plots are 675 
averages across trials and sessions, so that each individual data point plotted represents the 676 
overall average for a mouse. Significant throughout this paper is represented in the following 677 
way: * p value less than 0.05 and greater than 0.01; ** p value less than 0.01 and greater than 678 
or equal to 0.001; *** p value less than 0.001. Violin graphs depict median and quartiles of the 679 
dataset.      680 
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 681 
Figure 2: Previous reward reduces action variability independently from explore/exploit 682 
balance or female sex. a) Average Euclidean distance comparing rewarded vs. non-rewarded 683 
trials. Touches following rewarded trials had significantly reduced Euclidean distance. Light 684 
green indicates distance between non-rewarded touches and dark green indicates distance 685 
between rewarded touches. In violin graphs, individual data points are data from one mouse 686 
averaged across all sessions. b) Average Euclidean distance for rewarded (left) and non-687 
rewarded (right) trials split by state and sex. Exploit touches and females had significantly 688 
reduced Euclidean distance. Red indicates female and blue indicates male mice. c) Average 689 
Mahalanobis distance comparing rewarded vs. non-rewarded trials. Touches following rewarded 690 
trials had significantly reduced Mahalanobis distance. Light green indicates Mahalanobis 691 
distance between non-rewarded touches and dark green indicates Mahalanobis distance 692 
between rewarded touches. d) Average Mahalanobis distance for rewarded (left) and non-693 
rewarded (right) trials split by state and sex. Exploit touches had significantly reduced 694 
Mahalanobis distance. Red indicates female and blue indicates male mice. * p value less than 695 
0.05 and greater than 0.01; ** p value less than 0.01 and greater than or equal to 0.001; *** p 696 
value less than 0.001. Violin graphs depict median and quartiles of the dataset.   697 
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 698 
Figure 3: Exploit states and female sex reduce the total response space chosen across a 699 
decision making session. a) An example 2D contour plot from Plotly Graphing Libraries fit 700 
over our nosepoke touch locations to visualize the density and range of choice responding. 701 
Small gray circles are nosepoke touches within the bout of response data. Color map 702 
corresponds with density of data points within each bin, where the darkest purple (outer bin) is 703 
the least dense contour bin, which is used to calculate area and perimeter of the bout. b) 704 
Average area of bouts split by state and sex. Exploit touches and females had significantly 705 
reduced area. Red indicates female and blue indicates male mice. In violin graphs, individual 706 
data points are data from one mouse averaged across all sessions. c) Schematic depicting 707 
centroid shifts, where the Euclidean distance between two successive Mahalanobis centroids is 708 
calculated. Stars represent example centroids associated with bouts and black lines represent 709 
the distance calculations between those centroids. d) Centroid shifts split by state and sex. 710 
Centroid shifts were significantly smaller for exploit bouts. Red indicates female and blue 711 
indicates male mice. * p value less than 0.05 and greater than 0.01; ** p value less than 0.01 712 
and greater than or equal to 0.001; *** p value less than 0.001. Violin graphs depict median and 713 
quartiles of the dataset.  714 
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