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Purpose: This study aimed to investigate the correlation of axial length/corneal

radius of curvature ratio with stress–strain index (SSI).

Methods: Retrospective analysis was conducted to compare the right eyes of

those with high myopia (HM, n = 132; age and 10–48 years) with those without

high myopia (NHM, n = 135; age and 7–48 years), where the baseline axial

length, corneal radius of curvature ratio, and central corneal thickness were

analyzed; the differences in two groups were compared; and the relationship of

axial length and axial length/corneal radius of curvature ratio with SSI were

explored.

Results: Compared with AL < 26mm, SSI significantly decreased when AL ≥
26 mm (p= 0.001), while there was no correlation with AL in the NHMgroup (r=

-0.14, p = 0.12) or HM group (r = -0.09, p = 0.32). AL/CR was significantly

associated with SSI in both the NHM (r = -0.4, p < 0.001) and HM (r = -0.18, p =

0.04) groups. In the NHM group, AL/CR was significantly associated with SSI

(unstandardized beta = -0.514, se = 0.109, p < 0.001) with the adjustment of age

and gender. Additionally, a significant association of SSI with AL/CR was also

found after adjusting for age and gender (unstandardized beta = -0.258, se =

0.096, and p = 0.0082) in the HM group.

Conclusion: SSI showed a significant negative correlation with AL/CR in patients

without high myopia and in patients with high myopia. However, SSI exhibited no

decrease with the worsening of myopia, but it gradually remained stable at a low

level. The findings of this study validate, to some extent, the possibility of analyzing

the dynamic changes in ocular wall stiffness during the development of myopia by

measuring in vivo corneal biomechanical parameters.
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Introduction

The pathogenesis of myopia has long been viewed as an

interesting biological problem, and the development of

nearsightedness is inextricably linked to the process of

refractive development. Initially, this process was often

described in terms of a change in the refractive error;

however, it became more sophisticated with the advancement

of the equipment used for examination, and we have found that

even though the refractive state of the eye is maintained using

orthokeratology, the structure of the eye, including the cornea

and lens, and parameters such as axial length (AL) change

throughout the life Morgan et al., (2014). The AL in

newborns is approximately 17 mm. During the period from

birth to 2–3 years of age, the corneal refractive power and lens

refractive power decline rapidly, while the AL increases; after the

relative stabilization of corneal development at 2–3 years of age,

the AL increases rapidly, and to match this increase, the lens

refractive power declines rapidly. When the rate at which the lens

loses its refractive power decreases rapidly at the age of

10–12 years, the refractive state of the eye stabilizes and

approaches emmetropia; at this stage, the AL is approximately

23 mm, and this process stabilization is known as

emmetropization. However, after the completion of

emmetropization, the increase in the AL can continue until at

least 30 years of age. This condition, in which the other refractive

components no longer change but the AL continues to increase,

has been considered an important cause of axial myopia (Tokoro

and Suzuki, 1968; Mutti et al., 2012). The increase in the AL is

essentially the result of the expansion of the ocular wall. Because

the sclera occupies more than 90% of the surface area of the

eyeball Olsen et al., (1998), the expansion of the scleral wall is the

most central change in patients with axial myopia. The wall of the

eyeball is roughly shaped as a flat ellipsoid at birth, and during

emmetropization, the scleral wall expands nearly uniformly in all

directions, gradually changing from a flat sphere to a round

sphere. However, the expansion of the wall of the eyeball is not

always uniform in all directions; in normal eyes, the anterior and

posterior regions of the sclera reach an adult level at 2 and

13 years of age (Fledelius and Christensen, 1996), respectively.

Subsequently, as myopia develops and progresses, the expansion

of the sclera is greater along the sagittal axis [0.35 mm/diopter

(D)] than along the coronal axis (0.19 mm/D) and horizontal axis

(0.10 mm/D), although it can continue to expand in all three axes

Atchison et al., (2004). The expansion of the scleral wall on the

sagittal axis (i.e., the extension of the AL length) shows the closest

relation to the refractive status and prognosis of axial myopia:

first, the extension of the AL drives the retina of the posterior pole

back, and the degree of distance of the posterior pole retina from

the focal plane of the refractive system, such as the cornea and

lens, can be regarded as the degree of myopia; consequently, high

myopia (HM) is defined by a spherical equivalent of −6 D or less

with an AL generally exceeding 26 mm (Wang et al., 2015;

Tideman et al., 2016). It should be added here that axial

elongation is the primary factor in the development of myopia

(Flitcroft et al., 2019; Wolffsohn et al., 2019). Considering that

the AL distribution of emmetropia ranges from 21.5 to 25.5 mm

Steiger, 1913), AL ≥ 26 mm (or AL ≥ 26.5 mm) is often used as

the diagnostic threshold of high myopia in clinical studies.

Second, especially in the patients with HM, the prevalence of

posterior scleral staphyloma as well as choroidal thinning and

vitreoretinal interface traction increases significantly with an

increase in the AL, which leads to the impairment of visual

function due to pathological myopia (Ohno-Matsui et al., 2021).

It is undeniable that AL is an extremely important parameter

that reflects the degree of ocular myopia. Nevertheless,

considering the differences in body mass index (BMI) and

orbital volume of each individual, we can state that AL alone

does not accurately reflect the degree of ocular myopia. Due to

the differences in the refractive power of the cornea, lens, and

other components of the refractive system between individuals,

myopic refraction may vary for the same AL; therefore, the

description of the degree of myopia requires the combination

of the “refractive power of the refractive system” and the

“distance of the photoreceptors from the focal plane of the

refractive system of the eye.” The spherical equivalent

refractive error is the simplest and most direct way to

quantify the degree of myopia, which is described by the

refractive distance between the focal plane of the refractive

system of the eye and the central macular concavity. In

addition, because the anterior surface of the cornea carries

most of the refractive power of the refractive system of the

eye, the ratio of AL and corneal radius of curvature (AL/CR)

is likewise a reliable variable for the quantitative description of

the degree of ocular myopia. Therefore, the AL/CR shows a better

correlation with the refractive error than does AL alone

(Grosvenor and Scott, 1994; Scheiman et al., 2016).

With a change in the severity of axial myopia, the

biomechanical properties of the ocular wall change, and

myopic eyes have been suggested to show lower levels of

stiffness than do emmetropic ones (Lam et al., 2002; Berisha

et al., 2010). Studies on the isolated scleral tissues have revealed

that the scleral collagen fibers in highly myopic eyes show a

decrease in diameter, which increases the ocular wall elasticity

and viscoelasticity (Rada et al., 2006; Mcbrien et al., 2009),

especially in the posterior scleral chylomicron where

ultrastructural changes in the scleral tissue make the scleral

structure thinner and more susceptible to mechanical stress-

induced deformation (Curtin and Teng, 1958; Gentle et al.,

2003). Meanwhile, studies on the biomechanical properties of
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the in vivo cornea in myopic eyes have found that the expansion

of the sclera may lead to a decrease in corneal stiffness (Yu et al.,

2020). Because the vast majority of the sclera is not exposed to the

external environment like the cornea, few studies have focused

on the biomechanical properties of the in vivo scleral tissue;

however, some researchers believe that the above finding is

because the corneal stroma is the continuation of the scleral

tissue. Some corneal biomechanical parameters are related to the

eye axis, and the measurement of corneal biomechanical

parameters can reflect the mechanical properties of the sclera

to some extent (Yu et al., 2020; Liu et al., 2021).

The CorVis ST tonometry-based stress–strain index (SSI) is a

new index of corneal stiffness obtained using a numerical simulation

of model eyes and finite element analysis, and it is currently

considered to be age-dependent; however, it is not correlated with

intraocular pressure (IOP) or central corneal thickness (CCT) (Eliasy

et al., 2019). SSI is based on the stress–strain curve of the ocular wall

tissue. The stress–strain curve is an important concept in material

science, which can be obtained by recording the deformation (strain)

of material under different tensile and compressive loading stresses

(Luebkeman and Peting). With regard to the ocular wall tissue, while

applying a simple stretching factor as a multiplier to all strain values,

stress–strain curves that are different and have no intersecting trends

could be obtained. For the average experimental behavior observed in

the corneal tissue of an individual aged 50 years, SSI was set to 1.0.

Higher SSI values would indicate higher tissue stiffness and vice versa

(Eliasy et al., 2019). Liu et al. found that SSI, an index of corneal

stiffness, was negatively correlatedwithALwhen the latter is<26mm

but not when it is ≥26mm (Liu et al., 2021). Therefore, it is suggested

that due to the non-uniform expansion of the eyeball during myopic

development, the eye tends to expand uniformly in all directions in

the early stages; the expansion after the development of HM mainly

originates in the posterior pole, when the morphological and

mechanical properties of the anterior segment of the eye stabilize

and are no longer associated with the posterior pole. These studies

provide the basis for us to infer changes in the biomechanical

characteristics of the myopic ocular wall using SSI.

As noted earlier, the stiffness of the ocular wall increases with age

and decreases with the progression of myopia, and the performance

of SSI in many studies seems to fit well with this pattern of change in

the ocular wall stiffness (Eliasy et al., 2019; Liu et al., 2021). Because

the AL/CR shows a better correlation with refractive error than does

AL alone and because AL/CR can be used to measure the degree of

ocular myopia, we wonder if SSI still fits the pattern of a decrease in

wall stiffness with an increase in myopia at AL ≥ 26mm. In other

words, it is unclear whether SSI is still correlated with the expansion

of the posterior pole of the eye after the morphologic andmechanical

properties of the anterior segment of the eye have developed and

stabilized. Therefore, we hypothesized that the biomechanical

parameter SSI is not directly related to the “increase in the AL”

but rather to the “increase in myopia.” To test the abovementioned

hypothesis, we analyzed AL/CR and SSI as variables for the

evaluation of the degree of ocular myopia and the biomechanical

characteristics of the ocular wall, respectively, with the aim to explore

the correlation between SSI and the degree of myopia and to

investigate whether the dynamic changes in ocular wall stiffness

during the development of myopia can be analyzed through the

measurement of in vivo corneal biomechanical parameters.

Methods

Subjects

A total of 267 patients (534 eyes) admitted to the Qingdao Eye

Hospital of Shandong First Medical University, from July 2021 to

April 2022, were included in this cross-sectional study. We excluded

participants with a history of or those who were suspected of contact

lens use, keratoconus, and other corneal lesions and those who had

undergone refractive surgery and other ophthalmic surgeries, such as

vitreous surgery, and those for uveitis or glaucoma. Depending on the

measured AL of the right eye, the subjects were divided into the non-

HM (NHM) group (AL < 26 mm) and the HM group (AL ≥
26mm). To avoid the mixed influence of both eyes on the

results, all the data, except for the baseline data, were obtained

from the right eye. All subjects underwent a complete general

ophthalmic examination, including slit lamp examination,

subjective refraction measurement, fundus examination, and IOP

measurement. All research procedures followed the principles of the

Helsinki Declaration and were approved by the Ethics Committee of

Qingdao Eye Hospital of Shandong First Medical University.

Measurement of ocular structural
parameters and biomechanical
parameters

An Optical coherence biometrics OA-2000 (Tomey, Japan)

was utilized to measure the AL of each subject’s eyes. Pentacam

(Oculus, Wetzlar, Germany) was utilized to measure the corneal

thickness and radius of curvature of the anterior corneal surface.

Biomechanical SSI parameters were measured with CorVis ST

(Oculus, Wetzlar, Germany). All measurements were performed

by certified technicians. Only measurements with “OK” quality

specifications were included in this analysis.

Statistical analysis

Sociodemographic and clinical variables of participants were

compared between the two groups (NHM vs. HM) using a two-

sample t-test for continuous variables and Pearson’s χ2 test for

categorical variables. We performed Pearson’s correlation tests to

examine the relationships between continuous variables of

interest in the two groups separately. We ran a multivariable

linear regression model with SSI as the dependent variable for
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each group to investigate the association of AL/CR with SSI. The

covariates included age and gender. Cook’s distance was used to

detect potential influential points that may affect our models. We

did not find any influential points. All statistical work was

conducted using R statistical software (Version: 4.1.3).

Result

Sample characteristics

As shown in Table 1, the study sample comprised

267 participants, including 135 individuals in the NHM group

and 132 individuals in the HM group. There were significant

differences in age, SSI, CR, AL, and AL/CR between the two

groups (all p < 0.05), while the two groups did not differ in the

percentage of female gender (χ2 = 0.028, p = 0.87) or CCT

(p > 0.05).

Correlation between several continuous
variables of interest

In order to examine the relationships between several

continuous variables of interest, Pearson’s correlation tests

were performed. As shown in Figure 1, we found that age was

positively correlated with AL in the overall sample (r = 0.36, p <
0.001). Figure 2 demonstrates a positive correlation between AL

and CR in both the NHM (r = 0.31, p < 0.001) and HM (r = 0.34,

p < 0.001) groups. Additionally, age was also found to be

associated with AL/CR in both the NHM (r = 0.42, p < 0.001)

and HM (r = 0.3, p < 0.001) groups (Figure 3).

Nevertheless, we did not find a significant correlation

between age and SSI in the NHM (r = -0.15, p = 0.09) or HM

(r = 0.15, p = 0.08) group (Figure 4). As shown in Figure 5, AL

was not associated with SSI in the NHM (r = -0.14, p = 0.1) or

HM group (r = -0.09, p = 0.32).

To investigate the relationship between AL/CR and SSI in the

two groups, Pearson’s correlation tests were used.We found that AL/

CR was significantly associated with SSI in both the NHM (r = -0.4,

p < 0.001) and HM (r = -0.18, p = 0.04) groups (Figure 6).

Association of AL/CR with SSI in the NHM
and HM groups

To further explore the association between AL/CR and SSI,

multivariable linear regressionmodels with the adjustment of age and

gender were fitted in the two groups. In the NHMgroup, AL/CRwas

significantly associated with SSI (unstandardized beta = -0.514, se =

0.109, p < 0.001) with the adjustment of age and gender (Table 2).

Additionally, a significant association of SSI with AL/CR was also

found after adjusting for age and gender (unstandardized beta =

-0.258, se = 0.096, p = 0.0082) in the HM group.

Discussion

In this study, we investigated the relationship between SSI and

AL/CR, a proxy parameter for the degree of ocular myopia, in the

TABLE 1 Participants’ characteristics of two groups.

Characteristic Overall, n = 267a NHM, n = 135a HM, n = 132a p valueb

Age, year 22 (8) 20 (8) 24 (7) <0.001
Gender 0.87

Male 122 (46%) 61 (45%) 61 (46%)

Female 145 (54%) 74 (55%) 71 (54%)

SSI (OD) 0.82 (0.15) 0.85 (0.16) 0.79 (0.15) 0.002

SSI (OS) 0.84 (0.15) 0.86 (0.15) 0.82 (0.15) 0.017

CCT (OD), mm 544 (34) 542 (36) 545 (32) 0.5

CCT (OS), mm 544 (34) 543 (35) 545 (33) 0.6

CR (OD), mm 7.78 (0.24) 7.71 (0.24) 7.86 (0.22) <0.001
CR (OS), mm 7.76 (0.30) 7.68 (0.33) 7.85 (0.24) <0.001
AL (OD), mm 26.01 (1.48) 24.89 (0.85) 27.16 (1.06) <0.001
AL (OS), mm 25.88 (1.48) 24.82 (0.88) 26.96 (1.15) <0.001
AL/CR (OD) 3.34 (0.17) 3.23 (0.13) 3.46 (0.14) <0.001
AL/CR (OS) 3.34 (0.21) 3.24 (0.17) 3.44 (0.19) <0.001

Abbreviations: NHM, non-high myopia; HM, high myopia; SSI, stress–strain index; CCT, central corneal thickness; CR, corneal curvature; AL, axial length; AL/CR, axial length/corneal

radius of curvature ratio.
aMean (SD); n (%).
bWelch two-sample t-test; Pearson’s Chi-squared test.
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young andmiddle-aged populations. Overall, SSI at AL≥ 26mmwas

smaller than that at AL < 26mm. Both at AL < 26 mm and at AL ≥
26 mm, AL/CR values were significantly associated with SSI after the

adjustment of age and gender; however, the decrease in SSI at AL ≥

26mm (HM group) was lower than that at AL < 26mm (NHM

group) for each unit of increase in AL/CR.

The SSI derived using CorVis ST Tonometry is intended to

be independent of IOP and corneal geometry and can visually

FIGURE 1
Relationship between age and AL in the overall sample. Age was positively correlated with AL in the overall sample (r = 0.36, p < 0.001). The
dashed line represents the cutoff point for classifying individuals into the two groups: NHM (AL<26 mm) and HM(AL≥26 mm). Abbreviation: NHM,
non-high myopia; HM, high myopia; AL, axial length.

FIGURE 2
Relationship between AL and CR in the two groups. There was a positive correlation between AL and CR in both the NHM (r = 0.31, p < 0.001)
and HM (r = 0.34, p < 0.001) groups. Abbreviation: NHM, non-high myopia; HM, high myopia; AL, axial length; CR, corneal curvature.
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quantify corneal tissue stiffness: the greater the SSI value, the

greater the stiffness of the tissue material and vice versa. In this

study, SSI in the HM group was 0.77 ± 0.15 (range, 0.46–1.40),

and that in the NHM group was 0.85 ± 0.16 (range, 0.50–1.35);

SSI values in both the groups conformed to normal distribution.

One study (Liu, 2020) reported that the SSI values in a Chinese

Han cohort aged 17–50 years (mean, 27.4 years old) showed a

normal distribution with a mean value of 0.895 (range,

FIGURE 3
Relationship between age and AL/CR in the two groups. Age was associated with AL/CR in both the NHM (r = 0.42, p < 0.001) and HM (r = 0.3,
p < 0.001) groups. Abbreviation: NHM, non-high myopia; HM, high myopia; AL/CR: axial length/corneal radius of curvature ratio.

FIGURE 4
Relationship between age and SSI in the two groups. We did not find a significant correlation between age and SSI in the NHM (r = -0.15, p =
0.09) or HM (r = 0.15, p = 0.08) group. Abbreviation: NHM, non-high myopia; HM, high myopia; SSI, stress–strain index.
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1.16–0.57). This finding was consistent with the results of the

current study (Table 1).

It has been suggested that as glycation-induced cross-

linking increases with age, corneal stiffness increases (Daxer

et al., 1998; Elsheikh et al., 2010). Moreover, due to increased

non-enzymatic glycosylation and cross-linking of collagen

fibers, the stiffness of the sclera increases with age (Schultz

et al., 2008; Coudrillier et al., 2012) [stiffnesses of the anterior

FIGURE 5
Relationship between AL and SSI in the two groups. AL was not associated with SSI in the NHM or HM group. Abbreviation: NHM, non-high
myopia; HM, high-myopia; SSI, stress–strain index; AL, axial length.

FIGURE 6
Relationship between AL/CR and SSI in the two groups. AL/CR was significantly associated with SSI in both the NHM and HM groups.
Abbreviation: NHM, non-high myopia; HM, high myopia; SSI, stress–strain index; AL/CR: axial length/corneal radius of curvature ratio.

Frontiers in Bioengineering and Biotechnology frontiersin.org07

Chu et al. 10.3389/fbioe.2022.939129

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.939129


and posterior sclerae vary depending on the developmental

cycle (Spaide, 2014)]. Thus, the corneal stroma, as a

continuation of the sclera, can reflect the biomechanical

properties of the sclera to some extent. In a large

multicenter clinical trial (Eliasy et al., 2019) (mean age of

participants, 40.6 ± 17.1 years; range, 7–87 years), SSI that

was measured in vivo was demonstrated to increase with age,

and this positive correlation between SSI and age was later

reported by Liu et al. to be independent of AL (Liu et al.,

2021). This relationship between SSI and age was not well

reproduced in the current study (Figure 4). One study (Liu

et al., 2020) found that SSI was relatively stable before the age

of 35 and then increased significantly with age; thus, the

relative concentration of participant age in the current study

(mean age, 22.1 ± 7.7 years; range, 7–48 years) may explain

the contradictory results (Table 1).

A recent study reported a negative correlation between

SSI and AL when the latter was <26 mm; this correlation did

not exist when AL was ≥26 mm. Liu et al. speculated that this

result may be explained by the non-uniform expansion of the

eye during the development of myopia: during the early

stages of myopia development, the eyeball tends to dilate

uniformly in all directions, whereas after the development of

HM, the dilatation mainly originates in the posterior pole,

and the morphological and mechanical properties of the

anterior segment of the eye stabilize and are no longer

relevant to the posterior pole, which explains this result

(Liu et al., 2021). The current study also showed that SSI

was significantly lower in the eyes with AL ≥ 26 mm than in

eyes with AL < 26 mm, but the correlation between AL and

SSI did not reach a statistically significant level in any of the

groups (Figure 5). Therefore, it seems that changes in the

biomechanical properties in the ocular wall of the HM group

are not directly related to the “increase in the AL.” Some

studies have shown that the cornea may play an

emmetropizing role in preserving emmetropia or low

myopia. This emmetropizing capacity could be insufficient

when the AL is excessive in the ocular globe; this insufficiency

leads to the appearance of myopia (González Blanco et al.,

2008). The reason why the negative correlation between SSI

and AL is no longer apparent at AL ≥ 26 mmmay be related to

the stabilization of CR. Moreover, considering the

heterogeneity of the ocular wall expansion, perhaps we

may obtain a more accurate relationship between SSI and

AL by stratifying the eyeball morphology for the same AL

after introducing ocular sagittal and coronal diameter

variables, which warrants future validation with larger

sample sizes.

According to previous studies, AL/CR is more closely

related to myopia than AL alone (Fledelius, 1986; Ojaimi

et al., 2005; Foo et al., 2016; Scheiman et al., 2016; Jong et al.,

2018), and the stronger correlation between AL/CR and

refractive error indicates the dynamic balance between AL

and the corneal curvature during the development of myopia

(Ojaimi et al., 2005). On the basis of this finding, the current

study used AL/CR, the variable that is more closely related to

the degree of myopia, to investigate the relationship between

SSI and HM. First, in the whole sample, age was positively

correlated with AL (Figure 1). AL and CR were positively

correlated in both the NHM and HM groups (Figure 2). In

addition, age was also correlated with AL/CR in the NHM and

HM groups (Figure 3). To further explore the relationship

between AL/CR and SSI, age- and sex-adjusted multiple

linear regression models were fitted for both the groups.

First of all, just as myopia is not necessarily more severe at

AL ≥ 26 mm than at AL < 26 mm, NHM and HM in this study

showed a wide intersection in the interval of approximately

3.2–3.6 on the AL/CR coordinate axis of the function

(Figure 6). Meanwhile, as predicted, SSI after adjusting for

age and sex showed a significant negative correlation with

AL/CR in the NHM group and the HM group (Table 2), but

the decrease in SSI was lesser with each unit of increase in AL/

CR in the HM group than in the NHM group, indicating that

SSI does not keep decreasing with an increase in myopia, but

it gradually stabilizes at a lower level. This suggests that the

insignificant correlation between SSI and AL at AL ≥ 26 mm

may be related to the stabilization of the biomechanical

properties of the cornea as well.

TABLE 2 Modeling of the potential association of SSI with AL/CR adjusted for age and gender.

NHM HM

Beta se t value p value Beta se t value p value

Age 0.001 0.002 0.394 0.6944 0.005 0.002 2.654 0.009

Female gender -0.026 0.025 -1.065 0.2888 0.036 0.025 1.463 0.1458

AL/CR -0.514 0.109 -4.728 <0.001 -0.258 0.096 -2.687 0.0082

AL/CR: axial length/corneal radius of curvature ratio; NHM, non-high myopia; HM, high myopia.

Beta represents unstandardized beta; se represents standard error; R-squared of the regression model for the NHM group is 0.17; R-squared of the regression model for the HM group

is 0.09.
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This study focuses on the correlation between the corneal

biomechanical index SSI and the variable AL/CR, which reflects

the degree of myopia, in the population with HM and NHM.

We found that if AL/CR is used as the variable to measure the

degree of myopia, the SSI still fits the pattern of a decrease with

an increase in myopia at AL ≥ 26 mm, which indicates that the

SSI is still correlated with the expansion of the posterior pole of

the sclera after the morphological and mechanical properties of

the anterior segment of the eye have developed and stabilized.

However, with regard to the research methods, some limitations

need to be acknowledged. First, although we verified the

hypothesis that SSI is more strongly related to the degree of

myopia than is the increase in the AL, the causal relationship

between changes in the biomechanical properties of the ocular

wall and changes in the growth of the eye axis cannot be

determined because the present study is a cross-sectional

study. Second, the results are based on variables associated

with axial myopia, and it is not known whether refractive

myopia applies to these results due to the lack of “refractive

error” in the variables. In addition, it is also difficult to

accurately interpret the SSI values measured under the in

vivo conditions, where the eyeball is suspended in the soft

tissue and the posterior sclera. Although the posterior sclera is

relatively less rigid, its extension by the support of the

retrobulbar tissue itself is limited; the anterior sclera,

although more rigid, protrudes mostly outside the orbit and

is not supported by the retrobulbar tissue. Therefore, it is

difficult to determine the extent to which the anterior and

posterior scleral strain contributes to the SSI values (Mcbrien

et al., 2009; Girard et al., 2011), although this does not seem to

affect the assessment of the overall biomechanical

characteristics of the eye in vivo using SSI. Further, the

findings of this study also validate, to some extent, the

possibility of analyzing the dynamic changes in ocular wall

stiffness during the development of myopia by measuring in

vivo corneal biomechanical parameters.

As myopia research continues to advance, our

understanding of the mechanisms behind the development

of myopia is evolving. However, so far, we do not know the

answers to the fundamental questions on the nature of

myopia and the reasons for its occurrence and progress.

With the development of a series of in vivo imaging

techniques such as swept-source optical coherence

tomography and 3D-MR, our understanding of myopia has

evolved from the initial one based on refractive changes and

morphological changes in the eye to the present-day in vivo,

dynamic regulation mechanisms. On this basis, the present

study also provides new ideas for us to investigate the effects

of myopia on the biomechanical characteristics of the eyeball

under in vivo conditions.

Conclusion

SSI showed a significant negative correlation with AL/CR in

patients without high myopia and in patients with high myopia.

However, SSI exhibited no decrease with the worsening of

myopia, but it gradually remained stable at a low level. The

findings of this study validate, to some extent, the possibility of

analyzing the dynamic changes in ocular wall stiffness during the

development of myopia by measuring in vivo corneal

biomechanical parameters.
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