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Introduction

In the realm of radiology, where precision and accuracy are
paramount, statistics serves as a crucial tool for interpreting
data, conducting research, and making informed clinical
decisions. This advanced primer aims to delve deeper into
essential statistical concepts beyond the basics, equipping
the reader with the knowledge to effectively analyze com-
plex data sets, explore correlations and causality, employ
regression analysis techniques, interpret survival curves, and
evaluate diagnostic accuracy tests rigorously.

Statistical tests used to test the relationship between
variables are broadly divided into three categories:

1. Correlation analysis.
2. Regression analysis (prediction).
3. Time-dependent statistical analysis (Cox regression

analysis).

The first section of this article focuses on the concept
of correlation between two data sets and the degree of

correlation (i.e., regression). Toward thenexthalfof this article,
the focus will primarily be on the diagnostic accuracy of tests
as well as interobserver agreement. With this background, let
us now look into the concepts of correlation and regression.

Correlation and Causality

Correlation
Correlation is a statistical technique that measures the
strength and direction of the linear relationship between
two variables. While correlation analysis is useful in identi-
fying associations, it does not equate to causation.1

Over the last few decades, there has been a notable
increase in the number of thyroid cancer cases diagnosed
worldwide. During nearly the same period, there has also
been a significant increase in the use of computed tomogra-
phy (CT) scans.Wemight infer a causal relationship from this
assuming that the radiation from these CT scans cause
thyroid cancer. However, a more plausible explanation is
that the increased use of CT has led to the detection of more
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incidental thyroid nodules. Many of these nodules are small,
indolent tumors that might never have been discovered
otherwise. This correlation does not imply that increased
use of CT is causing the thyroid cancer; rather, CT is now
detecting more cases that were previously undetected.

Correlation analysis can be used to assess the relationship
between variables. The strength of correlation is determined
by the correlation coefficient (ranges from –1 to þ1). From
correlation analysis, inferences can be made about the
strength and direction of correlation. Direction indicates
whether the correlation is positive or negative, and strength
indicates whether the correlation is strong or weak.1–3

Positive correlation means that larger values of variable x
are accompanied by larger values of variable y. Basically,
positive correlation means relationship between two varia-
bles that tend to move in the same direction (either increas-
ing or decreasing). In certain types of tumors, such as those
with high vascularity, as the tumor size increases, the
magnetic resonance imaging (MRI) signal intensity may
also increase due to greater blood flow. Negative correlation
means that larger values of variable x are accompanied by
smaller values of variable y, and vice versa. In oncology
imaging, a negative correlation can be seen between tumor
response to effective treatment and tumor size. As the
treatment progresses and is effective, the size of the tumor
typically decreases, which can be monitored through serial
imaging studies such as MRI or CT. Graphical representation
of correlation between two variables is through a scatter plot
(►Fig. 1). Strength of correlation coefficient (r) is as follows:

r¼0.0–No correlation.
0< r<0.3 or 0< r<–0.3–Weak correlation.
0.3< r<0.7 or –0.3< r<–0.7–Moderate correlation.
0.7< r<1.0 or –0.7< r<–1.0–Strong correlation.
r¼1.0–Perfect correlation (þ1–perfect positive correla-
tion; –1–perfect negative correlation).

As the value of correlation coefficient is near to 1 on
either side, it shows that there is a strong relationship
between the variables. If there is a correlation in the sample,
then it is necessary to test whether there is sufficient
evidence to suggest a correlation in the population. Signifi-
cance of correlation coefficients can be tested using a t-test.
In this case, the null hypothesis is that the two variables
under consideration have no correlation. If the calculated
p-value is<0.05, the null hypothesis is rejected and
it is assumed that there is a correlation between the
variables.

Correlation hypothesis can be directional or nondirec-
tional. In nondirectional correlation hypothesis the research-
er is interested only in identifying whether there is a
correlation between the variables and not interested in the
direction of the correlation. However, in directional correla-
tion hypothesis the researcher is interested in the direction
of the correlation as well (i.e., whether there is a positive or
negative correlation between the variables).

Pearson’s Correlation
Pearson’s correlation assesses the degree of linear relation-
ship between metric scaled variables. It is basically a
parametric measure (on variables having a Gaussian distri-
bution). It is the covariance that is used for calculation. If the
covariance has a positive value it indicates a positive corre-
lation and if the covariance has a negative value then it
indicates a negative correlation. Covariance can assume
values in between plus and minus infinity. This makes it
difficult to calculate the strength of relationship between
different variables. It is for this reason that correlation
coefficient (also called product-moment correlation coeffi-
cient) is calculated. This correlation coefficient is obtained by
normalizing the covariance. For this normalization, varian-
ces of both variables are used and correlation coefficient is
calculated.4–6

Fig. 1 Scatter plot (A) demonstrating positive correlation between the final infarct volume in acute stroke and the delay in time to
revascularization. Scatter plot (B) demonstrating negative correlation between tumor size in case of brain tumors and the lower apparent
diffusion coefficient (ADC) values on diffusion-weighted imaging.
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Pearson’s correlation coefficient (r) can take values any-
where between –1 and þ1 and is interpreted as follows:

Value of þ1 indicates that there is a positive linear
relationship.
Value of –1 indicates that there is a negative linear
relationship.
Value of 0 indicates there is no linear relationship (i.e., the
variables do not correlate with each other).
Scatter plot is used to assesswhether a linear relationship
exists. It can be used to visually represent the relationship
between variables. Pearson’s correlation is only useful if
linear relationships are present.

Variables must be normally distributed and must have a
linear relationship between them for Pearson’s correlation to
be used. Normal distribution can be tested either analytically
or graphically with the Q-Q plot. Whether the variables have
a linear correlation is assessed by a scatter plot. If these
conditions are not satisfied, then Spearman’s correlation is
used.

Example: Pearson’s correlation coefficient can be used to
assess the linear relationship between pulmonary nodule
size on CT thorax scans and the likelihood of malignancy. A
positive correlation (e.g., r¼0.8) would indicate that larger
nodules tend to have a higher likelihood of being malignant,
while a negative correlation would imply the opposite
(though this is less expected in this context). A near-zero
value would suggest no linear association between nodule
size and malignancy likelihood. This analysis assumes both
variables are continuous, normally distributed, and have a
linear relationship, though other correlation methods might
be more appropriate if these assumptions are not met.

Spearman’s Rank Correlation
Spearman’s rank correlation assesses the relationship be-
tween two variables that have ordinal level of measurement.
It is the nonparametric equivalent of Pearson’s correlation
analysis. This correlation is usedwhen the prerequisites for a
parametric correlation analysis are not met, that is, when
there is no metric data and no normal distribution. It is also
known as Spearman’s rho.4–6

Rank correlation calculation is based on the ranking
system of the data series. Measured values are not used for
the calculation, but instead they are transformed into ranks.
Spearman’s rank correlation is then performed using these
ranks. For the rank correlation coefficient ρ, values can range
between –1 and 1. If there is a value less than zero (ρ<0), it
indicates a negative linear correlation. If the value is greater
than zero (ρ>0), there is a positive linear relationship. If the
value is zero (ρ¼0), it means that there is no relationship
between the variables.

Example: Spearman’s correlation coefficient is useful for
ranking radiologists based on their diagnostic accuracy
across different imaging modalities, as it measures the
strength and direction of the monotonic relationship be-
tween two ranked variables. In this context, if each radiolo-
gist is assigned a rank based on their accuracy within each
imaging modality (e.g., MRI, CT, ultrasound), the Spearman’s

correlation can help assess if there is a consistent pattern in
diagnostic performance across modalities. A high positive
Spearman’s correlation (close to þ1) would suggest that
radiologists who rank highly in one modality tend to rank
highly in others as well, indicating consistent diagnostic
accuracy. Conversely, a low or negative Spearman’s correla-
tion would suggest variability in accuracy across modalities,
with some radiologists excelling in certain types of imaging
while underperforming in others. This analysis does not
assume a linear relationship, making it suitable for ranked
data.

Kendall’s Tau
Kendall’s rank correlation is a nonparametric test procedure.
For this thedatamustnotbenormallydistributedandboth the
variables must have an ordinal scale level. It is very similar to
Spearman’s rank correlation. Spearman’s rank correlation
calculates the correlation based on the difference in ranks of
paired values, placing more emphasis on the magnitude of
thesedifferences.On theotherhand,Kendall’s rankcorrelation
(often referred to as Kendall’s tau) is based on the concept of
concordant and discordant pairs, assessing the order or “direc-
tion” consistency between paired values rather than rank
difference size. Kendall’s tau ignores the degree of rank differ-
ences and focuses solely onwhether pairs agree or disagree in
rank order. Kendall’s tau is preferred over Spearman’s rank
correlation and is usedwhen there are small or highly variable
data sets with potential outliers, or a more conservative
estimate of correlation based on directionality rather than
the magnitude of differences is to be assessed.7

Example: In a study linking radiologists’ experience levels
to diagnostic confidence in detecting early findings of Alz-
heimer’s disease on MRI, Kendall’s tau would offer a stable
correlation estimate, focusing on the consistency in rank
order rather than the size of rank differences. This is partic-
ularly useful when there are potential outliers, such as
experienced radiologists with unexpectedly low confidence,
as Kendall’s tau is less affected by such variations. Thus, it
provides a more conservative and robust measure of associ-
ation in studies with limited data, ensuring reliable insights
for preliminary analyses or future research planning.

Point-Biserial Correlation
Point-biserial correlation is usedwhen one of the variables is
dichotomous and the other has a metric scale. To calculate
point-biserial correlation, one of the two expressions of the
dichotomous variable is coded as 0 and the other as 1. In
point-biserial correlation, the binary variable (0 or 1) acts
like a two-group categorical variable, with the mean differ-
ence between the continuous variable in each group playing
a role similar to covariance in the Pearson formula. Like
Pearson’s r, rpb standardizes this relationship by dividing the
mean difference by the standard deviation of the continuous
variable, thereby producing a coefficient that ranges from –1
to þ1. Essentially, the point-biserial correlation can be seen
as a special case of Pearson’s correlation where one variable
is dichotomous, allowing it to quantify the linear association
between a continuous variable and a binary variable.8
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Formulae for Pearson’s correlation coefficient, Spearman’s
correlation coefficient, and point-biserial correlation are
shown in ►Fig. 2.

Correlation analysis is not possible with nominal data.
Equivalent tests are: chi-square test, Cramér’s V, contingency
coefficient, and phi coefficient.

Causality
To establish causality one needs to demonstrate that changes
in one variable directly results in changes in another. It
requires rigorous experimentation and control of confound-
ing factors.9,10

Basic Criteria for Causality

1. Temporal precedence: Cause must precede the effect in
time.

2. Association: Statistical associationmust be there between
the cause and effect.

3. Nonspuriousness: Relationship must not be due to a third,
confounding variable.

Case Study: Correlation versus Causation in
Radiology

A study finds a positive correlation between the use of a new
gadolinium-based contrast agent inMRI and the incidence of
nephrogenic systemic fibrosis (NSF) in patients with renal
impairment. While correlated, additional research is needed
to establish whether gadolinium exposure directly causes
NSF or if other factors contribute to the association.

Regression Analysis

Regression analysis models the relationship between a de-
pendent variable and one or more independent variables
(thereby analyzing the degree of relationship between the
variables). It thusmakes it possible to infer or predict another
variable based on one or more variables. The variable to be
inferred is called the dependent variable and that used for
prediction is the independent variable.11 A regression anal-
ysis can be used to predict one variable from another only
when a statistically significant correlation between the
variables is obtained.

For example, regression analysis can be used to determine
the relationship between the grade of dural arteriovenous
fistula and the patient’s cognitive function score (measured
using a standardized cognitive assessment tool). Here, the
independent variable (predictor) is the grade of dural arte-
riovenous fistula and the dependent variable (criterion) is
the cognitive function score.

Regression analysis can be used basically for two
purposes:

1. Measurement of the influence of one or more variables on
another variable.

2. Prediction of a variable by one or more variables.

Types of regression analysis (►Table 1, ►Fig. 3):

1. Simple linear regression (univariate regression).
2. Multiple linear regression and multivariate regression.
3. Logistic regression.
4. Cox proportional regression.

For performing a linear regression, a linear relationship is
needed between the independent variables and the depen-
dent variables.

Control Variable (Covariate)
A control variable (covariate) is an extra independent vari-
able, which is included in the regression analysis to account
for possible confounding factors. This is done to isolate the

Fig. 2 Formula for Pearson’s correlation coefficient is shown in (A)
[Xi and Yi are individual sample points, X̄ and Ȳ are the mean values of X
and Y, the summation (S) runs over all sample points]. Spearman’s
correlation coefficient is calculated as per the formula in (B) [rank the
values of X and Y separately, di is the difference between the ranks of
each pair of observations (Xi and Yi), n is the number of observations].
Point-biserial correlation is calculated using the formula in (C) [X is a
continuous variable and Y is a binary variable coded as 0 and 1, X̄1 is
the mean of X for the group where Y¼ 1, X̄0 is the mean of X for the
group where Y¼ 0, sx is the standard deviation of X, n1 and n0 are the
number of observations in the groups where Y¼ 1 and Y¼ 0, respec-
tively, n is the total number of observations (n¼ n1þ n0)].

Table 1 Types of regression analysis and the type of dependent and independent variables in each of these regression models

Number of
independent variables

Scale of measurement
dependent variable

Scale of measurement
independent variable

Simple linear regression One Metric Metric, ordinal, nominal

Multiple linear regression Multiple Metric Metric, ordinal, nominal

Logistic regression Multiple Ordinal, nominal Metric, ordinal, nominal
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relationship of interest between the independent variable
and the dependent variable (ensuring that there are no
unobserved factors affecting the relationship).12

Inclusion of control variables has the following
advantages:

1. Reducing omitted variable bias.
2. Increasing precision (reduces residual variance).
3. Accounting for confounding.

Two basic things to keep in mind while performing a
regression analysis are:

• Inclusion of irrelevant control variables can complicate
the model resulting in reduced power of analysis.

• Omitting important control variables can lead to biased
estimates.

To select relevant control variables (covariates) for a regres-
sionmodel, it is essential to consider factors thatmayconfound
the relationship between the independent and dependent
variables, meaning they are associated with both and could
bias the results if unaccounted for.13 To select relevant control
variables these steps need to be meticulously followed:

1. Literature review: Reviewing previous research helps
identify commonly used control variables in similar stud-
ies and understand potential confounders based on exist-
ing evidence.

2. Theoretical justification: Only include variables that have a
plausible theoretical relationship with both the indepen-
dent and dependent variables. Irrelevant variables can
add noise rather than clarity to the model.

3. Statistical testing: Use correlation matrices or partial
regression plots to assess associations between potential
covariates and the main predictor and outcome. Variables
that are highly correlated with both may be relevant
confounders.

4. Domain expertise: Collaborate with experts in the field
(e.g., clinicians, radiologists) who can provide insights
into factors likely to influence both the predictor and
outcome, which may not always be obvious through
statistical analysis alone.

5. Avoid overfitting: Avoid including too many control vari-
ables, as this can overfit the model, especially in smaller
data sets. Focus on the most influential confounders to
keep the model interpretable.

Including only well-chosen control variables strengthens
the model by adjusting for confounding effects without
introducing unnecessary complexity.

Simple Linear Regression
Simple linear regression examines the relationship between a
dependent variable and a single independent variable. It is a
type of univariate regression. Goal of simple linear regression
is to predict the value of a dependent variable based on an
independent variable. Greater the linear relationship between
the two variables, more accurate will be the prediction.

Task of simple linear regression is to exactly determine
the straight line that describes the linear relationship be-
tween the dependent and independent variable on a scatter
plot. To achieve this, the method of least squares is used.14

Attempt is made to keep the error in estimation as small as
possible, so that the distancebetween the estimated value and
the true value should be as small as possible. The distance is
called the “residual” and is abbreviated as ∈ (epsilon).

When the regression line is calculated, it is attempted to
determine the regression coefficients (a and b), so that the
sum of the squared residuals is minimal. Regression coeffi-
cient (b) can be interpreted as follows:

• b>0: Positive correlation between x and y.
• b<0: Negative correlation between x and y.
• b¼0: No correlation between x and y.

There are multiple assumptions in linear regression anal-
ysis that should be kept in mind, which are: linearity,

Fig. 3 (A) Demonstrates how simple linear regression can be used to
analyze the relationship between gender and systolic blood pressure
(in mm Hg). (B) Demonstrates how multiple linear regression can be
used to analyze the relationship between gender, exercise, and weight
with systolic blood pressure (in mm Hg). (C) Demonstrates how
logistic regression can be used to analyze the previous three variables
with presence or absence of hypertension (as a dichotomous
variable).
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homoscedasticity, normality, no multicollinearity, and no
autocorrelation.15

1. Linearity: The relationship between predictor and out-
come variables should be linear. For example, if predicting
tumor size on follow-up MRI based on initial size, we
assume that changes in tumor size over time are propor-
tional. If growth is exponential or follows a complex
pattern, linear regression might not be appropriate, and
a different model might be needed.

2. Homoscedasticity: The variance of residuals (errors)
should be constant across all levels of the predictor
variable. For instance, if we are predicting lesion density
on CT scans from patient age, homoscedasticity assumes
that the spread of density values is similar across all ages.
If older patients show a wider spread of densities around
the predicted line, it indicates heteroscedasticity, which
can make regression estimates less reliable.

3. Normality: The residuals (differences between observed
and predicted values) should be normally distributed. For
example, if we predict radiographic severity scores of a
disease based on patient history and laboratory values, the
residuals should ideally form a normal distribution. If the
residuals are heavily skewed, it could suggest that outliers
or nonnormal variables are influencing the predictions.

4. No multicollinearity: Predictor variables should not be
highly correlated. For example, when predicting the like-
lihood of malignancy based on imaging features, using
both “nodule diameter” and “volume” as predictors could
introduce multicollinearity, as these two measures are
highly correlated. This makes it difficult to interpret the
separate effect of each variable on malignancy risk.

5. No autocorrelation: The residuals should be independent.
In longitudinal studies, such as tracking tumor response
on serial CT scans, autocorrelation might occur if meas-
urements are taken close together in time, making one
residual similar to the previous. Autocorrelation can bias
the model, as it violates the assumption that each mea-
surement is independent.

Meeting these assumptions in radiology studies is crucial
to ensure the validity of the regression model’s predictions
and interpretability of its results.

Recommendation for minimum sample size in regression
analysis is 10observationsper predictor variable. For example,
if you have 3 predictor variables, a sample size of at least 30 is
typically recommended. However, this is a rule of thumb, and
larger samples are often preferred, especially if the data are
complex or if you are using more sophisticated regression
models, to ensure the results are robust and generalizable.16

Example:
Let us consider a small sample of data (on intimo-medial

thickness[IMT]fromcarotidDoppler)collectedfrom10patients:

Performing the regression analysis:
Using simple linear regression, we aim to fit a line to the

data that best describes the relationship between IMT and
stenosis percentage.

The regression equation is:

Stenosis (%)¼b� IMT (mm)þ a

Where:

• a is the intercept (the expected stenosis percentage when
IMT is 0).

• b is the slope (the change in stenosis percentage for each
one-unit change in IMT).

Calculations:
Performing the calculations (which can be done using

statistical software or manually), let us assume we find the
following results:

• a¼10
• b¼40

So, the regression equation becomes:

Stenosis (%)¼40� IMT (mm).þ10

Interpretation:

• Intercept (a): When IMT is 0mm, the predicted stenosis
percentage is 10%. Thismight not be clinically relevant but
is part of the mathematical model.

• Slope (b): For each additional millimeter of IMT, the
stenosis percentage increases by 40%.

Usage:

• If a patient has an IMT of 1.2mm, the predicted stenosis
percentage would be: Stenosis (%)¼10þ40�1.2¼10þ
48¼58%.

Conclusion
This simple linear regression model indicates a strong

linear relationship between IMT and the percentage of
carotid artery stenosis. This can be used by radiologists to
estimate stenosis severity based on ultrasound measure-
ments of IMT, thereby aiding in the diagnosis and manage-
ment of patients with carotid artery disease.

Patient ID IMT (mm) Stenosis (%)

1 0.6 20

2 0.7 30

3 0.8 25

(Continued)

(Continued)

Patient ID IMT (mm) Stenosis (%)

4 0.9 35

5 1.0 40

6 1.1 45

7 1.2 50

8 1.3 55

9 1.4 60

10 1.5 65
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Multiple Linear Regression
Multiple linear regression extends simple linear regression
to include multiple independent variables.

Multiple linear regression should not be confused with
multivariate regression. In multivariate regression, several
regression models are calculated to allow conclusions to be
drawn about several dependent variables.17

Example: Modeling the relationship between age, gender,
and bone mineral density in osteoporosis studies.
Considerations for multivariable models are:

Independence of covariates: The relationship between
variables included in the model should be examined using
a separate regression or correlation analysis. If a significant
interaction between variables is found, an interaction term
should be added to the model.

Univariatemodel results: Before presentingmultivariable
model results, it is important to report the results of univari-
ate models either in the same table or in a separate table for
comparison.

Reporting of Regression Results
Units and reference categories: The units of measurement for
continuous variables and the reference categories for cate-
gorical variables should be clearly specified in the regression
table.
Independent table readability: Each regression table should
be fully understandable on its own, and the title should
clearly indicate the outcome variable being modeled.

Multivariate regression is used in radiology when there is
a need to predict multiple continuous outcomes simulta-
neously based on several predictors. For example, in assess-
ing patient outcomes after liver ablation procedures,
a radiologist might want to predict both postprocedure
liver function (measured by liver enzyme levels) and tumor
size reduction on follow-up imaging, based on predictors
such as patient age, baseline liver function, and ablation
technique used. Multivariate regression allows the simulta-
neous evaluation of how these predictors influence both
outcomes, providing a more comprehensive analysis of
treatment effects and patient factors on multiple clinical
metrics.18

To performamultivariate analysis after a univariate analysis,
include all statistically significant variables from the univariate
analysis into a multivariable model, adjusting for potential
confounders, and assess the combined effect of these variables
on the outcome while controlling for their interrelationships.

Logistic Regression
Logistic regression is a type of regression analysis where the
dependent variable is nominally scaled. Logistic regression
makes it possible to explain the dependent variable or
estimate the probability of occurrence of the categories of
the variable.19–21

In analysis of data sets, objective is to predict outcomes in
many cases (that too particularly binary outcome predic-
tion). This is where the importance of logistic regression lies.
In logistic regression such binary outcomes can be predicted

where the input includes categorical or continuous variables.
In the simplest form of logistic regression, dichotomous
variables (0 or 1) can be predicted. The probability of the
occurrence of value 1 (with a particular characteristic pres-
ent) is estimated. In other words, the dependent variable is
made dichotomous (0 or 1) and the probability that the
expression 1 occurs is estimated.

In logistic regression, the odds ratio (OR) is a measure of
association between a predictor variable and the outcome. It
quantifies how the odds of the outcome change with a one-
unit increase in the predictor, holding other variables con-
stant. For example, if we are using logistic regression to
predict the likelihood of lung cancer based on smoking status
(smoker or nonsmoker), an OR of 3 for smoking would mean
that smokers have three times the odds of having lung cancer
compared with nonsmokers, assuming all other factors are
constant. An OR greater than 1 indicates a positive associa-
tion (higher odds), an OR less than 1 indicates a negative
association (lower odds), and an OR of 1 means no associa-
tion. ORs are commonly used in logistic regression to inter-
pret the impact of individual predictors on a binary
outcome.19

Keyassumptions in logistic regression are the following20:

1. Linearity of the logit: Logistic regression assumes a linear
relationship between continuous predictors and the log
odds of the outcome. For instance, if predicting the
likelihood of a positive biopsy based on tumor size, the
log odds of malignancy should increase linearly with
tumor size on imaging. If the relationship is nonlinear,
it may distort predictions.

2. Independent observations: Each observation should be
independent of others. For example, when predicting
pneumonia presence based on chest radiograph features,
each patient’s chest radiograph should be analyzed inde-
pendently. Correlated observations, such as repeated
scans for the same patient, could violate this assumption
and require adjustments.

3. No multicollinearity: Predictor variables should not be
highly correlated. For instance, if using both “lesion
density” and “lesion enhancement” as predictors for
malignancy, multicollinearity could arise if these varia-
bles are strongly related, leading to unreliable estimates.

4. Absence of outliers with large influence: Outliers should
not disproportionately influence the results. For example,
if one patient has an unusually high lesion size compared
with others in a study on brain tumor detection, this
outlier might skew the model’s predictions. Identifying
and handling such outliers is essential.

5. Adequate sample size: Logistic regression requires a suffi-
cient number of events per predictor to provide stable
estimates. For instance, predicting rare conditions like a
specific subtype of bone tumor on MRI would require
enough cases to avoid unstable and unreliable results.

Meeting these assumptions ensures that the logistic
regression model provides reliable and interpretable pre-
dictions for clinical applications in radiology.
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A frequent application of logistic regression in radiology
is to find out which of the variables have an influence on a
particular pathology. In this example, 0 could stand for those
not having the pathology and 1 for those having it. Similarly,
the effect of age and gender on this particular pathology
could be examined (pathology is the dependent variable, and
age as well as gender are the independent variables).

Logistic model is basically based on the logical function.
Unique thing about the logistic function is that for values
between minus and plus infinity, it assumes only values be-
tween 0 and 1. Equations for simple linear regression, multiple
linear regression, and logistic regression are shown in ►Fig. 4.

Example:
Objective:

• To predict the probability that a pulmonary nodule
detected on a chest CT scan is malignant based on various
clinical and imaging features.

Data:

• Age: Age of the patient in years.
• Sex: Gender of the patient (0 for female, 1 for male).
• Nodule size: Size of the nodule in millimeters.
• Nodule location: Location of the nodule in the lung (0 for

upper lobe, 1 for middle lobe, 2 for lower lobe).
• Nodule shape: Shape of the nodule (0 for round, 1 for

irregular).
• Smoking history: Smoking history of the patient (0 for

nonsmoker, 1 for current/former smoker).

Logistic regression model:

• Dependent variable (outcome) is malignancy (0 for be-
nign, 1 for malignant).

Interpretation:

• The analysis will provide coefficients for each predictor
variable along with their statistical significance. The
coefficients represent log odds of the outcome occurring
for a one-unit increase in the predictor variable. Statisti-
cally significant variables (usually p<0.05) are consid-
ered to be strong predictors of the outcome.

Example output:

• Age: A 1-year increase in age increases the odds of
malignancy.

• Sex: Being male (compared with female) affects the odds
of malignancy.

• Nodule size: A 1-mm increase in nodule size increases the
odds of malignancy.

• Nodule location: Nodules in different lung lobes have
varying odds of being malignant.

• Nodule shape: Irregularly shaped nodules have higher
odds of being malignant compared with round nodules.

• Smoking history: Having a history of smoking increases
the odds of malignancy.

When the dependent variable has two characteristics (male,
female), that is, it isdichotomous, thenbinary logistic regression
is used. However, if the dependent variable has more than two
characteristics, for example, using Borden grade (1, 2, or 3) of
dural arteriovenous fistulae as the dependent variable and
performing a logistic region with gender as the independent
variable. Analyzing this logistic regression could help us under-
stand whether being male (compared with female) affects the
odds of having a higher Borden classification.

Case Study: Regression Analysis in
Radiology Research

A research study aims to predict patient survival time
following pancreatic adenocarcinoma diagnosis using demo-
graphic and clinical variables. Multiple linear regression
identifies significant predictors such as tumor size, patient
age, and treatment modality, providing insights into factors
influencing patient outcomes and guiding personalized
treatment strategies.

In summary, a regression analysis “model” refers to a
mathematical framework or equation used to describe the
relationship between one or more independent variables
(predictors) and a dependent variable (outcome). The goal of
a regression model is to predict the value of the dependent
variable based on the values of the independent variables.

Fig. 4 Simple linear regression is analyzed on the basis of equation in (A) [ŷ – estimated dependent variable (y value estimated for each x value),
b – slope (gradient of the straight line), x – independent variable, a – y intercept]. Multiple linear regression is analyzed on the basis of equation in
(B) [b1, b2, etc. representing the slopes of each set of variables and x1, x2, etc. representing the independent variables). Logistic regression is
analyzed on the basis of equation in (C).
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Various output variables generated on processing univar-
iate and multivariate regression in SPSS software have been
demonstrated in ►Table 2.

In regression analysis, the unstandardized coefficient for a
nominal or categorical independent variable represents the
change in the dependent variable’s predicted value when
that categorical variable is present, relative to a reference
category, while holding other variables constant. For in-
stance, suppose we are analyzing the effect of MRI machine
type (a categorical variable with three categories: “Type A,”
“Type B,” and “Type C”) on scan quality scores. If “Type A” is

the reference category, the unstandardized coefficient for
“Type B” indicates the average difference in scan quality
between “Type B” and “Type A.” A positive coefficient
suggests that “Type B” produces a higher score than “Type
A,” while a negative coefficient indicates a lower score. The
interpretation of these coefficients shows how each catego-
ry compares to the reference group in terms of its effect on
the dependent variable, allowing us to understand the
impact of each categorical level. Unstandardized coefficient
for continuous independent variable has been explained
in ►Table 2.22

Table 2 Various output variables generated on processing univariate and multivariate regression in SPSS software

Output Univariate regression Multivariate regression Description

R-squared (R2) Proportion of variance
explained by one predictor

Proportion of variance
explained by all predictors
combined

Indicates howmuch of the variance in the
dependent variable is explained by the
predictor(s). Higher values suggest a
stronger model fit

Adjusted R-squared Not much different from R2

in univariate
Adjusted for the number of
predictors to avoid
overestimation

Adjusts R-squared to account for the
number of predictors, providing a more
accurate measure of model performance
in multivariate regression

Standard error Measures the average
distance from the
regression line

Measures the average
distance from the
regression line

Shows the average error in predictions
made by the model. Lower values
indicate a better fit

F-statistic Tests overall significance of
the single predictor

Tests overall significance of
all predictors together

Assesses whether the model significantly
predicts the dependent variable.
A significant F indicates the model is a
good fit

p-Value for F-statistic Tests whether the
predictor significantly
predicts the outcome

Tests whether all
predictors combined
significantly predict the
outcome

If the p-value is below a threshold (e.g.,
0.05), it suggests the overall model is
statistically significant

Unstandardized
coefficient

Coefficient of the single
predictor (B)

Coefficients of all
predictors (B)

Indicates how much the dependent
variable changes with a one-unit change
in the independent variable(s)

Standardized
coefficient

Shows the strength of the
relationship between
predictor and outcome

Standardized coefficients
allow for comparison
between variables

Expresses the relationship in terms of
standard deviations, useful for comparing
the relative effect of predictors in
multivariate models

t-Statistic Tests significance of the
single predictor

Tests significance of each
predictor in the model

Shows whether the individual predictor
(s) have a significant effect on the
outcome variable

p-Value for coefficient Significance of the
predictor

Significance of each
predictor in the model

A p-value less than 0.05 typically
indicates that the predictor is a
statistically significant contributor to the
model

Collinearity statistics Not applicable. Variance inflation factor
(VIF) and tolerance to
check multicollinearity

Indicates whether predictors are highly
correlated, which can distort the model.
High VIF (> 10) indicates
multicollinearity issues

Residual statistics Standardized residuals for
model diagnostics

Standardized residuals for
model diagnostics

Assesses how well the model fits by
checking if the residuals (errors) are
normally distributed and homoscedastic
(constant variance)

Cook’s distance Not applicable Cook’s distance identifies
influential data points

Helps detect outliers or influential points
that might distort the regression results.
Values>1 indicate influential points to
investigate further
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The validity of a regression model depends on howwell it
satisfies several key assumptions and its ability to generalize
to new data. Assumptions such as linearity, independence of
errors, homoscedasticity (constant error variance), normality
of residuals, and no multicollinearity are essential to ensure
accurate and unbiased estimates. If these assumptions are
violated, themodel’s predictions and inferences may be unre-
liable. Additionally, for a model to be valid, it must generalize
well to new or unseen data, indicating that it captures the
underlyingpatterns rather than justfitting thespecificdata set
used to train it. This generalization is often tested through
techniques like cross-validation, and themodel’s performance
on hold-out or test data can indicate its robustness and
predictive power in real-world applications.23

Let us consider another example of univariate and multi-
variate regression analysis:

Univariate regression analysis (example: age and blood
pressure): In univariate regression, only one predictor vari-
able—age—is used to predict blood pressure. Suppose the R-
squared value is 0.57, this means that age alone explains 57%
of the variability in blood pressure. This is a relatively strong
R-squared value, suggesting that age is a major factor in
determining blood pressure. If the unstandardized coeffi-
cient for age is 1.23, it means that for every additional year in
age, blood pressure increases by 1.23 units. The p-value we
obtain for age is 0.000, indicating that this relationship is
statistically significant (typically, a p-value below 0.05 is
considered significant). This means we can be highly confi-
dent that age is a meaningful predictor of blood pressure.

Multivariate regression analysis (example: age, weight, and
blood pressure): In multivariate regression, two predictors—
age andweight—are included to predict blood pressure. If the
model’s R-squared value is 0.65, meaning that together, age
and weight explain 65% of the variability in blood pressure.
This is an improvement over the univariatemodel, indicating
that adding weight as a predictor increases the explanatory
power of themodel. The coefficients reveal that both age and
weight contribute to predicting blood pressure. Specifically,
if the coefficient for age is now 0.95, it means that each
additional year in age increases blood pressure by 0.95 units,
holding weight constant. For weight, if the coefficient is 0.45,
meaning thateachadditional kilogramincreasesbloodpressure
by0.45units, holding age constant. If both p-values are less than
0.05, it indicates that age andweight are statistically significant
predictors of blood pressure in this multivariate model.

In multivariate regression, multicollinearity occurs when
predictor variables arehighly correlated,which can distort the
estimated coefficients and make it difficult to assess the
individual effect of each predictor. In this example, multi-
collinearity is assessedusing thevariance inflation factor (VIF),
which measures how much the variance of a regression
coefficient is inflated due to multicollinearity. Suppose, VIF
values arewithin acceptable limits (typically, VIF values below
5 or 10 are considered acceptable), it means that multicolli-
nearity is not an issue. This assures us that the estimated
effects of age and weight on blood pressure are reliable and
that both predictors are contributing independently to the
model.24

In both analyses, themodels explain a substantial amount
of the variability, and the predictors significantly influence
the outcome.

Cox’s Regression Analysis (Cox Proportional Hazards
Model)
Cox regression analysis assesses the effect of multiple inde-
pendent variables on a time-to-event outcome. In other
words, it assesseswhether there are other parameters having
an influence on the survival time. The main goal is to test a
hypothesis about independent variables or to build a predic-
tivemodel. For example, it can be used to identify prognostic
factors affecting the survival of patients with glioblastoma
using Cox proportional hazards model. If you want to assess
age of the subjects as a predictor of survival, proportional
hazards model is used. It evaluates the effect of each predic-
tor (e.g., age) on the shape of the survival curve.25,26

Cox regression takes into account six assumptions27:

1. Proportional hazards assumption: The effect of each pre-
dictor onsurvival is constant over time,meaning thehazard
ratios (HRs) are proportional throughout the study period.

2. Independence of survival times: Each individual’s survival
time is independent of others, without interference or
dependency between subjects.

3. Linearity assumption: The relationship between continu-
ous predictors and the log hazard is linear, ensuring that
the predictors’ effects are accurately modeled.

4. No multicollinearity: Predictors should not be highly
correlated, as multicollinearity can distort the estimated
effects and lead to unreliable results.

5. No outliers: Extreme values in the data should be avoided,
as they can disproportionately influence the results and
skew the model.

6. No effect modification: There should be no interactions
between predictors affecting the hazard rate, as these
would require a more complex model to account for
varying effects.

Alternatives if the assumptions are violated28:

• Time-dependent Cox regression: This model allows HRs to
change over time, relaxing the proportional hazards
assumption by including interaction terms between pre-
dictors and time.

• Stratified Cox model: If certain variables violate propor-
tionality, you can stratify by those variables, which allows
for different baseline hazard functions in each stratum
without estimating separate coefficients.

• Accelerated failure time (AFT) model: AFT is a parametric
alternative that does not rely on the proportional hazards
assumption. It models the effect of covariates on the
survival time itself rather than on the hazard rate, offering
flexibility with different distributions (e.g., Weibull,
exponential).

• Flexible parametric models: Models like restricted cubic
splines allow for a more flexible hazard function, accom-
modating nonlinear effects and time-dependent HRs.
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In the context of Cox proportional hazards regression,
there are important relationships between the β coefficient
(β), standard error(SE), p-value, HR, and the 95% confidence
interval (CI) for the HR.29 Here is how these terms are
connected:

Beta coefficient (β): The β coefficient (also known as the
log hazard or log of the HR) represents the effect of a
covariate (independent variable) on the hazard or risk of
the event happening. A positive β indicates that the
variable increases the hazard (i.e., higher risk), while a
negative β suggests a protective effect (i.e., lower risk).
HR: The HR represents the relative risk of the event
occurring (e.g., death, disease) associated with one unit
increase in the covariate. It is a multiplicative measure:
� HR¼1 means no effect of the covariate on the hazard.
� HR>1 means increased hazard (higher risk).
� HR<1 means reduced hazard (lower risk).

SE: The SE of the β coefficient measures the variability or
uncertainty of the estimated coefficient. A large SE rela-
tive to the β coefficient suggests that the estimate is not
very precise. The SE is used to compute the 95% CI and the
p-value for the HR.
p-Value: The p-value tests the null hypothesis that the β
coefficient (and thus the HR) is equal to zero (no effect).
A low p-value (typically<0.05) suggests that the effect of
the covariate on the hazard is statistically significant.
95% CI for the HR: The 95% CI for theHR provides a range of
values within which the true HR is likely to fall, with 95%
confidence. If the 95% CI for the HR includes 1, the effect is
not statistically significant at the 5% level, as a HR of 1
indicates no effect of the variable on the outcome.

These components together allow you to assess both the
magnitude and the reliability of the effect of covariates on the
hazard in survival analysis.

Cox proportional hazardsmodel is widely used in survival
analysis to evaluate the effect of several variables on the time
until an event occurs, such as death or disease recurrence,
without needing to specify the underlying survival distribu-
tion. This model estimates HRs for each predictor variable,
indicating how the risk of the event changes with each unit
increase in the variable, while holding other factors constant.
For example, in a study examining the survival of patients
with lung cancer based on imaging findings and clinical
factors, the Cox model can assess how variables like tumor
size, stage, or treatment type influence the hazard (risk) of
mortality. A key assumption of the Coxmodel is proportional
hazards, meaning that the relative effect of each predictor on
thehazard rate is consistent over time. Thismodel is valuable
for understanding prognostic factors and guiding treatment
decisions in clinical settings.

Survival Analysis

Survival analysis is a group of statistical methods that deals
with the concept of time-to-event data (with the variable
under study being the time until an event occurs). It is often

encountered in studies that involve patient survival, disease
progression, or treatment efficacy.30–33

One important concept to understand in survival analysis
is that the event need not be a negative one. It could also be a
positive one such as complete remission after start of a
particular chemotherapeutic drug. So, basically it means
that “survival analysis” in some scenarios may not have
anything to do with actual survival time.

Survival analysis is essential in radiology because it helps
evaluate patient prognosis and the effectiveness of imaging-
based interventions over time. For example, in assessing the
impact of radiofrequency ablation for liver tumors, survival
analysis candeterminethe timeto recurrenceoroverall survival
following theprocedure. Byanalyzing thisdata, radiologists and
oncologists can better understand which patients are likely to
benefit most from the treatment, guide follow-up imaging
schedules, and adjust treatment plans for improved patient
outcomes. Survival analysis in such cases provides critical
insights into the efficacy of radiology-guided treatments and
supports evidence-based decision-making in patient care.

Censored Data
In survival analysis, we need to understand that theremay be
scenarios where the event does not occur at all, occurs much
later than our final follow-up time, or follow-up could not be
obtained. All these are summarized under the concept of
censoring. Primary reason for this is that the study cannot go
on indefinitely andmust stop at some point.34 “At risk” refers
to a subject who has not yet experienced the event and is still
being monitored for the event.

Methods of Survival Time Analysis

1. Kaplan–Meier survival time curve.
2. Log-rank test.
3. Cox regression analysis.

Kaplan–Meier Survival Time Curve
The Kaplan–Meier survival time curve graphically repre-
sents the survival rate or survival function. Here, survival
rate is plotted on the y-axis and time on the x-axis. Censored
data points are also considered in this curve where the event
of interest has not occurred.35,36

Median survival is the time half of the subjects survive. It
is a useful summary measure and is often reported with
Kaplan–Meier survival curves. This can be reported from the
curve as long the curve dips below the 0.50 survival point on
the y-axis (►Fig. 5).

Basically, the Kaplan–Meier survival curve shows the
cumulative survival probability. A steeper slope indicates a
higher event rate (death rate) and therefore a worse survival
prognosis. A flatter slope on the other hand indicates a lower
event rate and therefore a better prognosis. By usingmultiple
curves, different groups can be compared (wherein diverging
curves represent differences in survival between the groups).
Survival probability at a particular point can also be located
by drawing a vertical line at that time point (on the x-axis) to
meet the curve, and then reading the corresponding survival
probability from the y-axis.
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Kaplan–Meier survival curve takes into account these
assumptions36:

1. Random or noninformative censoring: Censoring (where
follow-up is incomplete for some patients) should occur
randomly and not be related to the likelihood of the event.
For example, if patients with aggressive tumors onMRI are
more likely todropoutofa survival study, this couldbias the
results, as their missing data might not be random.

2. Independence of censoring: The survival times of censored
patients should be similar to those of patientswho remain
in the study. For instance, if some patients undergoing a
radiological procedure are lost to follow-up due tomoving
away, this should not be related to their survival proba-
bility to avoid skewing survival estimates.

3. Survival probabilities do not change over time: The pop-
ulation’s riskof survival shouldbeconsistentover thestudy
period. In a study evaluating the survival of patients with
metastatic cancer based onpositron emission tomography-
CT findings, this assumption would mean that advance-
ments in treatment during the study period should not
impact survival probabilities, whichmight otherwisemake
early and late survival probabilities incomparable.

4. No competing risks: There should be no alternative risks
that could prevent the occurrence of the event of interest.
For example, if studying survival after a radiologically
guided tumor ablation, the analysis assumes that no other
major health events (e.g., fatal cardiovascular events)
interfere, as these would alter the survival probabilities
independently of the tumor’s progression.

5. Homogeneity of groups: This assumption implies that
within each group, patients are similar in terms of under-
lying survival-related factors. For example, if comparing
survival times after twodifferent radiological interventions
for liver cancer (e.g., radiofrequency ablationvs.microwave
ablation), it is assumed that patients in both groups are
similar in terms of tumor size, liver function, and overall
health status. If the groups differ significantly in these
factors, observed survival differences may reflect underly-
ing patient characteristics rather than the true effect of the
interventions.Without homogeneity, Kaplan–Meier curves
might misrepresent the actual effect of each intervention
on survival.

6. Absence of time-dependent variables: Kaplan–Meier
assumes that factors influencing survival remain constant
over time, which means it cannot accommodate time-
dependent variables—factors that change as the study
progresses. For instance, in a study on survival after CT-
guided lung biopsy, patients may start on additional treat-
ments (like chemotherapy) after thebiopsy. This additional
treatment, which changes over time, could influence sur-
vival but cannot be accounted for in a standard Kaplan–
Meieranalysis. Similarly, if apatient’sdiseasestageworsens
over time, affecting survival likelihood, Kaplan–Meier
would not reflect this progression, potentially oversimpli-
fying the survival outcome.

Log-Rank Test
Log-rank test compares distribution of time until an event
occurs of two or more independent samples. For example,

Fig. 5 Kaplan–Meier survival curve for hepatocellular carcinoma patients posttransarterial chemoembolization. It shows the survival
probability decreasing over time, which is typical in survival analysis as more patients experience the event (death) or are censored.
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long-rank test can be used to compare the survival times of
two different groups of glioblastoma patients (one group
treated with standard radiotherapy vs. another treated with
radiotherapy plus temozolamide). It basically tells you
whether there is a significant difference between the two
curves. Null hypothesis in log-rank test is that both groups
have similar survival rates (null hypothesis is then rejected if
the p-value is<0.05).37,38

Log-rank test takes into account three assumptions:

1. Random or noninformative censoring.
2. Independence of survival times.
3. Proportional hazards assumption (hazard rates [rate of an

event occurring] should be consistent over time).

The log-rank test can be used to compare survival times
between two groups, such as patients undergoing two
different radiological treatments for liver cancer. For exam-
ple, group A receives radiofrequency ablation, while group B
receives microwave ablation. The log-rank test would assess
if there is a statistically significant difference in survival
times between the two groups, assuming that censoring is
random (e.g., patients lost to follow-up are unrelated to
treatment outcome), that each patient’s survival time is
independent of others, and that the hazard rates for both
treatments remain proportional over time. If these assump-
tions hold, the log-rank test can reliably indicate whether
one treatment leads to longer survival.

Cox proportional hazards model can be likened to the
multivariable analysis of log-rank test.

Example: Survival analysis of patients with hepatocellular
carcinoma (HCC) treated with transarterial chemoembo-
lization (TACE).

Objective:
To evaluate the overall survival of patients with HCC who

undergo TACE.
Study design:

• Population: Patients diagnosedwithHCC and treatedwith
TACE.

• Time frame: Follow-up period of 5 years.
• Data collection: Patient demographics, tumor character-

istics, treatment details, and follow-up data including
survival status and time of death or last follow-up.

Methodology:

1. Kaplan–Meier survival curves:
Survival time data are arranged in tabular format from
shortest to longest survival time (assuming that none
of the data are censored). Then, time 0 is added to this
table.
Now, we calculate number of deaths at each time point
(m). Then, we look at the number of patients who
survived to that time point plus the number of deaths
at that exact time point (n).
Survival times are calculated by dividing n by the total
number.

Construct Kaplan–Meier survival curves to estimate
the overall survival probability over time.
Plot survival curves to visualize the median survival
time and the probability of survival at various time
points.
If we have to include censored data, we add a column
(q) and then the denominator for total number at each
time point will be (n – q)/n.

2. Log-rank test:
Use the log-rank test to compare survival distributions
between different subgroups (e.g., patients with dif-
ferent tumor stages or different treatment responses).
To assess the log rank test we calculate the long-rank
statistic. Log-rank statistic is equivalent to the chi-
square value. The critical chi-square value can be
determined using the chi-square distribution (with
the degrees of freedom being the number of groups
minus 1, and choosing an appropriate α [usually α of
0.05]).

3. Cox proportional hazards model:
Perform a Cox proportional hazards regression analy-
sis to identify factors that significantly affect survival.
Include covariates such as age, sex, tumor size, liver
function, and response to TACE.

Results:

• Kaplan–Meier analysis:
The median overall survival time for the cohort is
found to be 8 years.
The 3-, 5-, and 10-year survival rates are 90, 70, and
20%, respectively.

Time (y) m n S(t)

0 0 10 10

3 1 9 0.9

5 2 7 0.7

8 3 4 0.4

9 1 3 0.3

10 1 2 0.2

11 2 0 0

Patient ID Time (y)

1 3

2 5

3 5

4 8

5 8

6 8

7 9

8 10

9 11

10 11
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• Log-rank test:
Significant differences in survival are observed be-
tween patients with early-stage HCC (e.g., median
survival of 36 months) and those with advanced-stage
HCC (e.g., median survival of 12 months) (p<0.05).

• Cox proportional hazards model:
Significant predictors of poorer survival include larger
tumor size (e.g., HR¼1.5, p<0.01), poor liver function
(e.g., HR¼2.0, p<0.01), and lack of response to TACE
(e.g., HR¼1.8, p<0.05).

Conclusion
Survival analysis reveals that TACE provides a significant

survival benefit for patients with HCC, particularly those
with early-stage disease. Key factors affecting survival in-
clude tumor size, liver function, and response to treatment.
These findings can guide clinical decision-making and pa-
tient counseling.

The typical order for performing these survival analyses is as
follows:

1. Kaplan–Meier survival analysis: Beginwith Kaplan–Meier
analysis to estimate and visualize the survival curves for
different groups without adjusting for covariates. This
step provides a basic understanding of survival probabili-
ties over time and allows comparison of survival distri-
butions across groups.

2. Log-rank test: Use the log-rank test to statistically com-
pare the survival curves from the Kaplan–Meier analysis.
This test evaluates whether there is a significant differ-
ence in survival times between groups (e.g., treatment vs.
control) without accounting for additional covariates.

3. Cox regression modeling: Finally, perform Cox regression
modeling to analyze the impact of multiple covariates on
survival while adjusting for potential confounders. Cox
regression provides HRs, allowing you to quantify the
effect of each predictor on the risk of the event occurring.

Other survival analysis techniques exist, such as time
parametric survival models, dependent covariate models,
and Nelson–Aalen estimator, which have not been covered.

Case Study: Survival Analysis in Radiology

A clinical trial evaluates the effectiveness of a novel radiother-
apy technique in prolonging survival in patientswith glioblas-
toma. Kaplan–Meier survival curves illustrate differences in
survival probabilities between treatment groups, while Cox
regression identifies treatment efficacy after adjusting for
relevant covariates such as tumor size and patient age.

Kaplan–Meier survival analysis is a nonparametric and
univariate method, whereas the Cox proportional hazards
model is a semiparametric and multivariate method.

There are curves other than the Kaplan–Meier curve, such
as the receiver operating characteristic (ROC) curve, cumu-
lative incidence function curve, Nelson–Aalen curve, calibra-
tion curves, and hazard function curves. Let us now

understand about the importance of a ROC curve in classifi-
cation and diagnostic modeling.

ROC Curve
ROC curve is a graphical representation of a binary
classification model performance across all classification
thresholds. It visualizes the tradeoff between sensiti-
vity and specificity across different diagnostic test
thresholds.39–41

• It is basically a plot of true positive rate (sensitivity)
against false positive rate (1–specificity) across various
thresholds (►Fig. 6).

• Area under the curve (AUC): Measures overall test perfor-
mance. AUC¼1 indicates perfect discrimination, while
AUC¼0.5 implies no better than chance. Larger the AUC,
better is the classifier.

• A new classifier may be created using logistic regression,
and a ROC curve can be created for the different threshold
values in logistic regression.

Example:
Objective:
• To assess the diagnostic performance of a new bio-

marker in predicting successful reperfusion (measured
by the modified Thrombolysis in Cerebral Infarction or
mTICI score) after endovascular treatment in patients
with acute ischemic stroke.

Data:
• Biomarker level: Level of the new serum biomarker

(continuous variable).
• Successful reperfusion: Outcome of the treatment (0

for unsuccessful reperfusion, 1 for successful reperfu-
sion, defined as mTICI 2b/3).

Steps to generate a ROC curve:
• Fit a logistic regression model: We first fit a logistic

regression model to predict the probability of success-
ful reperfusion based on the serum biomarker level.

• Calculate predicted probabilities: Use the fitted model
to calculate the predicted probabilities of successful
reperfusion.

• Generate the ROC curve: Plot the ROC curve by varying
the threshold for predicting successful reperfusion and
calculate the corresponding true positive rate (sensi-
tivity) and false positive rate (1–specificity) at each
threshold.

• Calculate the AUC: Compute the AUC as a measure of
the biomarker’s diagnostic performance.

Interpretation:
• The ROC curve plots the true positive rate (sensitivity)

against the false positive rate (1–specificity) at various
threshold settings. The AUC provides a single measure
of the biomarker’s diagnostic performance:

AUC¼1.0: Perfect test.
AUC¼0.5: No discriminative power, equivalent to
random guessing.
0.5<AUC<1.0: The test has some discriminative
power, with higher values indicating better
performance.
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Example output:
• ROC curve plot shows howwell the biomarker discrim-

inates between patients with and without successful
reperfusion.

• The AUC value quantifies the overall ability of the
biomarker to correctly classify patients regarding their
reperfusion outcome.

Analysis of Diagnostic Tests
Bayesian theory offers a powerful framework for analyz-
ing diagnostic tests by incorporating prior knowledge
(pretest probabilities) along with new data (test results)
to calculate posttest probabilities (►Figs. 7 and 8).42

Pretest probability¼ Likelihood ratio� Posttest proba-
bility

This basically means that if the pretest probability of a
particular condition is 0, even if the test is 100% sensitive,
posttest probability will be 0.

Contingency Tables
Contingency tables summarize the relationship between
two categorical variables. It is essential for assessing
diagnostic test performance. The frequency in the table
is given in absolute or relative frequency.43,44

Example: Diagnostic test evaluation
Key metrics:

• Sensitivity (Sn): TP/(TPþ FN); proportion of true pos-
itives correctly identified.

• Specificity (Sp): TN/(TNþ FP); proportion of true neg-
atives correctly identified.

• Positive predictive value: TP/(TPþ FP); probability that
a positive test result is correct.

• Negative predictive value: TN/ (TNþ FN); probability
that a negative test result is correct.

• Positive likelihood ratio (LRþ ): Sn/(1–Sp); ratio of the
probability of a positive test result in people with the
disease to the probability of a positive test result in
people without the disease.

• Negative likelihood ratio (LR–): 1–Sn/Sp; ratio of the
probability of a negative test result in people with the
disease to the probability of a negative test result in
people without the disease.

• Accuracy: (TPþ TN)/(TPþ TNþ FPþ FN); proportion of
all test results that are correct (both true positives and
true negatives).

• AUC: Measure of the overall performance of a diagnos-
tic test. An AUC of 1 represents a perfect test, while an
AUC of 0.5 represents a worthless test.

Fig. 6 Receiver operating characteristic (ROC) curve representing the diagnostic performance of a biomarker in predicting successful
reperfusion (modified Thrombolysis in Cerebral Infarction [mTICI] score) after endovascular treatment in acute ischemic stroke patients. The
area under the curve (AUC) provides a measure of the test’s diagnostic performance.

Disease present Disease absent Total

Test positive True positive (TP) False positive (FP) TPþ FP

Test negative False negative (FN) True negative (TN) FNþ TN

Total TPþ FN FPþ TN N
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• Diagnostic OR: LRþ/LR–; ratio of the odds of the test
being positive if the subject has the disease relative to the
odds of the test being positive if the subject does not have
the disease.

Other Measures of Reliability of a Diagnostic Test

Cohen’s Kappa
Cohen’s kappa is a measure of agreement between two
dependent categorical samples, and is used whenever one
wants to know if there is an agreement between two raters.
Variable measured by the two raters should be a nominal
variable.45,46

If it is an ordinal variable and two or more raters,
Kendall’s tau can be used. If it is a metric variable and
more than two raters, interclass correlation can be used.

It is important to understand that the Cohen’s kappa
coefficient can only tell how reliably both raters are
measuring the same thing (i.e., reliability). It does not
tell what both the two raters are measuring is the right
thing (i.e., validity).

The table of Landis and Koch (1977) can be used as a
guide to interpret Cohen’s kappa.47

Example: To assess the interrater reliability between
two radiologists in lung nodules from chest
radiographs.

Two radiologists independently review a set of 100
chest X-ray images to determine the presence or absence
of lung nodules. The results are recorded in a contingency
table:

Fig. 8 Graph illustrating the relationship between pretest probability
(x-axis) and posttest probability (y-axis) for various positive and
negative likelihood ratios (LR). It is used to determine how diagnostic
test results (either positive or negative) affect the probability of a
condition being present. The solid lines represent positive likelihood
ratios (LRþ ), which indicate how much a positive test result increases
the probability of a condition being present. Higher positive likelihood
ratios lead to greater increases in posttest probability. The dashed
lines represent negative likelihood ratios (LR–), which indicate how
much a negative test result decreases the probability of a condition
being present. Lower negative likelihood ratios lead to greater
reductions in posttest probability.

Fig. 7 Graph illustrating the relationship between pretest and
posttest probabilities. Green curve (upper left) represents a positive
test result, while the red curve (lower right) represents a negative test
result. The length of the green arrows indicates the change in
absolute probability after a positive test, and the red arrows represent
the change in absolute probability after a negative test. The diagram
shows that at low pretest probabilities, a positive test results in a
greater absolute change in probability than a negative test, which
generally holds true as long as the specificity is not significantly higher
than the sensitivity. Conversely, at high pretest probabilities, a
negative test causes a greater absolute change in probability than a
positive test, a property that also holds when the sensitivity is not
much higher than the specificity.

Kappa

>0.8 Almost perfect

>0.6 Substantial

(Continued)

(Continued)

Kappa

>0.4 Moderate

>0.2 Fair

0–0.2 Slight

<0 Poor

Radiologist 2:
Nodule present

Radiologist 2:
Nodule absent

Total

Radiologist 1:
Nodule present

30 10 40

Radiologist 1:
Nodule absent

20 40 60

Total 50 50 100
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Calculation of Cohen’s kappa:

Cohen’s kappa (κ) is used to measure the agreement
between the two radiologists, correcting for the agree-
ment that would occur by chance.

1. Observed agreement (Po): Proportion of instances
where the radiologists agree.
Po¼ (30þ40)/100¼0.7

2. Expected agreement (Pe): Proportion of agreement
expected by chance.
Pe¼ ([40�50]/100)þ ([60�50]/
100)¼ (0.2)þ (0.3)¼0.5

3. Cohen’s kappa (κ):
κ¼ (Po – Pe)/(1–Pe)¼ (0.7–0.5)/(1–0.5)¼0.4

Interpretation:

• A κ value of 0.40 indicates moderate agreement be-
tween the two radiologists.While there is some level of
agreement beyondwhat would be expected by chance,
the level of agreement is not very high.

• This suggests that there might be a need for further
training or more standardized diagnostic criteria to
improve consistency between radiologists.

SE of Cohen’s kappa is ameasure of the precision of the
estimated value. Smaller SE means more precise is the
estimate and larger SE indicates less precision.

Weighted Cohen’s Kappa
In case of an ordinal variable, that is, a variable with a
ranking, it is important that the gradations are also
considered. A difference between “very good” and “aver-
age” is greater than between “very good” and “good.” This
deviation is also included in the calculation of weighted
Cohen’s kappa. The differences can beweighted linearly or
quadratically.48,49

Fleiss Kappa
Fleiss kappa is a measure of agreement between three or
more raters for a nominal variable.50

Kendall’s Tau
Kendall’s tau is a nonparametric measure of ordinal
association and is used to assess the strength of relation-
ship between two or more ordinal variables. It ranges
from 0 to 1 with values close to 1 indicating a strong
association, and those close to 0 indicating a weak or no
association.51

Intraclass Correlation
Intraclass correlation (ICC) is a statistical measure that
quantifies the degree of consistency among observations
that are made on the same individuals or objects. ICC is
used to assess the reliability and consistency of measure-
ments taken by different raters, assessors, or instruments.

Fig. 9 Graph representing a Bland–Altmanplot used tocompare twomeasurementmethodsandassess theagreementbetween them;X-axis represents
the average of two measurements for each subject; Y-axis represents the difference between two measurements for each subject. Most points should lie
within the limits of agreement {LOA} (green dashed lines),which is a sign ofgoodagreement between the twomethods.Meandifference (red line) indicates
whether there is a systematic difference (orbias) between themethods. In this case, thebias is small (–0.35), implying thetwomethodsaregenerally similar,
though with some variability. Upper limit of agreement (LOA): Calculated as the mean difference plus 1.96 times the standard deviation (SD) of the
differences; Lower limit of agreement (LOA): Calculated as the mean difference minus 1.96 times the SD of the differences. These limits indicate the range
within which 95% of the differences between the two methods are expected to fall.
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ICC is particularly usefulwhen evaluating the reliability of
a diagnostic test across multiple raters (interrater reli-
ability) or repeated measurements (intrarater
reliability).52–54

Types of ICC:

1. Single measure ICC: Single measure on each subject.
2. Two-way random effect ICC: Multiple measurements

on each subject, and there are multiple raters.
3. Two-way mixed effect ICC: Multiple measurements on

each subject, and there are multiple raters as well as
multiple subjects.

ICC values can range from 0 to 1, with 1 indicating
perfect consistency among observations, and 0 indicating
no consistency. In general, ICC values above 0.75 are
considered to be good, and those above 0.9 are considered
to be excellent.

One important point to keep in mind while using such
measures of agreement is that both the raters should not
have the same level of experience. One of the raters should
be a novice (with lesser years of experience) and the other
an expert (with larger number of years of experience).
This helps to ensure the reproducibility of findings when
applied to the population.

Bland–Altman Plot
Bland–Altman plot (also known as a difference plot) is
used to assess the agreement between two methods of
measurement or between repeated measurements from
the same test (continuous variables). It provides a graphi-
cal representation of the differences between two sets of
measurements (►Fig. 9). They are often used to compare a
new diagnostic test with a gold standard test or to
evaluate the repeatability of measurements from the
same test. The plot shows the mean difference between
the two measurement methods (bias) and the limits of
agreement (typically�1.96 standard deviations from the
mean difference). If the differences between the two
methods are close to zero and fall within the limits of
agreement, the two methods are said to be in good
agreement and thus reliable. Large biases or wide limits
of agreement suggest poor agreement, indicating that the
test may not be reliable. For example, comparing a new
blood glucose monitoring device with an established
standard can be done using a Bland–Altman plot to
visually assess if the two methods agree sufficiently.55

Conclusion

Advanced statistical techniques are indispensable for
radiologists aiming to extract meaningful insights from
complex data, enhance diagnostic accuracy, and drive
evidence-based practice. By mastering correlation and
causality, regression analysis, survival curves, and diag-
nostic test evaluation, radiologists can navigate the com-
plexities of clinical and research environments effectively.
This comprehensive guide equips radiologists with the

tools needed to conduct rigorous analyses, interpret
findings accurately, and contribute to advancing medical
knowledge and patient care in the field of radiology.
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