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Abstract 

Background:  HIV genotyping has had a significant impact on the care and treatment of HIV/AIDS. At a clinical 
level, the test guides physicians on the choice of treatment regimens. At the surveillance level, it informs policy on 
consolidated treatment guidelines and microbial resistance control strategies. Until recently, the conventional test 
has utilized the Sanger sequencing (SS) method. Unlike Next Generation Sequencing (NGS), SS is limited by low 
data throughput and the inability of detecting low abundant drug-resistant variants. NGS can improve sensitivity 
and quantitatively identify low-abundance variants; in addition, it has the potential to improve efficiency as well as 
lowering costs when samples are batched. Despite the NGS benefits, its utilization in clinical drug resistance profiling 
is faced with mixed reactions. These are largely based on a lack of a consensus regarding the quality control strategy. 
Nonetheless, transitional views suggest validating the method against the gold-standard SS. Therefore, we present a 
validation report of an NGS-based in-house HIV genotyping method against the SS method in Uganda.

Results:  Since there were no established proficiency test panels for NGS-based HIV genotyping, 15 clinical plasma 
samples for routine care were utilized. The use of clinical samples allowed for accuracy and precision studies. The 
workflow involved four main steps; viral RNA extraction, targeted amplicon generation, amplicon sequencing and 
data analysis. Accuracy of 98% with an average percentage error of 3% was reported for the NGS based assay against 
the SS platform demonstrating similar performance. The coefficient of variation (CV) findings for both the inter-run 
and inter-personnel precision showed no variability (CV ≤ 0%) at the relative abundance of ≥ 20%. For both inter-run 
and inter-personnel, a variation that affected the precision was observed at 1% frequency. Overall, for all the frequen-
cies, CV registered a small range of (0–2%).

Conclusion:  The NGS-based in-house HIV genotyping method fulfilled the minimum requirements that support its 
utilization for drug resistance profiling in a clinical setting of a low-income country. For more inclusive quality control 
studies, well-characterized wet panels need to be established.
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Background
Globally, antiretroviral therapy campaigns have led to a 
tremendous reduction in morbidity and mortality [1]. 
Despite this, the risk of virologic failure increases with 
the emergence and potential transmission of drug-resist-
ant variants which threaten the UNAIDS 95-95-95 goals 

to control the HIV epidemic worldwide by 2030 [2–4]. 
Fortunately, interventions such as HIV genotyping that 
monitor HIV-1 drug resistance (HIVDR) and surveil-
lance of transmitted drug resistance serve a critical role 
in the fight against HIV/AIDS [5–7].

HIV Genotyping assays are diverse given the dynamic 
nature of the technique and driven by a vast range of 
technologies [8]. Currently, commercial assays such as 
ViroSeq are available in developed countries. However, 
because of the cost and varying sensitivity across HIV-1 
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subtypes, these are hardly utilized in resource-limited 
settings such as Uganda [9, 10]. Instead, most labora-
tories develop in-house assays that are affordable and 
designed to genotype HIV-1 subtypes and circulating 
recombinant forms (CRFs) that are predominant within 
their localities.

Conventional HIV genotyping using Sanger sequenc-
ing techniques serves as the mainstay for clinical HIVDR 
testing. Although Sanger sequencing has been commonly 
applied as the “gold standard” for a while, there are some 
intrinsic limitations with this technology. As opposed 
to Next Generation Sequencing, the technique has low 
data throughput and limited capacity to detect variants 
below 20% intra-host frequency of the quasi-species [11, 
12]. Literature suggests that low-abundance HIVDR vari-
ants could have a relevant clinical impact and that their 
detection could benefit treatment management [13–15]. 
However, a clinically significant threshold is yet to be 
defined amidst the promising benefits of the new NGS 
technologies.

Although NGS chemistries differ, all platforms are 
characterized by high-output, clonal, and parallel 
sequencing [16]. These outperform conventional Sanger 
sequencing in scalability, sensitivity, and quantitative 
detection of minority resistance variants [17]. The sen-
sitive methodology can accurately profile the protease, 
reverse transcriptase, integrase, and maturation inhibi-
tors, as well as HIV-1 coreceptor tropism in a single run. 
Despite this, NGS-based assays have been primarily lim-
ited to research settings and are rarely used in clinical 
settings, especially in low- and middle-income countries. 
This can be attributed to the assay not being standard-
ized, which is necessary for accreditation by regulatory 
agencies and the lack of an appropriate validation and 
performance assessment platform for NGS-based HIV 
genotyping.

Therefore, considering the principles of molecular 
assay validations and benchmark to the available guiding 
documents [18], here we present a validation report for 
the NGS-based assay. The validation report was used to 
assess the HIVDR assay of the Central Public Health Lab-
oratories (CPHL) which is the national reference labora-
tory for specialized tests. The report was also used as a 
benchmark for the NGS assay for Joint Clinical Research 
Centre (JCRC) which is a WHO-accredited HIVDR labo-
ratory and part of the HIVDR surveillance network.

Results
Accuracy
Accuracy was demonstrated by sequencing 10 sam-
ples at frequencies above 20% which is the threshold for 
clinical interpretation. Accuracy of 98% with an average 
percentage error of 3% was reported for the NGS assay 

against the Sanger sequencing platform demonstrat-
ing similar performance, Table 1. Considering the linear 
range of mutation detection, no significant difference 
(r = 0.99, p = 2.5 Pearson coefficient correlation, Fig.  1) 
was observed between the NGS platform and the gold 
standard.

Clinical interpretation of drug resistance muta-
tion profiles is based on frequencies 20% and above. 
As expected, the linear range of the number of DRMs 
detection showed a significant reduction in correlation 
when the data indicated a significant difference (r = 0.7, 
p < 0.05 Pearson coefficient correlation, Fig.  1) between 
the two platforms < 20% frequencies. This is attributed 
to the sequencing depth capacity of the NGS platform as 
opposed to Sanger sequencing.

Precision
Repeatability (inter-run) was demonstrated by processing 
and sequencing five samples 5 times using the same con-
ditions in 1  week. Reproducibility (inter-personnel) was 
demonstrated by processing and sequencing five samples 
by five laboratory technologists in 1 week. The NGS assay 
passed the precision demonstrations at frequencies of 
above 20%, discrepancies occurred at very low frequen-
cies of about 1%. As expected, the NGS assay detected 
similar mutation profiles at 20% frequency which is the 
threshold for clinical interpretation of drug resistance 
mutation profiles, Fig. 2. Despite the difference at a low 
cut off of 1%, the NGS assay detected comparable similar 
mutation profiles at frequencies lower than 20%. The dif-
ference can be attributed to; inter-personnel and experi-
mental errors i.e., pipetting errors, Fig. 2.

The coefficient of variation (CV) was used to determine 
the inter-run and inter-personnel precision, Table 2. The 
findings showed no variability (CV ≤ 0%) at the relative 
abundance of 20% for both the inter-run and inter-per-
sonnel precision. For both inter-run and inter-personnel, 
the variation that affected the precision was observed at 
1% frequency. Overall, for all the frequencies, CV regis-
tered a small range of (0%-2%).

Precision demonstrations were further interrogated 
for the most prevalent mutations that are, M184V 
and K103N. Figure 3 shows the frequencies of M184V 
across the precision trials for the five samples. M184V 
is one of the major and most common mutations 
among the NRTI class of drugs. M184V causes high-
level in vitro and in vivo resistance to lamivudine (3TC) 
and emtricitabine (FTC) and low-level resistance to 
Didanosine and Abacavir (ABC). As expected, frequen-
cies > 20% were relatively uniform across all the runs for 
every sample. However, at frequencies < 2%, M184V was 
not visible for some runs. Since the frequencies are too 
low, the difference can be attributed to; inter-personnel 
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Table 1  Drug resistance mutation profiles for accuracy of NGS against Sanger Sequencing

Sample ID Sequencing platform RT region PR region
NRTI mutations NNRTI mutations Major mutations Accessory

DR-968–19 Sanger Sequencing K70R, M184V, K219Q K103N, H221Y, M230L, L234I None None

NGS K70R, M184V, K219Q, D67G K103N, H221Y, M230L, L234I None None

DR-969–19 Sanger Sequencing None K103KNRS None None

NGS None K103KNRS None None

DR-970–19 Sanger Sequencing M41L, D67N, M184V, T215F A98G, G190A N88S V32A, L33F

NGS M41L, D67N, M184V, T215FIS A98G, G190A N88S V32A, L33F

DR-971–19 Sanger Sequencing M41L, K65R, M184V, K219N L100I, K103N None None

NGS M41L, K65R, M184V, K219N, T215FIS L100I, K103N, G190A, A98G N88S V32A, L33F

DR-972–19 Sanger Sequencing D67N K103N, K238T, Y188N None None

NGS D67GNS K103N, K238T None None

DR-975–19 Sanger Sequencing M41L, M184V, L210W, T215F A98G M46I, I50V, I54V, V82A L10F, L33F

NGS M41L, M184V, L210W, T215F A98G, V108I M46I, I50V, I54V, V82A L10F, L33F

DR-976–19 Sanger Sequencing M184V K101E, G190A, E138A None None

NGS K70R, M184V, K219Q K101E, G190A, K103N, H221Y, M230L, 
L234I

None None

DR-979–19 Sanger Sequencing T69DN, K70R, M184V G190S None None

NGS T69DN, K70R, M184V G190S None G48R

DR-980–19 Sanger Sequencing M184V, T215Y K101E, E138A, G190A None None

NGS M184V, T215NSY K101E, E138A, G190A, H221Y, P225H M46I, L76V, I84V Q58E

DR-981–19 Sanger Sequencing E44D None None None

NGS E44D, K65E, M184IV A98G, K103N, P225H I54V, V82A None

Fig. 1  Accuracy demonstrations at relative abundances > 20% and < 20%. Shows correlation between the NGS platform and the gold standard for 
linear range of mutation detection
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and experimental errors i.e., pipetting errors. Figure  3 
also shows the frequencies of K103N across the preci-
sion runs for four samples. K103N is one of the major 
and most common mutations among the NNRTI class 
of drugs. K103N is a non-polymorphic mutation that 
causes high-level reductions in Nevirapine and Efa-
virenz susceptibility. As expected, the frequencies > 20% 
were relatively uniform across all the runs for every 
sample. The slight variations are negligible and could be 
attributed to experimental errors. The fifth sample had 
no K103N mutation in all the demonstrations.

L74I was the only mutation observed for the Integrase 
Strand Transfer Inhibitors (INSTI). Figure  4 shows the 
frequencies across the reproducibility and repeatability 
runs. L74I is a polymorphic accessory mutation com-
monly selected by each of the INSTI. Although a slight 
difference of ~ 1% was registered, the assay performed as 
expected. The difference can be attributed to inter-run 
and inter-personnel bias.

Overall, the average coverage (sequencing depth) per 
nucleotide position for precision demonstrations was 
2795 as also illustrated in Fig. 5.

Discussion
HIV genotyping is increasingly picking pace in Uganda 
despite resource limitations. This highly specialized 
molecular test has been a preserve for research purposes 
for decades which is attributed to operational costs. 
Mobilization of resources for public health comes at a 
time when HIV genotyping is advancing technologically. 
The conventional technology that is currently utilized in 
the country is based on the Sanger sequencing method. 
The method is faced with limitations such as low data 
output and the inability to detect mutations of the viral 

Fig. 2  Precision demonstrations for repeatability and reproducibility. Shows the detected mutations at different relative abundances for the 
inter-run and inter-personnel precision trials

Table 2  Coefficient of Variation for inter-run and inter-personnel 
precision

Coefficient of Variation, CV %

DRM Relative abundance (% Frequency)

Precision 1 2 5 10 20

Inter-Run 2% 1% 1% 2% 0%

Inter-Personnel 2% 2% 1% 1% 0%
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Fig. 3  Precision demonstrations for M184V and K103N mutations. Shows the mutation frequencies of common mutations M184V and K103N 
across the inter-run and inter-personnel demonstrations

Fig. 4  Precision demonstration for L74I mutation. Shows the percentage difference of frequencies across precision trials for the integrase inhibitor 
mutation L74I
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minority populations. Despite this, SS still serves as a 
gold standard primarily because the NGS technologies 
lack a standardized validation strategy and a consensus is 
yet to be reached on the relevance of the rich data output.

Nevertheless, CPHL acquired an NGS platform for 
use in clinical diagnostics. Therefore, in this report, we 
present a validation report of the in-house assay based 
on NGS technologies. The assay was validated on two 
criteria; accuracy and precision. Accuracy of 98% was 
reported for the NGS assay against the SS assay. The 
calculations were set at 20% as the mutation frequency 
threshold given that SS assays can arguably detect 
mutations in approximately 15% of the viral popula-
tion variants. Qualitatively all mutations reported on SS 
were also reported on the NGS platform, Table  1. This 
was expected as NGS is documented to have a higher 
sequencing depth as compared to SS. The assay can mas-
sively generate data without compromising on quality. A 
significant difference was observed when the threshold 
was set below 20%, the findings actualize the literature 
that the NGS platforms can detect mutations occurring 
at low frequencies as opposed to the SS platforms [17]. 
Although the NGS platform performed as expected 
against SS, this approach oversimplifies the complexity 
and richness of NGS HIVDR data that can report on a 
highly diverse population of HIV. Therefore, well-vali-
dated External Quality Assurance (EQA) strategies that 
check the NGS platform remain to be established.

The coefficient of variation was used to study preci-
sion. The report documented no variation (CV ≤ 0%) 
at the relative abundance of 20%. However, slight varia-
tions that affected precision were noted at relative abun-
dances below 20%, but more prominent at 1%. This could 

be attributed to the sequence error rate of ~ 1% and the 
increased likelihood of cross-contamination and sam-
pling/PCR biases [19]. Although, minority mutations at 
frequencies < 0.5% could result in treatment failure [20], 
the clinical relevance of variants below 5% is still a ques-
tion of debate [21]. However, if the variants below 5% are 
proven relevant, the validation process and quality assur-
ance strategies could have to leverage the use of unique 
molecular identifiers (UMIs) to determine the accuracy 
of NGS assays at such lower frequencies [22].

We acknowledge the limitation of using clinical samples 
as opposed to well-characterized wet panels. Because of 
this, Sensitivity, Specificity and the Lower limit of detec-
tion (LOD) were not studied. Sensitivity determines the 
probability of the assay to detect mutations when pre-
sent. Specificity determines the probability of the assay 
not detecting mutations when absent. LOD determines 
the lowest viral load at which the assay can still be able 
to detect all the mutations present. The true picture of 
the above-mentioned parameters could not be achieved 
with clinical samples consisting of viral RNA of variable 
quality, quantity and variant diversity. However, even for 
accuracy and precision, a possibility for bias could have 
been introduced due to the error-prone reverse tran-
scription PCR step and sequencing error [23]

Conclusion
The NGS assay presents opportunities to revolutionize 
the field of HIV Genotyping. However, these are under-
exploited partly because, their relevance has not been 
well studied in the context of clinical management. This 
has left such a powerful tool to be oversimplified when 
compared with inferior assays such as SS. In this report, 
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we validated the NGS assay against the SS assay. The NGS 
assay proved fit for HIVDR testing in a clinical setting of 
a low resource country. However, with the advance in 
research, a well elaborate quality control strategy needs 
to be established.

Methods
In the absence of established proficiency test panels for 
NGS-based HIVDR testing, 15 clinical plasma samples 
for routine care were utilized as shown in Table 3. These 
were collected for routine HIV-1 drug resistance test-
ing as the standard of care for HIV-infected individuals 
failing treatment. The selected samples and size repre-
sented the predominantly circulating variants of HIV-1 
in Uganda, this was sufficient for accuracy and precision 
demonstrations. However, the size was also pre-deter-
mined by the availability of resources. Briefly in Fig.  6, 
Viral RNA was extracted using Qiagen QIAmp Viral 
RNA kit [24].

RT-PCR was done using a Superscript III One-Step 
system with Platinum Taq [25]. Amplification of the tar-
get genes in the pol region was done using two (2) pairs 
of external and nested primers; External primers (Pair 
1 covering the protease gene and reverse transcriptase 
spanning between positions 2058 and 3529; (forward, 
GAA​AGA​CTG​CAC​TGA​AAG​ACA​GGC​), (reverse, GCT​
ATT​AAG​TCT​TTT​GAT​GGG​TCA​T), Pair 2 covering 
the integrase gene spanning between positions 3694 and 
5455; (forward, TAT​GGG​GAA​AGA​CTC​CTA​AAT​TTA​
), (reverse, GTC​CTG​CTT​GAT​ATT​CAC​ACC)). Nested 
primers (Pair 1 covering the protease gene and reverse 
transcriptase spanning between positions 2155 and 3323; 

(forward, ACA​GCC​CCA​CCA​GCA​GAG​), (reverse, CTG​
TAT​ATC​ATT​GAC​AGT​CCA​GCT​), Pair 2 covering the 
integrase gene spanning between positions 4022 and 
5258; (forward, AGA​AGT​AAA​CAT​AGT​AAC​AGA​CTC​
ACA) (reverse, TGC​AGA​CCC​CAA​TAT​GTT​CTA)) [26]. 
The primer set allows for the robustness of the assay with 
the ability to genotype all circulating HIV-1 subtypes in 
the country, Table 3.

Amplicons generated using the aforementioned nested 
primers were used to prepare NGS libraries using the 
Nextera XT DNA library preparation kit [27]. The ampli-
cons for the protease and reverse transcriptase region 
were generated separately from the integrase region, 
however, these were combined before library prepara-
tion at proportional concentrations for sequencing in 
the same pooled run. Each pooled library had 25 sam-
ples; these were run using the Miseq V2 reagent kit on 
the Miseq system [28] at CPHL. Sanger sequencing was 
done using BigDye Terminator v3.1 cycle sequencing kit 
[29] on the ABI genetic analyzer 3730xl [30] at JCRC. To 
achieve double coverage, two sets were used for forward 
and reverse primers, in addition to the aforementioned 
nested primers, the following were also added; for pro-
tease and reverse transcriptase region: forward (CTG​
TAC​CAG​TAA​AAT​TAA​AGC​CAG​G), reverse (TCT​
TCT​GTC​AAT​GGC​CAT​TGT​TTA​), for integrase region: 
reverse (TGC​AGA​CCC​CAA​TAT​GTT​CTA). Base-call-
ing parameters were set to end at PCR stop, the quality 
threshold was set to assign Ns to bases with quality val-
ues (QVs) less than 15, peak heights were also considered 
to reduce background noise.

Table 3  Experimental sample Characteristics

Sample ID HIV-1 
subtypes

Demonstrations Sequenced Genes

DR-968-19 D Accuracy RT, PR

DR-969-19 D Accuracy RT, PR

DR-970-19 A Accuracy RT, PR

DR-971-19 D Accuracy RT, PR

DR-972-19 A Accuracy RT, PR

DR-975-19 A Accuracy RT, PR

DR-976-19 B Accuracy RT, PR

DR-979-19 B Accuracy RT, PR

DR-980-19 D Accuracy RT, PR

DR-981-19 C Accuracy RT, PR

DR-134-20 A Precision RT, PR, INT

DR-138-20 C Precision RT, PR, INT

DR-139-20 D Precision RT, PR, INT

DR-143-20 D Precision RT, PR, INT

DR-289-20 A Precision RT, PR, INT

Fig. 6  Pictorial view of HIV genotyping processes. Shows the 
experimental steps for NGS platform from viral RNA extraction to 
analysis of data
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Data analysis
Data generated was in two formats; FASTA and FASTQ 
depending on the sequencing platform. FASTA for-
mats are created from chromatograms generated by the 
Sanger sequencing platforms. Raw chromatograms were 
analyzed using a web-based software RECall as recom-
mended by World Health Organization (WHO) for lab-
oratories in the HIVDR network [31]. The RECall is an 
automated base-calling software [32]. This enabled us to 
do quality checks on; raw chromatogram quality, single-
stranded coverage, sequence length, stop codon, exces-
sive mixtures, bad insertions, ambiguous nucleotide/
amino acids, APOBEC mutations, atypical mutations and 
genetic distance. Among the outputs of the RECall analy-
sis included; a consensus sequence, an excel file with the 
mutation list, a CSV file with the susceptibility scores and 
pdf files including an image of a neighbour-joining tree.

FASTQ formats were generated from the NGS plat-
forms. These are text-based formats for nucleotide 
sequences and their corresponding quality scores. Anal-
ysis of the FASTQ files was done using an online-based 
pipeline, Hydra [33]. Among the outputs from Hydra 
included; a consensus sequence and an Amino Acid Vari-
ant Format (AAVF) file. The AAVF file report provides a 
compact summary of the amino acid variation obtained 
by conceptual translation of the NGS read pileup across 
the examined region of the HIV genome [34]. The AAVF 
files for the samples were then uploaded to the Stanford 
University HIV Drug Resistance Database [35] for drug 
resistance profiling.

Criteria for assessment of the HIVDR NGS based 
home‑brewed assay
Accuracy is defined as the closeness of the measure-
ments to the gold standard. Accuracy was demonstrated 
by sequencing 10 samples on both platforms. For each 
sample, DRMs detected by SS were compared with 
those detected by NGS and their number was plotted 
on scatter graphs. Accuracy was calculated in percent-
ages by comparing the number of DRMs detected by 
NGS with the standard SS. An average percentage for 
the 10 samples was established as the accuracy. Precision 
is defined as how close the agreement of the outcomes 
is between repeated measurements. This was catego-
rized into Repeatability -the variation arising when all 
efforts are made to keep conditions constant by using the 
same instrument and operator and repeating the meas-
urements during a short period. Reproducibility -the 
variation arising using the same measurement process 
among different instruments or operators over longer 
periods. Repeatability was demonstrated by process-
ing and sequencing five samples 5  times using the same 

conditions in 1 week. Reproducibility was demonstrated 
by processing and sequencing five samples by five labora-
tory personnel in 1  week designated by the initials AA, 
FK, IN, NE, PA.
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