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ABSTRACT: Changes in cell phenotype are thought to occur through the expression of groups of co-regulated genes within topologically as-
sociated domains (TADs). In this paper, we allocate genes expressed within the myometrium of the human uterus during the onset of term la-
bour into TADs. Transformation of the myometrial cells of the uterus into a contractile phenotype during term human labour is the result of
a complex interaction of different epigenomic and genomic layers. Recent work suggests that the transcription factor (TF) RELA lies at the top
of this regulatory network. Using deep RNA sequencing (RNAseq) analysis of myometrial samples (n¼ 16) obtained at term from women un-
dergoing caesarean section prior to or after the onset of labour, we have identified evidence for how other gene expression regulatory ele-
ments interact with TFs in the labour phenotype transition. Gene set enrichment analysis of our RNAseq data identified three modules of
enriched genes (M1, M2 and M3), which in gene ontology studies are linked to matrix degradation, smooth muscle and immune gene signa-
tures, respectively. These genes were predominantly located within chromosomal TADs suggesting co-regulation of expression. Our transcrip-
tomic analysis also identified significant differences in the expression of long non-coding RNAs (lncRNA), microRNAs (miRNA) and TFs that
were predicted to target genes within the TADs. Additionally, network analysis revealed 15 new lncRNA (MCM3AP-AS1, TUG1,
MIR29B2CHG, HCG18, LINC00963, KCNQ1OT1, NEAT1, HELLPAR, SNHG16, NUTM2B-AS1, MALAT1, PSMA3-AS1, GABPB1-AS1,
NORAD and NKILA) and 4 miRNA (mir-145, mir-223, mir-let-7a and mir-132) as top gene hubs with three TFs (NFKB1, RELA and ESR1) as
master regulators. Together, these factors are likely to be involved in co-regulatory networks driving a myometrial transformation to generate
an estrogen-sensitive phenotype. We conclude that lncRNA and miRNA targeting the estrogen receptor 1 and nuclear factor kappa B path-
ways play a key role in the initiation of human labour. For the first time, we perform an integrative analysis to present a multi-level genomic
signature made of mRNA, non-coding RNA and TFs in the myometrium for spontaneous term labour.
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Introduction
Higher-order chromatin structure and organization is emerging as a
key factor in determining how cis-regulatory elements work to gener-
ate a phenotype or disease risk (Lupiá~nez et al., 2015; Franke et al.,
2016; Merienne et al., 2019; Liang et al., 2020). Along the linear DNA
axis, there are domains of DNA that tend to interact with each other
more frequently than with areas outside the interacting domains: these

are termed topologically associated domains (TADs; Hou et al., 2012;
Nora et al., 2012; Sexton et al., 2012). Evolutionary conservation of
TADs between species and cell types suggests their functional rele-
vance (Dixon et al., 2015). TADs are important features of genome
organization not only to facilitate chromatin packing but also to restrict
enhancer–promoter interactions to the TAD, and breaking of TAD
boundaries has pathological consequences (Lupiá~nez et al., 2015;
Merienne et al., 2019). Recent work on the transformation of cell
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phenotypes has emphasized the role of co-regulation of groups of
genes within TADs to effect major changes in the structure and behav-
iour of cells (Phillips-Cremins et al., 2013). Higher resolution analysis
of TADs has shown that TADs have hierarchical structures forming
sub-TAD structures, also known as chromatin loops (Rao et al.,
2014). Further, CTCF or CCCTC-binding factor is an evolutionary con-
served and multifunctional protein that appears to have a role in insu-
lating the TAD boundaries to constrain enhancer–promoter
interactions within the domains (Narendra et al., 2015).

Successful human parturition requires the uterus to undergo a pro-
gramme of transformation from a quiescent expandable receptacle
into an active organ able to produce coordinated forceful phasic con-
tractions to push the foetus through a softened cervix to birth (Smith
et al., 2012, 2013, 2019, 2020; Kota et al., 2013; Smith, 2015). An un-
derstanding of the programme at the molecular level is central to de-
veloping precision obstetric interventions for at-risk pregnancies,
including to stop premature delivery, successfully induce normal vaginal
delivery or to promote uterine contraction to arrest post-partum hae-
morrhage (Smith et al., 2019). With practical and ethical constraints
on experimental approaches and an absence of applicable animal mod-
els for human parturition, efforts to understand the programme have
focused on mathematical modelling of key variables from single sam-
ples of human myometrium obtained at caesarean section.

We and others have interrogated genomic and transcriptomic data
from term human myometrium to gain insight into the process of la-
bour in parturition. Previously, several studies have employed gene ex-
pression profiling using microarray (Esplin et al., 2005; Bukowski et al.,
2006; Mittal et al., 2010; Romero et al., 2014; Sharp et al., 2016; Lui
et al., 2018) or high-throughput RNA sequencing (RNAseq) to identify
genes that are differentially expressed during parturition (Ackerman
et al., 2018; Stanfield et al., 2019). These studies have generated a
long list of genes that are altered during the process of labour
(Stanfield et al., 2019). Although myometrial contractility has been as-
sociated with a characteristic gene expression pattern, finding the key
drivers from the long differentially expressed list is challenging. We
postulated that an interaction of epigenomic factors, including non-
coding RNA (ncRNA), and specific gene regulation control determines
the transcriptional phenotype. We have examined the hierarchical ar-
chitecture of the genomic components to identify likely apical drivers
of large-scale transcriptional changes within specific TADs (Fig. 1).

Materials and methods

Ethics approval
The samples were collected under our University of Newcastle John
Hunter Hospital, Newcastle, Australia and the Singapore KK
Women’s and Children’s Hospital ethics committees (Ethics approval
H3820602). Pregnant women gave written informed consent to do-
nate a biopsy of their myometrium at caesarean section at term
according to the institutional guidelines and regulations.

Patient recruitment and tissue sampling
Women undergoing elective caesarean section without uterine con-
tractions formed the not-in-labour (N, n¼ 31) group. Women who

entered spontaneous and established labour for at least 2 h, but re-
quired emergency surgery, formed the term in-labour (L, n¼ 29)
group. Following delivery, the placenta and membranes were exam-
ined for chorioamnionitis. Women displaying clinical or histological
indications of infection were excluded from the study. Clinical indica-
tions for the emergency section L group included breech, macrosomia,
foetal distress, failure to progress and low amniotic fluid index, while
subjects in the N group underwent surgery owing to previous caesar-
ean sections. All women were between 36 completed weeks and
40 weeks gestational age. Tissues were sampled using a surgical tech-
nique standardized such that the bladder is reflected off the lower seg-
ment of the uterus (the uterovesical-fold) and the uterine incision is
made in the upper part of the lower segment. Connective tissue and
decidua were removed, and the tissues snap frozen in liquid nitrogen
and stored at �80�C until analysis.

The tissues were extracted by the guanidinium thiocyanate-acid phe-
nol-chloroform method as described previously (Chan et al., 2002)
and 21 genes experimentally found by the RNA subtraction method
to be differentially up-regulated were analysed by Bioinformatics
(Ingenuity Pathway Analysis) analyses and published data. Twelve
genes identified from the post-subtraction in silico analyses were added
to the earlier group of 21 genes for confirmation by quantitative RT-
PCR, with only 29 of the 33 found to increase significantly with labour
in a cohort separate from the subtraction study (Chan et al., 2002;
Supplementary Table SI). Z-scores for each gene were calculated from
the data of all 60 women, and the z-scores of the 29 mRNA species
for each mother were combined to form her overall gene expression
ranking in the study cohort. For each mother, a radar plot was gener-
ated including data for the 29 genes. Mothers were then ranked from
1 to 60 based on their mean z-score data (Supplementary Fig. S1a).
The radar plots were combined to generate a cigar plot showing the
transition from not-in-labour to in-labour status, which largely, but not
completely, aligned with the clinical characterization of their status
(Supplementary Fig. S1b). This is consistent with uncertainty over how
close to labour and delivery each mother may be, as clinical characteri-
zation is notoriously difficult for both the woman and her clinician
(Romero et al., 2006; Hanley et al., 2016), while the cervical changes
used to diagnose the mother’s labour status can be misleading since
many patients with cervical shortening show no clinical signs of uterine
contractions (Myers et al., 2015). We propose that the ranking order
represents a surrogate for time that indicates the position of the
mother on the pathway to labour and delivery. Candidates for whole
transcriptome analysis using RNAseq were chosen from the two distal
ends of the cigar plot (Supplementary Fig. S1b, i.e. non-labouring
(n¼ 6), and labouring (n¼ 6) groups as well as women clinically classi-
fied as labouring from the middle band to represent mothers in early
labour (n¼ 5)).

RNA sequencing
Paired-end sequencing of 17 human whole RNA stranded samples
was performed on an Illumina HiSeq 2500 platform at the Australian
Genomics Research Facility Ltd. (AGRF). Sample integrity was checked
on an Agilent Bioanalyzer and all samples had RNA integrity number
>7. Samples were first depleted of ribosomal RNA with Illumina Ribo-
zero Gold. The rRNA-depleted samples were fragmented using heat
and divalent cations before reverse transcription with SuperScript II kit
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..(Invitrogen). Ultra-deep sequencing was carried out generating 100–
150 million usable reads per sample. The whole RNA content there-
fore includes both protein-coding and ncRNA transcripts.

Data analysis
RNAseq data analysis
Clean RNAseq reads were aligned to human genome build hg38 using
the HISAT2 (Kim et al., 2019) aligner. The aligned (.bam) files were
then used to summarize counts for known protein-coding and non-
coding gene annotations (GENCODE version 33) using the
FeatureCounts utility of the Subread package (Liao et al., 2019, 2014).
During the quality control step, it was observed that non-labouring
samples (except for EC1) clustered together but samples from the early
and late labour group were not clearly separated in the hierarchical
clustering (Supplementary Fig. S2a–c). Based on these observations, we
first removed one sample (EC1) from the non-labouring group and the
remaining 16 (n¼ 5þ 5þ 6) samples were further processed. Second,
we identified a signature based on groups of protein-coding genes asso-
ciated with each of the phenotypic groups (Supplementary Fig. S2d).

Coding-gene counts were used to identify ‘modules’ of co-
expressed genes and generate gene expression signatures related to
each sample within a phenotypic group (Zhang and Horvath, 2005).
Thus, from the whole transcriptome data, we generated the gene ex-
pression signatures representative of each of the no-labour, early la-
bour and late labour groups by considering co-expressed gene
modules using an R-based tool called CEMiTool (Russo et al., 2018).

Gene set enrichment analysis (GSEA) was performed for each module.
GSEA associated activity of each module within each sample class was
then represented as a net enrichment score, which corresponds to a
shifting of gene set constituents of a module towards either end of a
ranked list representing strongly positive or negative correlations. To
associate biological function to each of the modules, we examined
over-represented pathways in each co-expressed module.

From the reads, two classes of ncRNA profiles were also generated,
these were long non-coding RNA (lncRNA) and microRNA (miRNA)
using GENCODE (Frankish et al., 2019) and miRBASE (Kozomara
et al., 2019) reference annotations, respectively. FeatureCount (Liao
et al., 2014) and EdgeR-Voom packages (Robinson et al., 2010;
Law et al., 2014) were used to perform the gene expression analysis.
The ncRNA counts vary in their abundance and additionally, a co-
expression network analysis was not possible for a large number of
ncRNA captured in our analysis. Therefore, for ncRNA expression
analysis, we combined the two labouring groups (n¼ 5þ 6) into one
and compared this single group against the non-labouring group (n¼ 5).
Since miRNAs are known to repress expression of their target mRNAs
and have inverse correlations with their target lncRNAs, we computed
negative Pearson correlations between the miRNA:mRNA and
miRNA:lncRNA. We summarized results for adj.pval< 0.05, and at dif-
ferent correlation cut-offs. As lncRNA is known to negatively regulate
miRNAs, we confirmed known miRNA:lncRNA and gene:target pairs
using databases such as Starbase (Yang et al., 2011) and RNAInter (Lin
et al., 2020) that contain experimental data from multi-omics studies.

Figure 1 A holistic view of the hierarchical changes in the genome and epigenome to regulate onset of labour at term.
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Using the overrepresentation analysis tool from the Reactome data-
base (Reimand et al., 2019), we performed pathway enrichment analy-
sis of differentially expressed miRNAs. This uses a hypergeometric
distribution to test for significance and false discovery rate (FDR) to
correct for multiple testing (Reimand et al., 2019). Gene set analysis of
lncRNA was performed using the lnCompare database (Carlevaro-Fita
et al., 2019), and genes miRNet2.0 (Chang et al., 2020) for miRNA.

Regulatory elements
The 3-dimensional structure of the genome and chromatin remodelling
facilitates transcription, and the compartmentalization of transcriptional
activities can be deduced by aggregating various types of genomic and
epigenomic data. We have used this combined information to suggest
causal relationships leading to an expression phenotype.

Topologically associated domains

Chromosomal looping can bring arrays of regulatory elements from dis-
tant parts of the genome to create high-level self-interacting contacts
and form sub-mega base-pair TADs (Lieberman-Aiden et al., 2009;
Bonev and Cavalli, 2016). Generally, TADs encompass interactions be-
tween enhancers and promoters, as well as between co-regulated
genes, which reflect cell-type-restricted transcriptional programmes.
Enhancers occur where arrays of permissive regulatory elements are
grouped. TADs are surrounded by insulators at their boundaries, which
prevent enhancers from exerting actions outside a domain (Zabidi et al.,
2015). It has been shown that constitutively expressed genes, such as
housekeeping genes, tend to be located at the boundaries of TADs
(Dixon et al., 2012; Muro et al., 2019). Genes with more specialized
roles tend to concentrate within a domain and may be under tighter
gene regulatory control. We mapped genes from the three modules to
their genome-wide contact domain locations (Rao et al., 2014).

Active enhancers

We investigated whether more than one of our genes of interest
were located inside a TAD, and if they were sharing active enhancers.
EnhancerAtlas 2.0 (Gao and Qian, 2020) was used to identify active
enhancers associated with the genes that comprised the three identi-
fied gene modules. Next, we investigated the transcription factors
(TFs) potentially involved in epigenome reprogramming for labour.

TF binding sites

To complete the regulatory complex view of the gene expression envi-
ronment, we looked for TF binding sites (TFBS) both in the enhancer
(EnhancerAltas classification) and promoter (10 000 bp upstream and
5000 bp downstream of TSS) regions using a list of known TF motifs
from the JASPAR database (Sandelin et al., 2004; Khan et al., 2018). In
order to identify significantly enriched TFs, we subtracted the occur-
rence of these motifs by chance to obtain statistically enriched TFBS.
The results were selected using an adjusted P-value< 0.05 cut-off
(Kwon et al., 2012; Gearing et al., 2019).

Results

Gene expression signatures and cellular
functions
The GSEA (Mootha et al., 2003; Subramanian et al., 2005) resulted in
three significant modules represented as M1, M2 and M3 (Fig. 2) and

were composed of 81, 46 and 36 genes, respectively. We observed
that M2 had higher expression in the no-labour stage (red), while ex-
pression of M1 and M3 was associated with the active labour state
(Fig. 2). We did not observe a co-expressed gene module that can
characterize the early labour stage; this may be due to high variance in
this group relating to the intermediate state of the members of this
group on the trajectory to labour.

The M1 module is enriched for pathways associated with matrix
degradation (Fig. 3A), the M2 module exhibits a smooth muscle profile
(Fig. 3B), and the M3 module shows enrichment for immune gene sig-
natures (Fig. 3C). The size and strong positive correlation of the M2
module with the no labour state suggests the base-level expression sig-
nature of myometrium, and that these genes are associated with the
maintenance of pregnancy. Some of these observations, such as the
expression of cytokines and immune pathways in the M1 and M3
modules, are consistent with previous studies of the gene signatures of
spontaneous term labour (Bethin et al., 2003; Keelan et al., 2003;
Bukowski et al., 2006; Stanfield et al., 2019). Average expression of
genes from the three modules is provided in Supplementary Table SII.

TADs may be related to co-regulation of
gene expression
Mapping of our co-expressed gene modules to previously published
genomic coordinates of TADs (Rao et al., 2014) was compared with
that of randomly selected genes. We found that the genes from the
three modules are non-randomly distributed (Kolmogorov–Smirnov

Figure 2 Gene set enrichment analysis for myometrium
of the human uterus. The net enrichment score (NES) for three
samples groups are plotted on the x-axis; NL, no labour; EL, early la-
bour and LL, late labour. The red colour represents higher activity
and blue represents lower activity. The size of the circle is propor-
tional to the NES scores. The average expression of the genes from
the three modules is provided in Supplementary Table SII.
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Figure 3 Active enhancers and pathways analysis for myometrium of the human uterus. The column on the left (A–C) shows tran-
scription factor (TF) enrichment in the enhancers plotted as their log2 fold change between identified genes and the background sets versus the signif-
icance score computed as –(log2FC)*log10(P-value). TFs over- and under-represented for each of the three modules are shown in black and blue,
respectively. The column on the right (D–F) shows pathway enrichment for genes in the modules M1, M2 and M3, respectively.
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..two-sided test P-value ¼ 0.0006), with 76% of M2 genes, and 66% of
both the M1, and M3 groups predominantly located within a topologi-
cal domain as compared to randomly selected genes (Fig. 4). This sug-
gests that the majority of the genes within the three co-expressed
modules have specialized functions and are likely to be co-regulated.
M1 genes at a TAD border are COL1A2, IGFBP5, HSPA8, SPARCL1,
COL5A1, ENO1, MACF1, GAPDH, CANX, VWF, FBLN1, UBC,
HSP90AB1, RPL4, CSDE1, ALDOA, RACK1 and RPS3, which have roles
in glycolysis, glucogenesis and amino acid biosynthetic pathways.
Similarly, M2 genes at the border are FLNA, MYH11, AHNAK, FLNC,
CNN1 and MAP1B, which are involved in muscle fibre development
and cell junction assembly. Finally, M3 genes at the border are VCAN,
MSN, MMP2, HLA-E, HLA-B, STAT3, VMP1, RDH10 and CXCL8, which
have roles in cytokine signalling and immune pathways.

TADs can be subdivided into subdomains that contain genes that
have a higher likelihood of co-regulation. Enhancer–promoter interac-
tions are required to form regulatory units and co-regulate genes in
these subdomains. We mapped enhancer–promoter interactions onto
our gene modules. These enhancer–promoter interactions are marked
as red links in Fig. 5. Furthermore, analysis of TFBS in the promoter
and enhancer regions revealed TFs that may regulate these genes, cre-
ating transcriptional units. We have demonstrated over- and under-
represented TFs in the active enhancers for the three different gene
modules (Fig. 6A–C). All three modules shared nine common TFs

(NR1H2::RXRA, MYF6, RARA::RXRA, PPARA::RXRA, RARA(var.2),
FOXA2, SRF, RARA, SOX21) in their enhancers. Five TFs were spe-
cific to M1 (THAP1, NFKB1, MYB, FOXO3 and RUNX1), six TFs
were specifically found in the enhancer regions of M2 (EHF, NHLH1,
ELF3, GABPA, THAP11 and ZSCAN4) and 10 were M3 specific
(RXRA::VDR, ESR1, ESR2, SPIB, E2F1, ELK1, REL, MYBL1, RELA and
SMAD2::SMAD3::SMAD4). Overrepresented TFBS restricted to the
promoter regions are summarized in Table I and as shown in
Supplementary Fig. S3, the predictive scores of these TFBS are not af-
fected by the genomic GC content.

ncRNA mediated regulation revealed by
analysing gene expression profiles and
target analysis
miRNA expression profiles
For profiling ncRNA expression, we merged the early and late labour
groups and tested for differential expression between the no-labour
and labour groups. The expression of 27 miRNAs changed significantly
(FDR adjusted P-value� 0.05) in the labour groups (Fig. 6A). The ex-
pression of 10 miRNAs decreased from the no-labour to the labour
groups, whereas, 17 miRNAs increased their expression in the labour
groups. More detailed annotations of these miRNA are available in
Supplementary Table SIII.

Figure 4 Distances of genes from modules M1, M2 and
M3 calculated from the nearest known topologically associ-
ated domain (TAD) boundary. Here, the dashed blue line
denotes the TAD boundary, the histogram of gene counts shows
that the majority of the genes are inside known TADs and a small
proportion lie near the boundary or outside the domain. As shown,
66% of M1 and M3 genes, and 76% of M2 genes lie within the TAD
regions.

Figure 5 Map of genomic and epigenomic factors driving
the human term labour phenotype. Outermost track (I) dis-
plays coding genes from the three identified modules, and non-cod-
ing genes (long non-coding RNA and microRNA: mir). Next, the
gene expression heatmap (II) is plotted as up- (red) and down-regu-
lated (yellow). This is followed by the transcription factor binding site
track (III). Enhancer–promoter interactions are shown by multi-col-
oured lines (IV). The innermost circle (V) shows the TAD (green) or
No-TAD (red) location of the genes in the outermost layer. TAD,
topologically associated domain.
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miRNA targets, namely mRNA and lncRNA, were identified and

then analysed for their involvement in different biological pathways. As
shown in Fig. 6B, a total of 25 enriched pathways (adj. P-value � 0.05)
were found for histone modification targets of these miRNAs. Several
relevant pathways, such as estrogen receptor (ESR)-mediated signal-
ling, estrogen-dependent gene expression, reproduction and oxidative
stress induced senescence, showed high levels of enrichment.

We observed that hsa-miR-223, hsa-miR-let-7a and miR-145 were
highly expressed in the no-labour and low in the labour group. hsa-
miR145 was at the top of the significantly differentially expressed list
with more than 4-fold down-regulation in labour samples as compared
to the no-labour group. hsa-miR145 was found to be negatively corre-
lated with ESR1 expression, and several other coding genes. In breast
cancer, hsa-miR-145 has been confirmed to be involved in pro-
apoptotic activities in collaboration with TP53 and represses expres-
sion of ESR-alpha by directly binding to its 30UTR (Spizzo et al., 2010).
The data also included two other miRNAs (hsa-miR-181a-d and hsa-
miR-222) known to be involved in ESR1 pathways (Mou et al., 2017).
mir-181a and hsa-miR-222 were low in the no-labour and high in the
labour groups. Previously, miR-181a, hsa-miR_23a and hsa-miR-26b
were also shown to directly regulate progesterone receptors (Gilam
et al., 2017). The data also include four miRNA (hsa-let-7a-1, hsa-let-7f-
1, hsa-mir-223 and hsa-mir-29a) that are known targets of NFkB

(Kumar et al., 2014; Liu et al., 2015b). Among the other differentially
changed miRNA, hsa-miR-132 and hsa-miR-133 are known to regulate
estradiol synthesis (Dai et al., 2013; Li et al., 2015; Wu et al., 2015);
hsa-miR-223, hsa-miR-132, hsa-miR-199a and hsa-miR-31 have a regula-
tory role in chromatin remodelling (Aprelikova et al., 2010; Alvarez-
Saavedra et al., 2011; Sakurai et al., 2011; Zardo et al., 2012; Pagano
et al., 2013). Additionally, hsa-miR-222, hsa-miR-141, hsa-miR-146,
hsa-miR-146a, has-miR-214, hsa-miR-33a and hsa-miR-411 regulate oxi-
dative stress (Wommack et al., 2018). We performed a correlation
analysis between these 27 miRNAs and their 5235 identified mRNA
targets. Out of these correlated miRNA:mRNA pairs 48.95% were
negative correlations, of which 11.95% were statistically significant (adj.
P-value< 0.01; Supplementary Table SIV).

A pathway enrichment of Kyoto Encyclopedia of Genes and
Genomes (KEGG) biological network of miRNA:mRNA targets
(Pearson correlation> 0.8 and adj. P-value <0.05) from our RNAseq
data is also drawn in Supplementary Fig. S4. Genes in these networks
are enriched for NFkB signalling, innate immune and cytokine path-
ways. Protein domain analysis showed enrichment for histone (H4/
H2B) and zinc-binding domains, SNT, Cullin and RNA-binding
domains, as confirmed with SMART (Letunic et al., 2021) and InterPro
database (Blum et al., 2021) analysis. These proteins were enriched
for splicing and RNA transport gene ontologies.

Figure 6 Differential expression and pathway analysis of miRNA between labour and no-labour groups. (A) Volcano plots of
miRNA differential expression between no-labouring and labouring (early labour þ late term labour combined) groups. The X-axis shows log2 of fold
change (FC) between the two conditions, and Y-axis plots negative log10 of adjusted P-value. The gene with a fold change of 1.5 and false discovery
rate (FDR) � 0.05 are highlighted as red (up) or blue (down). Genes with unchanged expressions are shown as black dots. (B) Top 10 enriched path-
ways from Reactome overrepresentation analysis of miRNA: histone modification interactions, with ranking based on the gene ratio of input genes
relative to background and adj. P-value �0.05 indicated by the blue colour bar gradient. The size of the bubbles also reflects the magnitude of the
gene ratio. The figure was produced using the R package ‘ggplot’. The data emphasize the importance of estrogen receptor (ESR)-mediated signalling.
miRNA, microRNA.
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In the differential expression analysis of the transcriptome, we iden-
tified 146 differentially changed lncRNA (FDR� 0.05) that are
known targets of miRNA differentially expressed in our analysis
(Fig. 7). Of these, two lncRNA (AK054607 or SOCS2-AS1, and

LINC00312) have previously been reported in spontaneous labour
transcript profiles (Romero et al., 2014). When compared with the
background set of lncRNA, mean expression of these lncRNAs at
term was found to be higher than expected by chance in all
groups.

............................................................................................................................................................................................................................

............................................................................................................................................................................................................................

............................................................................................................................................................................................................................

Table I Transcription factor enrichment in promoter regions, 1000 bp upstream and 5000 bp downstream of transcription
start site.

Module Transcription factor JASPAR ID Family Z-score

M1 Klf4 MA0039.2 BetaBetaAlpha-zinc finger 19.788

ELF5 MA0136.1 Ets 14.911

SPIB MA0081.1 Ets 14.88

NFATC2 MA0152.1 Rel 14.189

CTCF MA0139.1 BetaBetaAlpha-zinc finger 14.041

RREB1 MA0073.1 BetaBetaAlpha-zinc finger 12.698

Egr1 MA0162.1 BetaBetaAlpha-zinc finger 12.294

AP1 MA0099.2 Leucine Zipper 11.918

SP1 MA0079.2 BetaBetaAlpha-zinc finger 11.897

REL MA0101.1 Rel 11.878

FEV MA0156.1 Ets 10.903

RUNX1 MA0002.2 Runt 10.883

SPI1 MA0080.2 Ets 10.316

SRF MA0083.1 MADS 10.171

M2 SRF MA0083.1 MADS 33.716

ELF5 MA0136.1 Ets 25.815

SPIB MA0081.1 Ets 25.182

RUNX1 MA0002.2 Runt 21.96

TEAD1 MA0090.1 Homeo 16.75

PPARG::RXRA MA0065.2 Hormone-nuclear Receptor 16.15

NFATC2 MA0152.1 Rel 15.48

Hand1::Tcfe2a MA0092.1 Helix-Loop-Helix 15.36

REL MA0101.1 Rel 14.84

FEV MA0156.1 Ets 14.80

Foxa2 MA0047.2 Winged Helix-Turn-Helix 14.77

TBP MA0108.2 Beta-sheet 14.08

MEF2A MA0052.1 Other Alpha-Helix 14.03

Klf4 MA0039.2 Zinc-coordinating 13.55

SOX9 MA0077.1 Other Alpha-Helix 12.92

MEF2A MA0052.1 MADS 12.85

AP1 MA0099.2 Leucine Zipper 12.75

HOXA5 MA0158.1 Homeo 11.96

MYB MA0100.1 Myb 11.86

M3 STAT1 MA0137.2 Stat 22.02

Gata1 MA0035.2 GATA 17.58

NF-kappaB MA0061.1 Rel 17.53

RELA MA0107.1 Rel 17.25

CTCF MA0139.1 BetaBetaAlpha-zinc finger 16.78

FEV MA0156.1 Ets 11.24

FOXI1 MA0042.1 Forkhead 10.51

Over-representation of transcription factor binding sites from the JASPAR database was analysed. The top results were ranked by Z-score at a cut-off of Z-score¼ 10.
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Further, we looked at the distribution of the altered lncRNAs
with respect to various genomic features. We observed that the ma-
jority of the lncRNA were in antisense and divergent orientation rel-
ative to their nearest coding genes, and these lncRNAs are
preferentially distributed around their closest coding genes
(Supplementary Fig. S5). Eighty-three of these lncRNAs have been
previously reported in association with disease in the databases
lncRNA disease (Chen and Yan, 2013), lnc2cancer (Ning et al.,
2016) and CLC (Carlevaro-Fita et al., 2017). Another general obser-
vation was that their spliced length was longer, and conservation in
20 mammals was higher than expected (data not shown). More in-
vestigation would be required to assess whether these properties
have functional consequences.

The distribution of these lncRNA suggests that they may be acting
as co-regulators to the closely co-located protein-coding genes. These
associations can be either positive or negative resulting in enhanced
expression or repression of the adjacent protein-coding gene. To test
the co-differential expression of mRNA and lncRNA, a correlation
analysis between lncRNA:mRNA, and lncRNA:miRNA was per-
formed. There were 2602 mRNA as common targets for both
miRNA and lncRNA with a significant negative correlation between
miRNA:lncRNA (adj. P-value< 0.01; Supplementary Table SIV and

Fig. S4). The gene ontology suggested that these common targets are
involved in RNA processing, splicing, oxidative stress and epigenetic
gene regulation processes.

Integrated pathway analysis reveals a
combinatorial regulatory network of genes,
TFs and ncRNA
We used genes from the three co-expressed modules, their identified
TFs, differentially expressed miRNA and their lncRNA targets to per-
form integrative pathway analysis.

The nodes represent an mRNA (yellow), miRNA (blue), lncRNA
(red) or a TF (pink), and the nodes are ranked by their degree and be-
tweenness (Fig. 8). Degree denotes the number of edges connected
to a node, while betweenness is a measure of how central a node is in
the network. Nodes with high betweenness essentially serve as bridges
between different portions of the network i.e. interactions must pass
through this node to reach other portions of the network.

Fifteen lncRNA (MCM3AP-AS1, TUG1, MIR29B2CHG, HCG18,
LINC00963, KCNQ1OT1, NEAT1, HELLPAR, SNHG16, NUTM2B-
AS1, MALAT1, PSMA3-AS1, GABPB1-AS1, NORAD and NKILA),
and three TFs (ESR1, RELA and NFkB1) showed high degree (�50),
and hence acted as hubs in the network. The following 15 TFs were
the most highly overrepresented: NFKB1, SP1, RELA, ESR1, STAT1,
E2F1, RUNX1, REL, IRF1, SRF, ESR2, NFE2L2, ELK1, SPI1 and
FOXO3.

From our list of 27 differentially expressed miRNA, 21 showed high
degree (>10) in the network (hsa-let-7a, hsa-let-7f, hsa-mir-1, hsa-mir-
1197, hsa-mir-1276, hsa-mir-145, hsa-mir-151a, hsa-mir-15b, hsa-mir-17,
hsa-mir-181a, hsa-mir-222, hsa-mir-223, hsa-mir-23b, hsa-mir-27b, hsa-
mir-29a, hsa-mir-3150b, hsa-mir-378a, hsa-mir-3975, hsa-mir-4768, hsa-
mir-5690 and hsa-mir-873). These miRNAs appear to be regulated by
the previously mentioned 15 different TFs (Supplementary Table SIII).

Discussion
Understanding complex interactions between different functional
genomic factors driving a phenotype requires integrated analysis of
high-throughput genomics datasets. Here, we provide a workflow
combining existing and new omics data to dissect the role of different
omics layers in regulating term labour. Our approach provides a holis-
tic view of the genome architecture and combinatorial interactions
within the various functional layers that bring about changes in the
muscle of the uterus at term labour (Fig. 1).

To the best of our knowledge, no previous RNAseq studies have
sequenced the whole transcriptome of myometrium at the ultra-deep
level (>100 million reads/sample). We obtained co-expressed gene
modules and ncRNA expression profiles associated with non-labouring
and labouring groups. We also identified evidence for the active en-
hancer–promoter pairs and the TFs that directly regulate the gene
modules corresponding to labouring and non-labouring groups.

A number of lncRNA changed significantly in term labour samples
(Ram�ırez-Colmenero et al., 2020). We discuss, as an example,
lncRNA NKILA that is known to directly interact with and inhibit
NFkB pathways by binding to P65 (Liu et al., 2015a; Huang et al.,
2016, 2018). It has been shown previously that placental production

Figure 7 Volcano plots of long non-coding RNA (lncRNA)
differential expression between labour and no-labour
groups. Plots are shown for the no-labouring and labouring (early
labour þ late term labour combined) groups. The X-axis shows log2
fold change between the two conditions, and Y-axis plots the nega-
tive log10 of the adjusted P-value. The gene with a fold change of 1.5
and false discovery rate (FDR) � 0.05 are highlighted as red (up) or
blue (down). lncRNA with unchanged expression are shown as black
dots.
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of corticotropin-releasing hormone (CRH) is linked to gestational
length in human, with a more rapid increase in CRH linked to preterm
birth (McLean et al., 1995; Smith, 2015). CRH is also linked to the ex-
ponential rise in maternal oestriol in late pregnancy (Ellis et al., 2002),
and oestriol dominance over estradiol to the onset of preterm and
term labour (Smith et al., 2013, 2009). CRH has also been shown to
stimulate the NFkB system, which can initiate labour (Zbytek et al.,
2004). There is strong evidence that estrogens and NFkB are key
components in the onset of labour. Progesterone withdrawal during la-
bour up-regulates ESR1 and allows estrogen action (Mesiano et al.,
2002). The ESRs can activate target genes either through direct binding
to an estrogen-responsive element in the target gene promoter, or in-
directly through interaction with another DNA-binding protein such as
NFkB. We found the expression of lnc species NKILA down from
control to the early labour group and up again in the late labour. This

is consistent with NKILA preventing the onset of labour by suppres-
sion of NFkB pathways during pregnancy but a fall of NKILA allowing
the onset and progression of labour via NFkB activation. Integrative
analysis revealed 14 new lncRNAs as hub genes in a combinatorial reg-
ulatory network. Our data indicate that the lncRNA target their near-
est coding genes in a sense-antisense manner.

There is a small but growing body of research that suggests that
miRNA can be involved in regulating molecular mechanisms underpin-
ning uterine muscle contraction during term labour (Elovitz et al.,
2014; Ackerman et al., 2018; Cook et al., 2019). miRNA activity can
be impacted by interactions with other molecules. For example, the
‘sponge effect’ refers to an interaction of miRNA with lncRNA. The
lncRNA usually has a fully complementary sequence that matches a
given miRNA and is thus able to bind to that miRNA, preventing it
from inhibiting mRNA translation. An lncRNA that acts in this manner

Figure 8 Integrated co-regulatory network analysis. The gene-target interaction network of mRNA (yellow), miRNA (blue), lncRNA (red)
and transcription factors (pink) obtained from our co-expression analysis (false discovery rate (FDR) � 0.05). The network reveals important hub
nodes shown as yellow highlights. The size of the node corresponds to enrichment in top pathways. lncRNA, long non-coding RNA; miRNA,
microRNA.
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has been named as a competing endogenous RNA (Salmena et al.,
2011). We provide evidence that miRNA and lncRNA work synergisti-
cally in the form of complex networks to regulate expression of their
target genes in term labour. We selected lncRNA:miRNA pairs that
have previously been confirmed by CLIP-Seq (Hafner et al., 2021)
captures.

The integrative network analysis showed key enriched pathways reg-
ulated by ESR1, NFkB, RELA and SP1 TFs. Our data showed that
these ncRNAs and TFs are involved in regulating estrogen action, oxi-
dative stress, histone modification and chromatin modelling. These
network signals are therefore strongly associated with pathways that
bring about changes in genome conformation resulting in cascading
transcriptional changes leading to the labour phenotype.

Our analysis of TFBS in the promoter and active enhancers identifies
TFs responsible for driving module-specific co-regulation. As a result,
we report three groups of TFs regulating co-expression of the smooth
muscle phenotype in M2, and those driving transcription of modules
enriched in labour specific modules M1 and M3. As expected, binding
sites for TFs RELA, NFkB and ESR1 were found overrepresented in the
regulatory regions of M1 and M3 genes only, and not for the M2 genes.

Conclusion
Collectively, our results demonstrate the epigenomic signatures, and
transcriptional responses associated with a term labour phenotype.
We identified key components of a likely complex regulatory network
that works through combinatorial interactions to drive these changes.
Pregnancy hormones at term will induce a cascade of signalling path-
ways that will in turn affect chromatin conformation, thereby exposing
regulating elements, and biomolecule interactions to carry out large-
scale transcriptional changes within TADs; as a result the myometrium
changes from a relaxed to a contractile phenotype.

Ultra-deep sequencing of the whole transcriptome made it possible
to gain a global profile of the term labour transcriptome at high resolu-
tion. ncRNAs vary hugely in their size and abundance and analysing
short and long ncRNA together increased the sensitivity of analysis.
The abundance of differentially expressed ncRNAs necessitated a tar-
geted analysis of different classes of ncRNA. Further, our gene profile
signatures along with existing genome-wide chromatin capture data in-
dicate that the 3-dimensional structure of the genome can determine
the formation of specific transcriptional units. Our work informs future
chromatin conformation captures from term non-labour and labour
cohorts to dissect corresponding chromatin domains and subdomains.

Overall, we demonstrate the power of integrated analysis to obtain
a holistic view of the term labour phenotype. Such approaches will ex-
pedite discovery of robust and reproducible treatments for pregnancy
complications related to labour, such as preterm birth, dystocia and
postpartum haemorrhage.
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