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Abstract: Micro RNAs (miRNAs) are a class of small non-coding RNAs that have a crucial role in
cellular processes such as differentiation, proliferation, migration, and apoptosis. miRNAs may act
as oncogenes or tumor suppressors; therefore, they prevent or promote tumorigenesis, and abnormal
expression has been reported in many malignancies. The role of miRNA in leukemia pathogenesis is
still emerging, but several studies have suggested using miRNA expression profiles as biomarkers
for diagnosis, prognosis, and response to therapy in leukemia. In this review, the role of miRNAs
most frequently involved in leukemia pathogenesis is discussed, focusing on the class of circulating
miRNAs, consisting of cell-free RNA molecules detected in several body fluids. Circulating miRNAs
could represent new potential non-invasive diagnostic and prognostic biomarkers of leukemia that
are easy to isolate and characterize. The dysregulation of some miRNAs involved in both myeloid
and lymphoid leukemia, such as miR-155, miR-29, let-7, and miR-15a/miR-16-1 clusters is discussed,
showing their possible employment as therapeutic targets.
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1. Introduction

Micro RNAs (miRNAs) are a subset of human non-coding RNA (ncRNA) that plays an
essential role in regulating gene expression, RNA maturation, and protein synthesis [1,2].
ncRNAs have long been considered as “junk” elements; they account for about 75–90% of
the human genome and are classified in two main groups according to their length: small
(<200 nucleotides; miRNAs) and long (>200 nucleotides; lncRNAs) [2,3]. miRNAs are a
subset of small single-stranded ncRNAs of about 19–22 nt that play a crucial role in cell
growth, development, and differentiation by regulating gene expression [4,5].

Most human miRNAs map in the introns of coding genes; some may overlap with the
exons, less frequently in non-coding regions or next to the 3′-UTR sites, and they are often
located in the co-transcribed clusters [6–8]. miRNA distribution in the human genome
is not random, and some chromosomes such as 1, 2, 19, and X have higher numbers
of miRNAs than others [9]. Several miRNAs are located next to fragile chromosomal
sites or breakpoints frequently involved in leukemia rearrangements [10,11]. miRNA
synthesis starts in the nucleus with the transcription by RNA Polymerase II/III of stem-
loop hairpin structures named primary miRNAs (pri-miRNAs) [12]. The endonuclease
Drosha processes pri-miRNAs to produce 60–70 nt precursor miRNAs (pre-miRNAs) that
are then exported to the cytoplasm and processed further by the ribonuclease Dicer to
produce mature miRNA [13]. Most of the mature miRNAs bind to the “seed” region (5–8 nt
long) in the 3′UTR of target mRNA molecules, induce silencing complex (miRISC) and act
as post-transcriptional regulators causing mRNA degradation or translational repression
via deadenylation, decapping, and exonucleolytic processes [14–17].
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Moreover, other regions, such as gene promoters, 5′ UTR, or coding regions, may
also be linked by miRNAs [18,19]. Up to 2000 miRNA molecules have been identified,
regulating about 60% of protein-coding human genes [20,21]. One miRNA can inhibit many
different mRNA transcripts, often with similar functions, and control multiple signaling
pathways [22]; conversely, one mRNA transcript can be targeted by several miRNAs [23].
miRNA expression is highly tissue-specific, some miRNAs being expressed in a specific
cell or tissue type; deregulation of miRNA expression has been associated with several
diseases and cancers. Almost 50% of miRNAs are located near or within genes translocated
in cancer [24].

By down-regulating the expression of oncogenes or tumor suppressors, miRNAs
can prevent or promote tumorigenesis; therefore, they may act as oncogenes (onco-miRs)
or tumor suppressors [25]. Abnormal expression of miRNA has been reported in many
malignancies, in which tumor suppressors are downregulated and oncogenic miRNAs
overexpressed. The roles of miRNA in leukemia pathogenesis are still emerging, and sev-
eral studies have suggested miRNA expression profiles using as biomarkers for diagnosis,
prognosis, and response to therapy in leukemia. These aspects will be discussed in the
present review considering their mechanisms of action and the miRNAs most frequently
deregulated in myeloid or lymphoid leukemias.

2. Epigenetic miRNAs (epimiRNAs)

MiRNA synthesis may be regulated at the transcriptional or post-transcriptional level
by the same mRNA targets they inhibit [26]. The expression of some miRNAs can be
silenced by DNA hypermethylation [27], whereas other miRNAs are regulated by histone
modifications at their promoter regions [28]. However, some other miRNAs, defined as
epigenetic-miRNAs (epi-miRNAs or epi-miRs), can directly or indirectly influence the
expression of known epigenetic regulators such as DNA methyltransferases (DNMTs),
HDACs, and components of PRC [29,30]. The first identified example of epi-miRNAs was
the miR-29 family members (29a, 29b, and 29c); they regulate the expression of DNMT3A
and DNMT3B in lung cancer and acute myeloid leukemia (AML). In vitro experiments
showed that the exogenous introduction of these miRNAs in lung cancer or AML cell lines
led to the reversion of the neoplastic phenotype by inhibiting different DNA methyltrans-
ferases and the consequent hypomethylation and reactivation of other target genes [31–33].
Subsequently, other epi-miRNAs such as miR-101, miR-140, and miR-148a/b, targeting
histone-lysine N-methyltransferase EZH2, HDAC4, and DNMT3B, respectively, were iden-
tified in different cancers [34–36]. miR-193a is another epi-miRNA with a role in AML
progression; it is silenced by the AML1/ETO chimeric protein in cases with t(8;21) translo-
cation [37]. miR-193a is, in turn, able to repress epigenetic regulators such as HDAC3,
DNMT3A, and its repressor AML1/ETO [38]. Increasing the expression of this epi-miRNA,
apoptosis and differentiation are stimulated in leukemic cells due to inhibition of the AML1-
ETO and other epigenetic regulators [37]. Another example of epi-miRNA is miR-217,
which was found to be downregulated in chronic myeloid leukemia (CML) K562 cells that
were resistant to tyrosine kinase inhibitors (TKI); it was shown that by increasing miR-217
expression in these cells, a reduction of DNMT3A and a significantly increased efficacy of
TKI were detected [39]. The discovery of epi-miRNA has provided new possibilities for
epigenetic-based therapeutic approaches, in which miR-29 family members, shown to be
altered in different types of leukemia, are good targets.

3. Circulating miRNAs

Most miRNAs have an intracellular localization, but circulating miRNAs are detected
in cell-free body fluids such as serum, blood, urine, and saliva (Figure 1) [40,41]. Nowadays,
many researchers are investigating the possibility of exploiting microRNA dysregulated
expression profiles in the bloodstream of leukemic patients as a novel liquid biopsy di-
agnostic tool. Circulating miRNAs are stable molecules, detectable with high sensitivity
and specificity, that could be used as new potential non-invasive biomarkers of both solid
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and hematologic neoplasms [42,43]. Despite being cell-free RNA molecules, because of
their small length circulating miRNAs are stable in different physical conditions such
as wide ranges of temperature and pH [42]. Circulating miRNAs are most frequently
included in protective micro-structures, named microvesicles or exosomes, secreted into
body fluids [44]. Exosomes are a class of small membrane-derived vesicles, 30–140 nm
in size, that are secreted by almost all cell types and contain different nucleic acids and
proteins that are crucial for intracellular communication [45,46]. It has been hypothesized
that the exosomes intake can cause reduced miRNA presence in cell-free body fluids in
cancer patients by neoplastic cells [47]. On the other hand, increased miRNA levels in the
circulation in cancer patients may be due to miRNA molecules released from neoplastic
infiltrating cells and dying tumor cells. Indeed, circulating miRNAs may also be included
in apoptotic bodies deriving from damaged cells [44]. Although the role of the exosomal
miRNA in the pathogenesis of hematologic malignancies is not yet clear, it has been shown
that exosomes derived from chronic lymphocytic leukemia (CLL) cells have a role in induc-
ing tumor progression [48,49]. CLL cells release more exosomes in plasma than normal
B-cells, and a significant overexpression of several miRNAs (miR-150, miR-155, miR-146a,
and miR-29a) that promote CLL cells survival and growth has been demonstrated [48].
In particular, the expression level of miR-155 in plasma samples of CLL patients seems
to be helpful as a biomarker to identify patients that may not respond satisfactorily to
therapy [50]. A recent study investigated whether serum levels of miRNAs can be used as
a predictive biomarker of CLL. It was found that miR-29a, miR-150-5p, and miR-155-5p
were upregulated in the early stages of CLL, but that these miRNAs were poor predictive
biomarkers of CLL risk [51].

Moreover, it has been shown that exosomes derived from CLL cells are actively taken
by normal stromal cells, and some miRNAs such as miR-202-3p were found to be enriched
in recipient cells, resulting in the downregulation of target genes [52]. Similarly, an in vitro
study showed an increased level of some miRNAs (miR-146a and miR-21) in exosomes de-
rived from multiple myeloma (MM) cell lines inducing proliferation, chemokine synthesis,
and transformation of mesenchymal stem cells co-cultured with MM cells [53,54]. Moreover,
an in vivo study showed that exosomes derived from MM bone marrow (BM) mesenchy-
mal stromal cells could stimulate MM cell growth and disease progression [55]. Overall,
these studies demonstrated an important role of exosomes in mediating miRNAs transfer
between cancer cells and their surrounding microenvironment in B-cell malignancies.

The prognostic value and utility of circulating miRNAs as biomarkers were also
demonstrated in MM. Two miRNAs, let-7b and miR-18a were associated with a poor
outcome when analyzed in exosomes from treated MM patients [56]. Moreover, miR-
let-7c, miR-20a, miR-103a, miR-140, and miR-185a were downregulated, whereas miR-
4505 and miR-4741 were found to be higher in serum from MM patients as compared to
smoldering MM cases, suggesting that exosomal miRNAs can be used as biomarkers for
MM progression [57]. Furthermore, circulating miRNAs can also be used as biomarkers
for drug resistance, since miR-16-5p and miR-15a-5, targeting BCL-2, were found to be
significantly downregulated, whereas miR-20a-5p and miR-17-5p, targeting MYC, were
upregulated in bortezomib-resistant MM patients [58].

Moreover, several circulating miRNAs in plasma or serum of AML patients could be
novel, useful biomarkers, such as miR-92a, that shows a significantly lower expression
in patients as compared to healthy individuals [59,60], the combination of miR-150 and
miR-342, that is a potential predictor of relapse [61], or miR-181b-5p, that is significantly
associated with overall survival (OS) [62]. A recent report showed that miR-155 dosage
in serum-derived extracellular vesicles could be a helpful non-invasive biomarker for
different hematologic malignancies such as CLL, AML, myelodysplastic syndrome, and
MM [63].
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Figure 1. Schematic representation of miRNA employment as biomarkers in leukemia, based on invasive and non-invasive
approaches for expression analysis.

However, several studies revealed different miRNA expression profiles in serum
and plasma; therefore, the choice of the sample type is crucial in the use of circulating
microRNAs as biomarkers [64]. Moreover, standardization of the experimental protocols
to isolate exosomes and quantify circulating miRNAs is needed [65].
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4. miRNAs and lncRNAs Interaction

Several data showed that many lncRNAs have multiple miRNA response elements
(MRE), that are regions mediating reciprocal interaction; lncRNAs could therefore influence
miRNA expression as they can act as sponges in both normal and cancer cells, determining
several interactive networks. For example, the interaction between lncRNA ZFAS1 and miR-
150 has been demonstrated in silico and functional analyses, with ZFAS1 inducing miR-150
downregulation. It has been demonstrated that the inhibition of ZFAS1 in AML suppresses
disease progression by inducing miR-150 overexpression and the downregulation of mRNA
targets such as Myb and Sp1 [66]. Moreover, lncRNA HOTAIRM1 targets and binds the
tumor-suppressor miR-193a and modulates c-Kit expression in AML [67]. HOTAIRM1 also
showed an essential role in the pathogenesis of AML cases with the t(15;17) translocation,
acting as a microRNA sponge sequestering several miRNAs [68]. Several recent papers
reported different miRNA and lncRNA interactions in AML, such as LINC01018 and miR-
499a-5p, with LINC01018 acting as a sponge of miR-499a-5p, which in turn targets PDCD4
gene [69]. Both LINC01018-overexpression and miR-499a-5p knockdown suppressed AML
cell proliferation and induced apoptosis, whereas miR-499a-5p transfection and silencing
of PDCD4 reversed these effects [69]. A further interesting example in AML is represented
by the regulatory network of MALAT1/miR-146a/CXCR4. LncRNA MALAT1 and CXCR4
were upregulated, while miR-146a was downregulated in AML patients compared with
healthy controls. MALAT1 promotes migration and proliferation of AML cells by sponging
miR-146a and stimulating CXCR4 expression [70].

Moreover, lncRNA and miRNA interaction seem to be frequently involved in chemore-
sistance mechanisms in AML, as for lncRNA-UCA1/miR-125a/hexokinase 2 or HOAX-
AS2/miR-520c-3p/S100A4 pathways [71,72]. UCA1 expression was found upregulated
following adriamycin (ADR)-based chemotherapy, and UCA1 knockdown enhanced the
ADR cytotoxic effect in ADR-resistant AML cells. LncRNA UCA1 directly binds and in-
hibits miR-125a, positively regulating its target hexokinase 2 (HK2) [71]. On the other
hand, lncRNA HOXA-AS2 was significantly upregulated in BM cells from AML cases
after ADR-based chemotherapy, and its knockdown inhibited cell proliferation and in-
duced apoptosis. HOXA-AS2 and miR-520c-3p interaction were demonstrated by luciferase
reporter assay, and S100A4 was predicted as a downstream target. These data showed
that both lncRNAs UCA1 and HOAX-AS2 may represent useful therapeutic targets for
overcoming ADR-chemoresistance in AML [72].

Another interesting example is represented by the network between lncRNAs and
MYC expression in both myeloid and lymphoid malignancies, which contributes to inhibit-
ing apoptosis, stimulates cell proliferation, induces genomic instability and resistance to
therapy [73]. Several autoregulatory loops have been reported in which MYC influences
lncRNAs expression and is regulated by lncRNAs. In AML, lncRNA CCAT1 interacts and
inhibits miR-155, whose targets are MYC, AP-1, FOS, and c-JUN, which regulate myeloid
cell differentiation [74,75]. CCAT1 sponges miR-155 and stimulates MYC expression; inter-
estingly, in previous studies, CCAT1 has been reported to be activated by MYC, suggesting
the existence of a MYC/CCAT1/miR-155 feedback loop [75]. Other identified pathways in
AML are CCAT1/miR-490-3p/MAPK1/MYC and KCNQ1OT1/miR-326/MYC, in which
both lncRNAs CCAT1 and KCNQ1OT1 sponge their target miRNAs and enhance MYC ex-
pression [75]. Other examples of lncRNA and miRNA interaction include MEG3/miR-147
and UCA1/mir-16 that have been detected in CML and are considered possible therapeutic
targets in blast crisis or imatinib (IM) resistance, respectively [76,77]. Moreover, in lym-
phoma, the interaction between HOTAIR and miR-148b regulates apoptosis and the cell
cycle progression of B cells. miR-148b suppresses the expression of BMI1, which, in turn,
activates the MAPK and ERK pathways in B cells [78].

5. miRNAs and CircularRNAs Interaction

CircularRNAs (circRNAs) are a peculiar group of lncRNAs, composed of hundreds to
thousands of nucleotides, derived from exonic, intronic (circular intronic RNAs, ciRNAs),
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or 5′ and 3′ UTR sequences by back-splicing of precursor mRNAs, that form a closed single-
strand RNA transcript loop without a 5′ end cap and 3′ end poly(A) tail [79]. Due to their
conformation, circRNAs are resistant to ribonuclease activity and are much more stable,
as compared to their linear counterparts, also showing a higher sequence-conservation
between species. CircRNAs have been shown to play important roles as miRNA sponges,
and regulators of gene splicing and transcription, with some of them able to bind or
sequester proteins, or can be translated into functional peptides [80]. As non-coding linear
lncRNAs and protein-coding mRNAs, most of circRNAs have MRE regions that can bind
miRNAs; therefore, all these RNA molecules compete for limited miRNAs and form a
competitive endogenous RNA (ceRNA) regulatory network known as “circRNA-lncRNA-
miRNA-mRNA” [81]. The majority of circRNAs are predominantly cytoplasmic and have
been reported to work as ceRNAs that act as miRNA sponges. The ceRNA network plays
a crucial role in physiological and pathological processes such as solid and hematologic
cancers [81]. Moreover, circRNAs are widely distributed in the plasma, urine, saliva,
and other human components; therefore, they can be used as promising biomarkers and
therapeutic targets [82]. To date, several circRNAs have been identified as diagnostic and
prognostic biomarkers in hematological malignancies, such as AML, CLL, CML, and ALL.
In AML, three circRNAs have been most frequently reported as upregulated: circDLEU2,
circHIPK2, and circPAN3 involved in circDLEU2/miR-496/PPKACB, circHIPK2/miR-124-
3p, and circPAN3/miR-153-5p pathways, respectively. CircDLEU2 seems to stimulate AML
pathogenesis, circHIPK2 is involved in myeloid cell differentiation and can be considered
an acute promyelocytic leukemia-associated biomarker, whereas the oncogenic circRNA
circPAN3 has a crucial role in AML drug resistance [83–85]. In CLL, known deregulated
pathways are represented by circCBFB/miR-607/FZD3 inducing Wnt/b-catenin signaling,
circMTO1/miR-337-3p/PML that is downregulated in CLL patients, and circ-RPL15/miR-
146b-3p that inhibits the RAS/RAF1/MEK/ERK pathway [86–88]. In CML, examples
of circRNA and miRNA interaction are circTNS3/miR-29b that stimulates leukemic cell
proliferation, circHIPK3/miR-24 that is involved in CML progression, and circBA9.3 that up-
regulates the expression of BCR-ABL1 and reduces TKI sensitivity [84,89]. In ALL, several
reports describe the upregulation of circPVT1 in BM samples of patients as compared to
healthy individuals; it has been demonstrated that the circPVT1 knocking down inhibits
the expression of MYC and the anti-apoptotic protein BCL-2, showing that circPVT1 could
be used as a promising new therapeutic target [90].

6. miRNAs Expression Profile in Leukemia

MiRNA expression is tissue-specific, as different miRNAs are expressed in a specific
cell or tissue type; miRNAs play a crucial role in regulating gene expression during
normal hematopoiesis, acting on the self-renewal capacity of hematopoietic stem cell (HSC)
and the differentiation of lineage-restricted progenitors [91,92]. Thirty-three miRNAs
were identified as specifically expressed in CD34+ hematopoietic stem-progenitor cells
(HSPCs) [93]. Some miRNAs such as miRNA-17, -24, 146, -155, -128, and -181, were
found to be expressed in early hematopoietic cells—whereas other miRNAs, such as
miRNA155, were able to control specific processes, as myelopoiesis and erythropoiesis [93],
or as miR-34a and miR-17-92 clusters that have an essential role in the pro- to pre-B-
cell differentiation [94]. miR-181 cluster also plays a critical role in the differentiation of
hematopoietic cells as T, B, and natural killer cells or megakaryocytes [95].

Deregulation of miRNA expression has been associated with several diseases and
cancers, and specific miRNA expression profiles have been reported in several hemato-
logic neoplasms [96,97]. Microarray technologies, next-generation sequencing (NGS), and
quantitative real-time PCR (qRT-PCR) are the most valuable methodologies for identifying
reproducible dysregulated expression profiles in specific leukemia types (Figure 1). Un-
like microarray analysis, NGS by miRNA-Seq shows high sensitivity in discovering new
miRNAs and detecting whole-genome miRNA transcripts (miRNoma) with no need for
previous selection. Therefore, the recent development of NGS technologies has made it
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possible to identify an increasing number of miRNAs involved in leukemogenesis. Sev-
eral of these miRNAs may potentially be used as prognostic biomarkers, either as single
miRNAs or as miRNA expression profiles.

The first evidence of the involvement of miRNAs in leukemogenesis was reported
in a study of CLL aimed at characterizing a 30 Kb deletion on 13q14; the study did not
identify any protein-coding genes, but a cluster of two miRNAs, miR-15a and miR-16-1, was
found to be deleted or down-regulated in most of the CLL cases examined [98]. Moreover,
these miRNAs have also been shown to be frequently deregulated in other solid and
hematological cancer types [99–101], and can modulate cell cycle progression and induce
apoptosis by targeting pivotal genes such as BCL2, MCL1, CCND1, or WNT3A [102–104].

6.1. Acute Myeloid Leukemia

Different studies reported specific miRNA expression profiles that distinguish between
AML and acute lymphoblastic leukemia (ALL), some miRNAs being reported in different
studies, such as miR-23a, miR-27a/b, miR-128a, miR-128b, miR-221, miR-222, miR-223,
and let-7b [105,106]. In a study by Mi et al., four miRNAs were sufficient to distinguish
between AML and ALL with an accuracy of greater than 95%, as let-7b/miR-223 being
significantly upregulated and miR-128a/miR-128b downregulated in AML comparing to
ALL [105]. Together, the above work showed that these identified miRNAs could be new
potential markers for ALL and AML classification and diagnosis [62].

One of the miRNAs most frequently involved in AML pathogenesis is miR-155
(Figure 2), which is also commonly overexpressed in B-cell neoplasms, where it is con-
sidered an oncogenic driver of B-cell lymphoma [107]. This miRNA shows a contrasting
dose-dependent function as onco-miRNA or tumor suppressor according to the expression
levels. In short, a high level of expression is correlated with the antitumor effect and inhibi-
tion of AML cell proliferation. In contrast, an intermediate-low level of expression induces
oncogenesis [108] and has been associated with poor prognosis in AML irrespective of
specific cytogenetic or molecular aberrations [108].
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Several studies have identified specific miRNA signatures in different AML subgroups
defined by the classification of myeloid neoplasms [109] (Table 1), and a correlation was
detected with cytogenetics alterations [110–112], prognosis, and clinical characteristics [65].

Table 1. miRNAs most frequently involved in acute leukemia pathogenesis.

AML miRNAs Expression Data References

t(15;17)(q24;q21) PML-RARA

miR-127, miR-154, miR-154∗,
miR-299, miR-323, miR-368, miR-370,
miR-382, miR-134, miR-376a, miR-127,

miR-299–5p, miR-323, miR-224

Upregulation of miRNAs mapping
in in the 14q32 imprinted region [110–112]

t(8;21)(q22;q22.1)
RUNX1-RUNX1T1

miR-126, miR-146a, miR-133a, let-7b,
let-7c

Overexpression of miR-126 and
miR-146a; downregulation of

miR-133a let-7b and let-7c
[111–113]

inv(16)(p13.1q22)
CBFB-MYH11 miR-99a, miR-100, miR-224, miR-126 miRNA signature sometimes

overlapping with t(8;21) AML [110–112]

FLT3-ITD miR-155, miR-10a, miR-10b Upregulation [111,114]

Mutated NPM1
miR-10a and b, let-7, miR-29,

miR-15a/16-1, miR-17-18a-19a-20a,
miR-204 and miR-128a

Upregulation of miR-10a and b,
let-7, miR-29, miR-15a/16-1, and

miR-17-18a-19a-20a;
downregulation of miR-204 and

miR-128a

[114–116]

MLL rearranged

miR-34b, miR-15a, let-7 family,
miR-196, miR-10a, miR-331, and

miR-340, miR-17-92, miR-126, -126∗,
-224, -368, -382, 17-5p, and -20a

Downregulation of miR-34b,
miR-15a, let-7, and miR-196;

upregulation of miR-17-92, miR-126,
-126∗, -224, -368, -382, 17-5p, and

-20a

[110,112,117]

Mutated IDH2 miR-125b, miR-1, miR-133, miR-194-1,
miR-526, miR-520a-3p, miR-548b

Upregulation of miR-125b, miR-1
and miR-133; downregulation of

miR-194-1, miR-526, miR-520a-3p,
and miR-548b

[118]

Mutated RUNX1 miR-223, let-7, miR-211, miR-220,
miR-595

Downregulation of miR-223 and
let-7; upregulation of miR-211,

miR-220, and miR-595
[119]

Normal karyotype
miR-181a/b, miR-124, miR-128-1,
miR-194, miR-219-5p, miR-220a,

miR-320
Upregulation [120]

ALL miRNAs Expression Data References

MLL rearranged miR-128b, miR-708, let-7b Downregulation [105,121]

t(12;21)(p13;q22)
ETV6-RUNX1

miR-100, miR-125b, miR-99a,
miR-126, let-7c, miR-181a

Upregulation of miR-100, miR-125b,
miR-99a, miR-126, let-7c;

downregulation of miR-181a
[122–125]

t(9;22)(q34;q11) BCR-ABL1 miR-125b-2, miR-203 Overexpression of miR-125b-2;
downregulation of miR-203 [126]

hyperdiploid karyotype miR-222, miR-223, miR-374, miR-660,
miR-98 and miR-511 Upregulation [122]

t(1;19)(q23;p13) TCF3-PBX1
miR-126, miR-146a, miR-511,

miR-545, miR-365, miR-24, miR-30d,
miR193, miR-181, miR-708

Downregulation of miR-126,
miR-146a, miR-511, miR-545,

miR-365, miR-24, miR-30d, miR193;
upregulation of miR-181, miR-708

[123,127]

T-ALL
miR-17-92, miR-708, miR-196b,

miR-128, miR-181, miR-29, miR-150,
miR-99a and miR-708

Overexpression of miR-17-92,
miR-708, miR-196b, miR-128,

miR-181; Downregulation of miR-29
[128–130]
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In AML with the t(15;17) translocation, the upregulation of miRNAs located in the
14q32 imprinted domain (miR-127, miR-154, miR-154∗, miR-299, miR-323, miR-368, and
miR-370) was reported in a first study [110], whereas a set of partially overlapping strongly
upregulated microRNAs (miR-382, miR-134, miR-376a, miR-127, miR-299–5p, and miR-323)
was described by Jongen-Lavrencic et al. [111]. In another study, the overexpression of
miR-224, miR-368, and miR-382 was detected [112].

AML with t(8;21) showed high miR-126/126∗ [112] and miR-146a expression with
decreased miR-133a [110]; other evidence showed a set of down-regulated miRNAs, includ-
ing two members of a known tumor suppressor microRNA family, let-7b and let-7c [111],
that was previously found to be involved in other cancers [113].

In AML with inv(16), a high level of miR-99a, miR-100, and miR-224 expression or
of miR-126/126∗ was observed by different investigators [110,112]. Overall, AML with
inv(16) showed a miRNA signature that sometimes overlapped with t(8;21) AML; this is
not surprising as both these AML subtypes belong to the CBF group [111].

In AML with FLT3-internal tandem duplication (FLT3-ITD), miR-155, miR-10a, and
miR-10b were found to be upregulated [111,114].

In AML with NPM1 mutations, a specific miRNA-based expression signature was
revealed with upregulation of miR-10a and b, members of the let-7 and miR-29 fami-
lies, miR-15a/16-1 and miR-17-18a-19a-20a clusters, and downregulation of miR-204 and
miR-128a, predicted to target HOX genes known to be upregulated in NPM1 mutated
AML [114,115]. A further study was based on an integrative approach based on both
microRNA and gene expression profiles. Several interesting microRNA-target mRNA
interactions, such as IRF2-miR-20a, KIT-miR-20a, and MN1-miR-15a, were identified. This
study also showed a deregulated expression of tumor suppressor microRNAs, such as
miR-29a and miR-30c, that seem to be involved in sensitivity to therapy [116].

In AML with balanced 11q23 translocations and KMT2A (MLL1) rearrangements, the
downregulation of several tumor suppressor miRNAs such as miR-34b, miR-15a, the let-7
family, and miR-196, targeting several known target genes such as CDK4 and CCNE2,
BCL2, RAS, and HOX genes was reported; other evidence showed that AML with the
MLL rearrangement were characterized by the loss of miR-10a, miR-331, and miR-340
expression [110]. Other authors revealed the overexpression of miRNAs from polycistronic
cluster miR-17-92, and a minimal class predictor with only seven miRNAs (miR-126, -
126∗, -224, -368, -382, 17-5p, and -20a) was identified [112]. Leukemic cells with higher
expression levels of miR-17-92 showed arrested differentiation and increased proliferation
in concomitance with reduced expression of p21, a downstream target of polycistronic
miR-17-92 [117].

In AML with IDH2 mutations, a specific signature for R172 IDH2-AML was identified
with the upregulation of miR-125b, which targets the TP53 gene and inhibits myeloid
differentiation, miR-1 and miR-133, involved in embryonic stem-cell differentiation, and
downregulation of miR-194-1, miR-526, miR-520a-3p, and miR-548b, not previously associ-
ated with normal hematopoiesis or AML [118].

In AML with RUNX1 mutations, miR-223 and two members of the let-7 tumor sup-
pressor family were downregulated, whereas three miRNAs with an unknown role in
leukemogenesis, miR-211, miR-220, and miR-595, were found to be upregulated [119].

MiRNA expression analysis performed on normal karyotype AML (CN-AML) re-
vealed a prognostic relevant miRNA signature, as the upregulation of miR-181a/b and
miR-124, miR-128-1, miR-194, miR-219-5p, miR-220a, and miR-320 was associated with a
low or increased risk of failure to achieve complete remission (CR), of relapse or death,
respectively [120]. Some miR-181 putative targets were genes involved in innate immunity,
encoding interleukins, caspases, and Toll-like receptors [120].

6.2. Acute Lymphoblastic Leukemia

miRNAs deregulation is a common event in B- and T-cell malignancies in which they
act as either oncomiRs or tumor suppressors [94,122,131]. A different miRNA expression
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profile, mostly based on miR-92a, miR-100, miR-125a-5p, miR-128a, miR-181b, miR-196b,
and let-7e was revealed when comparing B-ALL lymphoblasts to normal CD34+ cells [132].
In ALL, the most frequently altered miRNAs are miR-181 cluster that is reported as up-
regulated by several studies and is considered a crucial oncomiR in childhood ALL [122];
miR-155, that induces pre-B cells clonal expansion and is overexpressed in different pe-
diatric ALL subtypes [107]; miR-128b, that allows differentiation with AML cases and is
downregulated in ALL with the MLL-AF4 translocation [105,121]. In MLL-rearranged ALL,
miR-708 and let-7b downregulation are also frequently detected, probably because of DNA
hypermethylation caused by the MLL fusion protein itself. Other frequently deregulated
miRNAs in ALL are miR-100, miR-125b, miR-99a, miR-126, and let-7c that are overex-
pressed in ETV6-RUNX1 patients [122,123], whereas miR-181a was found as markedly
downregulated in this subtype of ALL [124,125] (Table 1). In BCR-ABL1 positive ALL cases,
miR-125b expression level is downregulated at diagnosis, but significantly overexpressed
after about a month. Moreover, miR-203 is silenced through epigenetic mechanisms [126];
it has been shown that by enhancing miR-203 expression, BCR-ABL1 transcript level is
reduced, cell proliferation is inhibited, and resistance to TKI can be overcome [133]. Re-
garding ALL with hyperdiploid karyotype, miR-222, miR-223, miR-374, miR-660, miR-98,
and miR-511 were found upregulated, probably as a consequence of their mapping location
in chromosomes X and 10 that are frequently present as extra copies [122].

Moreover, miRNAs expression profile data allowed the discrimination between T and
B-lineage ALL based on several miRNAs such as miR-148, miR-151, and miR-424 [134]. In
T-ALL, the oncogenic miR-17-92 cluster was found to be overexpressed as a consequence
of the t(13;14)(q32;q11) translocation, which juxtaposed the miR-17-92 locus next to the
enhancer of the T-cell receptor alpha/delta locus [135] (Table 1). miR-708 was found up-
regulated when comparing T-ALL with healthy individuals and downregulated when
comparing T-ALL with different leukemia subtypes [122]; miR-708 downregulation is
a poor prognostic factor of T-ALL, as it induces an increased expression of CD47 and
promotes the evasion of leukemic cells from macrophage-mediated phagocytosis [136]. An-
other miRNA frequently dysregulated in T-ALL is miR-196b that is probably upregulated
as a consequence of its mapping position between HOXA9 and HOXA10 genes that are of-
ten overexpressed [137]. Other miRNAs found to be dysregulated in T-ALL were miR-128,
the oncogenic cluster miR-181, and the tumor-suppressive miR-29 [128–130]. Moreover, in
childhood, ALL three main miRNAs were frequently reported as prognostic markers: miR-
150, miR-99a, and miR-708. Low levels of miR-150 expression were associated with poor
prognosis as correlating with relapse, high-risk and high WBCs at diagnosis; the association
of miR-150 downregulation and poor prognosis was also revealed in other hematologic
malignancies as AML, CLL, and different lymphoma subtypes [94]. Regarding miR-99,
different studies revealed that upregulation and downregulation were correlated with
favorable and poor prognosis, respectively [138,139]. Finally, miR-708 upregulation was
associated with a good prognosis, as lower relapse risk, low WBC count, and better overall
survival were detected in ALL cases; on the contrary, miR-708 downregulation was revealed
in poor prognosis subtypes as T-ALL and cases with MLL gene rearrangement [122,139].
Finally, in ALL with TCF3-PBX1 fusion, the deregulation of several miRNAs was also
revealed (Table 1) [123,127].

6.3. Chronic Myeloid Leukemia

Regarding the involvement of miRNAs in chronic myeloid leukemia (CML) pathogen-
esis, recently it has been shown that miR-155 was highly up-regulated in CD34+ CML cells
and allowed to evade growth-inhibitory effects of the TGF-β1 and bone morphogenetic
protein (BMP) signaling; these findings provided new perspectives for miR-155 as a poten-
tial target for CML therapy [140]. Moreover, recent data revealed that miR-300 is a tumor
suppressor miRNA inducing quiescence in CML leukemic stem cells (LSCs) [141], and
that miR-126-3p influences both quiescence and self-renewal of CML LSCs [142] (Table 2).
Another recent study showed a global decrease in microRNA levels in LSC-enriched
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CD34+CD38−CD26+ and HSC from CML-CP patients compared to those from healthy
donors HSC [143]. Previous findings showed that microRNAs have also been implicated in
CML progression, response to treatment, or TKI resistance [144–150]. A study by Edurne
San José-Enériz et al. identified a group of 19 miRNAs that may predict clinical resistance
to IM in patients with newly diagnosed CML [151]. Another study revealed that miR-30
induces the degradation of BCR/ABL1 mRNAs by binding directly to their 3′UTR, which
was downregulated in CML patients less responsive to IM [152]. Lower expression levels of
several different miRNAs such as miR-26a, miR-29c, miR-130b, miR-146a, miR-142-5p, and
miR-365a-3p were identified in the peripheral blood or BM samples of CML patients who
failed to respond to TKI treatment [153–155]. Another miRNA, miR-153-3p, was identified
as downregulated in IM-resistant CML cells, and its upregulation significantly increased
drug sensitivity and decreased the IM-resistant CML cells’ survival [156]. The downregula-
tion of miR-153-3p, which directly targets B-cell lymphoma-2-mediated (Bcl-2), reduces
sensitivity to IM and attenuate IM-induced apoptosis in CML. These data showed that the
employment of miR-153-3p-mimic transfection combined with IM therapy might represent
a promising strategy for patients with low TKI sensitivity [156]. A global transcriptome
profile analysis performed on CML stem cells at diagnosis identified miR-185 as one of the
most deregulated miRNAs, with a significant reduction in TKI non-responders compared
with responders. The miR-185 restored expression impaired survival of TKI resistant cells,
therefore miRNA targeting in combination with conventional TKI therapy may represent
an efficient strategy for overcoming drug resistance in CML [156].

Table 2. miRNAs most frequently involved in chronic leukemia pathogenesis.

CML miRNAs Expression Data References

pathogenesis miR-155, miR-300, miR-126-3p Upregulation of miR-155, miR-300;
Downregulation of miR-126-3p [140–142]

TKI resistance
miR-30, miR-26a, miR-29c,

miR-130b, miR-146a, miR-142-5,
miR-365a-3p, miR-153-3p, miR-185

Downregulation [152–154,156]

TKI discontinuation miR-148b and miR-215 Downregulation [152–154,156,157]

CLL miRNAs Expression Data References

13q deletion miR-15a/miR-16-1 cluster,
miR-34a/miR-34b/miR-34c cluster

Downregulation of miR-15 and miR-16;
upregulation of miR-34 cluster [98,158–160]

Trisomy 12 miR-181a Upregulation [159]

17p deletion miR-15a, miR-21, miR-34a, miR-155,
and miR-181b

Upregulation of miR-21, miR-34a,
miR-155, miR-181b [161]

11q deletion miR-34b/miR-34c cluster Downregulation [160]

In contrast, another recent investigation did not find any significant differences in
miRNA expression patterns between TKI responder and non-responder patients [162]. Dif-
ferent studies analyzing miRNA expression profiles at CML diagnosis and in cases showing
resistance considered only a small series of CML cases and produced contrasting results.
More extensive analyses are therefore needed to verify whether the aforementioned miR-
NAs may be used to discriminate between the responders and non-responders among CML
patients as well as the predictive biomarkers for TKI resistance. The miRNA involvement
has also been investigated in CML to identify possible biomarkers for TKI discontinua-
tion; two miRNAs, miR-148b and miR-215, showed downregulated expression in CML
cases with successful IM discontinuation, suggesting that these miRNAs may contribute to
immune surveillance in CML patients showing safe TKI discontinuation [157,163].
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6.4. Chronic Lymphocytic Leukemia

MiRNA transcription alterations have been shown in the tumor microenvironment of
B-cell malignancies. miRNAs are involved in the regulation of B lymphocyte development
and can be altered in different B-cell malignancies. Several studies showed that miRNAs
act on various targets playing critical roles in the CLL pathogenesis, such as BCL2, C-FOS,
C-MYC, TP53, TCL1, and STAT3. Both intracellular and exosomes miRNAs induce the
B cells and B cell antigen receptor (BCR) activation, stimulate CLL cell progression, and
could therefore be used as potential diagnostic and therapeutic biomarkers for CLL. To
date, several differentially expressed miRNAs have been identified in different studies
on CLL based on miRNAs transcriptional profiling (Table 2). In the pilot study by Calin
et al., a 13 miRNA signature was identified in CLL patients with high ZAP70 expression
and the unmutated status of the variable region of the immunoglobulin heavy chain
(IGHV) [158]. Moreover, other studies defined specific miRNA signatures in CLL with
karyotype alterations such as del(13q), trisomy 12, del(17p), and del(11q) [159,161] (Table 2).
In about two-thirds of CLL cases, B-cell proliferation is stimulated by miR-15a and miR-
16-1 downregulation as a consequence of 13q14 deletion; an inverse correlation between
miR-15a/16-1 and the antiapoptotic gene BCL2 expression has been observed, while CLL
cell lines with miR-15a/16-1 downregulation showed an increased BCL2 expression and
resistance to apoptosis. Furthermore, low miR-15a-5p and miR-16-5p levels induce the
upregulation of another target, TP53, that activates the expression of miR-34b-3p and
miR-34c-5p and causes the reduction of ZAP-70 levels, leading to an indolent B-CLL
phenotype [160]. Several miRNAs such as miR-181, miR-30d, and let-7a were differentially
expressed between CLL lymphocytes and CD19+ normal cells [164], whereas another study
revealed a reduced expression of miR-125b in both aggressive and indolent CLL [165].
Other miRNAs frequently involved in CLL and other B-cell malignancies are miR-150, miR-
155, and the miR-17-92 cluster; they regulate the expression of crucial transcription factors
involved in normal or malignant B-cells development [50,166,167]. miR-150 is considered a
lymphopoietic-specific miRNA, as its overexpression inhibits the pro-B to pre-B transition,
probably by targeting forkhead box P1 (FOXP1) and GRB2-associated binding protein
1 (GAB1), an important transcription factor involved in B-cell differentiation [168–170].
miR-155 was found to be overexpressed in both cells and plasma from CLL cases and
resulted to be associated with poor prognosis and disease progression [50]. Therefore,
both miR-155 and miR-150 interfere with B-cells differentiation and are involved in CLL
pathogenesis. A recent study investigated a possible correlation between the miR-155/miR-
150 network and clinical parameters in CLL patients, revealing its association with overall
survival and CLL progression [171]. MiR-17/92 is another oncogenic miRNA with a crucial
role in CLL pathogenesis and progression, being frequently upregulated and targeting
different transcripts as the proapoptotic BCL2L11 and the tumor suppressor PTEN [172].
Moreover, miR-29 was found upregulated in CLL cases compared to healthy individuals
suggesting that it can act as an additional oncomiR; its expression was correlated to that
of TCL1, a known oncogene with a crucial role in aggressive CLL cases. TCL1 induces
AKT activation and inhibits DNA methyltransferases Dnmt3A and Dnmt3B, reducing
DNA methylation in CLL cells [173,174]. MiR-29 family deregulation has been specially
revealed in exosomes from plasma of CLL patients, as mentioned above [51], and could
therefore be employed as a useful biomarker for CLL diagnosis and progression. However,
a recent study showed that all miR-29 family members (miR-29a, miR-29b, and miR-29c)
were consistently downregulated in the CLL microenvironment as a consequence of BCR
activation and seemed to correlate with a significantly shorter overall survival of CLL
patients. Tumor-Necrosis Factor Receptor-Associated Factor 4 (TRAF4) has been identified
as a novel direct target of miR-29s, and higher TRAF4 levels result in downstream NFkB
signaling activation [175]. Finally, some evidence showed that miRNAs could be employed
as suitable biomarkers for assessing response to treatment in CLL patients. It has been
shown that the treatment with “BCR inhibitor” ibrutinib induces the downregulation of
several miRNAs involved in B cell activation, as miR-22, miR-34a, miR-146b, and miR-181b,
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whereas the expression of several target genes including ARID1BATM, HDAC1, CYLD,
FOXP1, IBTK, ARID2, PTEN, and SMAD4 is activated [176]. The therapy with ibrutinib or
idelalisib also seemed to disrupt TRAF4 activation induced by miR-29 deregulation [175].

7. miRNAs as Therapeutic Targets

miRNAs play a crucial role in regulating leukemic stem cells and the pathogenesis
of hematological malignancies. Some evidence showed the crucial role of miRNAs as
regulators of gene expression, biomarkers for diagnosis, prognosis, and progression, as
well as molecules with the potential therapeutic application. Nowadays, miRNAs are
considered promising therapeutic targets in leukemia because their silencing or inhibition
does not interfere with normal HSCs function [177]. The modulation of oncogenic or
tumor-suppressive miRNAs may, therefore, allow the development of novel therapeutic
strategies. Two commonly investigated therapeutic approaches that allow easy modulation
of miRNA levels are miRNA mimics and anti-miRNAs or miRNA-antagomiRs. miRNA
mimics are small RNAs molecules that resemble miRNA precursors and can regulate the
expression of target proteins; they are delivered to cells by synthetic vectors that avoid
degradation and stimulate cellular uptake [178]. Anti-miRNAs are synthetic molecules
complementary to endogenous miRNA that can interfere and inactivate target oncogenic
miRNAs [179]. In AML, overexpression of the tumor suppressor miR-29b in blast cells
was achieved using a nanoparticle-based delivery system and induced the inhibition
of leukemic cell proliferation [180]. As for MM, administering miR-15a/16-1 to in vivo
xenograft models showed a good efficacy, while the employment of miR-34 synthetic
mimics induced apoptosis and the inhibition of MM cells in vitro [181]. MiR-16-5p mimics
or lentiviral vectors were also employed in different CLL studies performed on mouse
models to restore miR-15a-5p and miR-16-5p expression levels, showing B-cell cycle arrest,
decreased cell viability, or induction of apoptosis [182,183]. Moreover, an in vitro synergetic
action of miR-16-5p mimics and different chemotherapeutic agents was observed in the
induction of apoptosis [182]. The use of lentiviral vectors for the in vivo restoration of
miR-15a-5p and miR-16-5p seemed to produce low systemic toxicity and few off-target
effects [183]. Another example of miRNA therapy in CLL is represented by miR-181a-5p
and miR-181b-5p mimics that induce a significant increase in apoptosis when transfected
in leukemic B cells from patients with wild type TP53 and reduce leukemic cell expansion
by inhibiting TCL1A, AKT, and phosphorylated ERK1 and ERK2 [184]. An example of a
miRNA inhibitor currently in phase 1 clinical trial is MRG-106, a miR-155 inhibitor, now
being tested in CLL, diffuse large B-cell lymphoma (DLBCL), and adult T-cell leukemia
(NCT02580552). Another anti-miRNA is represented by antagomiR-17-5p that has been
in vitro administrated to MEC-1 cells, significantly reducing miR-17-5p expression levels
and cell proliferation and showed efficacy in tumor growth inhibition when injected
in immunodeficient mice [185]. Interestingly, oncogenic miRNAs such as miR-22, miR-
34a, miR-146b, and miR-181b were shown to be significantly decreased in response to
therapy with ibrutinib in CLL patients. Knockdown of endogenous miR-34a and miR146b
by anti-miRs strategy stimulated tumor suppressors transcription and inhibition of cell
proliferation, confirming that these miRNAs target a subset of the tumor suppressor
transcripts that were upregulated in response to ibrutinib [176]. As for the in vivo delivery
of miRNA mimics and antagomiRs, besides lentiviral systems, antibody-based strategies
have also been proposed by conjugating the selected miRNA with antibodies specific for
characteristic markers of leukemic cells; these kinds of “vehicles” have been addressed to
CD38 and ROR1 antigens expressed on the surface of leukemic B-cells [186,187]. A novel
system based on lipid nanoparticles conjugated with an anti-CD38 monoclonal antibody
has shown to be highly efficient in transferring miRNAs into leukemic cells, with miR-
26a being the most effective in stimulating cell apoptosis [187]. The targeted delivery of
miR-29b to ROR1-expressing CLL cells in vivo resulted in enhanced B-cells survival and
reduced cell cycle deregulation [186].
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However, miRNAs-based therapeutic approaches should be considered cautiously,
accurately selecting the miRNAs to target, as some miRNAs can be oncogenic or tumor-
suppressive in different conditions. For example, miR-125b affects tumor suppressors in
many solid tumors and is an oncomiR in hematologic malignancies [188,189]. Moreover,
the mechanism of miRNAs regulation and function has not yet been completely clarified;
therefore, the development of miRNA-based treatment strategies should be carefully
evaluated to guarantee the safe use of miRNAs therapy in the clinic. In conclusion, more
efforts are required to improve miRNA-based therapy specificity and test their efficacy in
combination with conventional approaches, avoiding toxicities and off-target effects.

8. Conclusions

Increasing evidence shows that miRNAs have a role as potential biomarkers in
leukemia, allowing a better subtype classification, prognostic stratification, and predicting
the response to treatment. An ideal biomarker should have a specific expression in patients
compared to normal controls, should allow early diagnosis and minimal residual disease
monitoring during the follow-up, with a possible non-invasive, simple and accurate detec-
tion method. About this, miRNAs can be extracted and analyzed from peripheral blood
or bone marrow cells of leukemia patients, while circulating miRNAs can be examined
by non-invasive methods based on liquid biopsy analysis and usually show expression
profiles overlapping with neoplastic cells (Figure 1). To date, a large number of studies
have identified different, but not always overlapping miRNAs as putative biomarkers
in the same leukemia subtype, often producing contrasting data. Several miRNAs are
frequently dysregulated in leukemia, such as the miR-29, let-7, and miR-15a/miR-16-1
clusters (Figure 2). Among the most frequently altered miRNAs, increasing studies show
that miR-155 is involved in the pathogenesis of different myeloid and lymphoid leukemia
and may be a useful putative biomarker for liquid biopsies analysis.
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