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Risk prediction models can translate genetic association findings for clinical

decision-making. Most models are evaluated on their ability to discriminate, and the

calibration of risk-prediction models is largely overlooked in applications. Models that

demonstrate good discrimination in training datasets, if not properly calibrated to produce

unbiased estimates of risk, can perform poorly in new patient populations. Poorly

calibrated models arise due to missing covariates, such as genetic interactions that may

be unknown or not measured. We demonstrate that models omitting interactions can

lead to increased bias in predicted risk for patients at the tails of the risk distribution;

i.e., those patients who are most likely to be affected by clinical decision making. We

propose a new calibration test for Cox risk-prediction models that aggregates martingale

residuals for subjects from extreme high and low risk groups with a test statistic maximum

chosen by varying which risk groups are included in the extremes. To estimate the

empirical significance of our test statistic, we simulate from a Gaussian distribution

using the covariance matrix for the grouped sums of martingale residuals. Simulation

shows the new test maintains control of type 1 error with improved power over a

conventional goodness-of-fit test when risk prediction deviates at the tails of the risk

distribution. We apply our method in the development of a prediction model for risk

of cystic fibrosis-related diabetes. Our study highlights the importance of assessing

calibration and discrimination in predictive modeling, and provides a complementary tool

in the assessment of risk model calibration.

Keywords: calibration tests, cox proportional hazards model, extreme risk, goodness-of-fit, prediction

1. INTRODUCTION

Genome-wide association studies have been very successful in identifying genetic contributors
to disease (Welter et al., 2014). Following discovery and validation, it is desirable to determine
whether these genetic findings translate to biomarkers that can be clinically useful (e.g., for disease
prognosis).

Two important measures of predictive performance of a risk-prediction model are
discrimination and calibration (Harrell, 2001; Moons et al., 2012). Discrimination measures how
well model-estimated risks translate to patient outcomes, where patients grouped according to
higher predicted risk should demonstrate higher event rates than patients in lower risk groups.
Calibration is a measure of how closely the estimated and observed absolute risks agree, where
miscalibrated models lead to biased estimates of risk. Both measures are important for model
validation in both training (internal) and external datasets, however, calibration is rarely reported
in risk prediction studies (Collins et al., 2014). Even if a new prediction model discriminates
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well in a training dataset, if good calibration is not also achieved
it can perform poorly in a new patient population. With the large
cost and effort involved in obtaining external datasets for model
validation, goodmodel calibration should be demonstrated in the
training set prior to collection of a second, independent sample.

The Cox proportional hazards (PH) model is a commonly
used modeling technique for the analysis of time-to-event data.
In the clinical setting, a Cox model can be used as a prediction
tool to estimate an individual’s relative (or absolute) risk of
developing disease. Typically, a risk score is obtained as the
linear predictor from the fitted Cox model. Patients can then
be classified into risk groups to help inform clinical decisions.
Methods to assess various aspects of the fit of a Cox model
generally involve examination of plots of martingale residuals
or their transforms (Schoenfeld, 1982; Barlow and Prentice,
1988; Therneau et al., 1990; Lin et al., 1993). Patterns in these
plots can be challenging to identify in the presence of even
moderate censoring, and thus, smoothers are typically applied
as a visual aid. These smoothers can be useful in identifying
trends, but give the impression of too little variation and
therefore complementary formal testing is needed (Kalbfleisch
and Prentice, 2002). Various calibration or goodness-of-fit (GOF)
tests have been proposed in the Cox model setting, most of which
can be characterized as variations of the Hosmer-LemeshowGOF
test for binary data (Hosmer et al., 1997). These methods assess
the agreement between observed and expected risk across all risk
levels, and therefore reflect a global assessment of lack of fit.
Gronnesby and Borgan (1996) used counting process notation to
derive a score (GB) test using the sums of martingale residuals
across risk group deciles. The GB test is similar to the Hosmer-
Lemeshow test since the martingale residuals correspond to the
observed minus expected number of events for each subject.
D’Agostino and Nam (2003) proposed a test comparing the
average risk predictions with the observed Kaplan-Meier (K-M)
failure probabilities across the deciles. This approach ignores
censoring, however, leading to an incorrect variance estimate
with increased instability for increased censoring (Crowson
et al., 2016). Demler et al. (2015) proposed to use the robust
Greenwood variance estimators of the K-M failure probabilities
to improve performance of the testing procedure. While this
approach maintains correct type 1 error control, it demonstrated
comparable or lower power against the GB test under their
simulation examples for model misspecification.

Clinical decisions about treatment and monitoring are most
often made for patients at the extremes of the risk distribution
(high or low). Therefore, accuracy of their predicted risks are
a priority. While the available calibration tests for survival data
have been shown to perform reasonably well as global tests, their
power will be limited in detecting deviations in predicted risk
at the extremes of the risk distribution where the proportion of
subjects is small. Song et al. (2015) developed a method to test
calibration of risk models at extremes of disease risk for binary
outcomes. Their work was motivated by deviations between
observed and expected risk near the tails of the risk distribution
due to misspecification of either additive or multiplicative effects
of the covariates on the risk. The Cox model also assumes
that the effects of the covariates on the hazard rate (HR) are

multiplicative, which may or may not be reasonable (Weinberg,
1986), and could result in bias in the expected hazard rate at the
extremes of risk.

Genetic interaction (gene-gene and gene-environment) can
contribute to complex traits. Many of these interactions remain
unknown and are a challenge to model directly (Soave et al.,
2015). Here we show that working models omitting relevant
interactions are also likely to produce biased estimates of risk at
the extreme tails of the population risk distribution.

Following the martingale theory used by Gronnesby and
Borgan (1996), we propose a new calibration test for Cox models,
that has improved power to detect biased risk estimates at the
tails of the risk distribution. Our test aggregates martingale
residuals for subjects from extreme high and low risk groups
with a test statistic maximum chosen by varying which risk
groups are included in the extremes. An estimate of the empirical
significance of our test statistic is obtained by simulating
from a Gaussian distribution using the covariance matrix for
the grouped sums of martingale residuals. We describe and
demonstrate how to implement our method using existing
software. We conduct an extensive simulation study that shows
the extreme risk (ER) test maintains good control of type 1 error
and demonstrates improved power over the GB test when risk
estimates are less accurate at the tails of the risk distribution. We
consider scenarios where interaction effects are missing from the
workingmodel and themultiplicative risk assumption is violated.
The ER test is complementary to existing global methods for
examining risk model calibration.

2. MODEL AND TEST PROCEDURES

For simplicity, we consider fixed time covariates, and right
censoring of event times. For an independent sample of size
n, let each individual i have a px1 vector of fixed covariates,
zi = (zi1, . . . , zip)T . Let Ti and Ci be the event/failure time and
censoring time, respectively for individual i, and only the earlier
of the two times is observed. Following the counting process
notation of Andersen et al. (1993), we observe Yi(t) and Ni(t) at
each time t, where Yi(t) = I(Ti ≥ t,Ci ≥ t) is the at risk indicator
and Ni(t) counts the number of observed events for individual i
until time t. We assume that an event can occur only once for
each individual. Thus, for each individual i, we observe a follow-
up time xi = min(Ti,Ci) and an indicator of whether an event
occurred prior to censoring δi = I(Ti ≤ Ci). Under the Cox PH
model, the intensity process hi(t; zi) for Ni(t) can be written as

hi(t; zi) = h0(t)exp(β
T
zi)Yi(t), (1)

where h0(t) is the baseline hazard function, β is a px1 vector of
regression parameters and βT

zi is the risk score for individual i.

2.1. Gronnesby and Borgan (GB) Test
The GB test is based on martingale residuals, which are estimated
for each individual at time t as

M̂i(t) = Ni(t)−

∫ t

0
Yi(u)exp(β̂

T
zi)dΛ̂0(u), i = 1, . . . , n,
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where

Λ̂0(u) =

∫ t

0

dN∗(u)
∑n

l=1 Yl(u)exp(β̂
T
zl)

is the Breslow estimator (Breslow, 1972) of the baseline
cumulative intensity process, and N∗(u) =

∑n
i=1 Ni(t). We

denote the estimated martingale at time t = ∞ as M̂i(∞) = M̂i.
For the GB test, the data are divided into D groups based on

their estimated risk score, r̂i = β̂
T
zi, from the fitted Coxmodel of

Equation (1). The martingale residuals are then summed within
each group,HJd =

∑
i KdiM̂i, whereKdi = I(̂riǫJd) is an indicator

for whether the risk score of the ith observation is in the risk
score interval for the dth group, Jd, d = 1, . . . ,D. If the model
fit is good [i.e., model (Equation 1) holds], HJd should be close
to zero for each group, andH = (HJ1 , . . . ,HJD−1 )

T converges to a
mean zero multivariate Gaussian random vector (Gronnesby and
Borgan, 1996). Therefore, the GB procedure uses the following
test statistic:

T = (HJ1 , . . . ,HJD−1 )Σ̂
−1(HJ1 , . . . ,HJD−1 )

T ,

where Σ̂ is an estimate of the covariance matrix of H. When
model (Equation 1) holds, T is asymptotically distributed as
χ2
D−1. Note that one of the group-wise martingale sums is

omitted for model identifiability since
∑

HJd = 0.
May and Hosmer (1998) showed that the GB test is

algebraically equivalent to a score test of D − 1 risk group
indicator variables, Ki = (K1i, . . . ,K(D−1)i), in the Cox model
(Equation 1). Thus, the GB test is equivalent to the following
two-stage procedure:

Stage 1.1. Obtain the estimated risk score r̂i for each subject
from the Cox regression fit of model (Equation 1).

Stage 1.2. Divide the subjects into D groups based on the
ordered risk score estimates, and specify group
membership for each subject using the group
indicator covariate vector, Ki.

Stage 2. Test for association with the indicator vector Ki in
the full model,

hi(t; zi,Ki) = h0(t)exp(β
T
zi + γ T

Ki)Yi(t). (2)

In this framework, the GB procedure is a score test of the null
hypothesis that γ = 0. The GB test now simplifies to fitting two
standard Cox models with existing software.

2.2. Extreme Risk (ER) Test
The GB test is a global test of the model fit across the
entire distribution of estimated risk scores. However, it may be
desirable to focus additional attention at the extreme tails of the
risk distribution where patients are more likely to be affected
(positively or negatively) by clinical decisions. We propose a
modification of the GB test to improve the power to detect model
bias in risk prediction at the extremes of the risk distribution.
This work is motivated by a recently proposed calibration test
at extremes of disease risk for binary risk models (Song et al.,
2015) and by recognition that risk-prediction models omitting

relevant genetic interactions will increase bias in risk estimates at
the extremes (section 3).

Again, suppose the data are divided evenly into D groups
based on the estimated risk scores, as described above for the GB
test. For a given pair of thresholds, c = (cl, cu), defining a set of
“extreme” risk score groups, Rc = (J1, . . . , Jcl ) ∪ (Jcu , . . . , JD), we
propose the following test statistic

Tc =

D∑

d=1

(HJd )
2I(JdǫRc).

This test statistic is observed to be the sum of the squared
group martingales sums, over only those groups contained in the
extreme risk set, Rc. We do not incorporate the covariance matrix
Σ̂ in the definition of Tc but instead use it in a Monte Carlo
simulation procedure as outlined below.

The motivation for the ER test arises from the departures
detected at the tails of the risk distribution. However, specifying
which groups should belong to the extreme risk set is arbitrary.
The risk set should not be chosen by first looking at the data
as this sort of adaptive procedure will lead to incorrect type 1
error control. Therefore, we propose taking our ER test statistic
to be the maximum of a scaled version of Tc, over all possible risk
group sets (Song et al., 2015), Tmax = maxc(T̃c/nc), where nc is
the number of groups included in Rc and T̃c is constructed using
H̃, a scaled transformation of H such that each component has
mean 0 and variance 1. In this way, Rc is chosen as a series of
equally balanced groups beginning at both ends of the group list
[i.e., c = (c1, cD), (c2, cD−1), (c3, cD−2), . . . etc.].

Under model (Equation 1), Gronnesby and Borgan (1996)
derived explicit formulas for estimating the covariance matrix of
H, Σ̂ . To achieve model identifiability, and estimate Σ̂ , the GB
test arbitrarily omits the martingale sum for group D, HJD , from
H. The ER test also requires estimation of Σ̂ , however, the focus
is on detecting departures from the null hypothesis in the tails of
the distribution. Thus we redefineH by omittingHJD/2 , whenD is
even, and HJ(D+1)/2 , when D is odd, resulting in direct estimation

of the covariance Σ̂ for all groups except the median.
Next, H and Σ̂ are scaled to be H̃ and Σ̃ , such that Σ̃ is

a correlation matrix. Unfortunately, the distribution of the test
statistic Tmax is intractable. However, with Σ̃ available, we can
simulate realizations of H̃ (and correspondingly T̃c from each
of the defined risk group sets, Rc). Therefore, we propose the
following steps to estimate the empirical p-value of the ER test,
P(Tmax ≥ tmax), where tmax is the observed value of Tmax, using
simulations as follows.

1. Generate a new realization of H̃ from amean zeromultivariate
Gaussian distribution with covariance matrix Σ̃ , and calculate
a new value for the test statistic, tmax

s .
2. Repeat Step 1 R (Replicate) times, to create a simulated “null"

distribution for Tmax.
3. Estimate the p-value, P(Tmax ≥ tmax), empirically as the

proportion of simulation replicates where the simulated tmax
s

is greater than the observed tmax.
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2.3. Implementing the ER Test Using
Existing Software
Software packages generally estimate the regression coefficients,
(β , γ ), for a Cox model (Equation 2) by maximizing the log-
partial likelihood

l(β , γ ) =
n∑

i=1

δi

[
βT

zi + γ T
Ki

− log

(
n∑

l=1

exp(βT
zl + γ T

Kl)Yl(xi)

)]
.

May and Hosmer (1998) showed that the partial likelihood score
vector for γ under γ = 0 and β = β̂γ=0 corresponds to the
vector of risk group sums of martingale residuals,H. That is,

∂ l(β, γ )

∂γ

∣∣∣∣ γ=0

β=β̂

= H.

Therefore, we can extract an estimate of the covariance matrix of
H from the observed information as

Σ̂ = (J̃γ γ − J̃γβ J̃
−1
ββ J̃βγ ),

where

J̃ =

(
Jββ Jγβ

Jβγ Jγ γ

)∣∣∣∣ γ=0

β=β̂

and Jβγ =
∂ l(β, γ )

∂β∂γ T
.

Although not directly available as output from the coxph()
function in the “survival" R software package (R Core Team,
2016), Σ̂ can be obtained as follows (Web Appendix A in
the Supplementary Materials provides example R code for this
procedure).

1. Fit a Cox model corresponding to model (Equation 1) using
coxph() to obtain estimates of the coefficients, β̂ .

2. Substitute these fixed estimates for β in a Cox model
corresponding to model (Equation 2) while also specifying
γ = 0; coefficients can be fixed in a coxph() fit by specifying
“iter.max=0”.

3. Use the vcov() function to return the inverse of the observed
information, Ĩ, and obtain Σ̂ by taking the inverse of the
submatrix with rows and columns corresponding to γ .

Obtaining Σ̂ in this way allows one to avoid explicit specification
of the formulas for Σ̂ in Gronnesby and Borgan (1996). We can
now simulate values of the grouped martingale sums, under the
assumption of a correct model (Equation 1), and implement the
ER test according to section 2.2.

2.4. Grouping Strategy-Choosing D and
Dealing With Sparse Vents Within Risk
Groups
Typically, a sample is stratified into 10 risk groups for the GB
test. This convention is consistent with implementation of the
Hosmer-Lemeshow test for binary data (Hosmer et al., 1997)
and has been shown to yield good statistical properties for the

GB test with samples sizes of 500 (May and Hosmer, 2004). We
considered sample sizes of 5,000 and 1,500 in our simulation
study, assuming that genetic markers individually contribute
small effects to clinical outcomes. For implementation of both
the GB and ER tests we use D = 11. The odd number of
groups ensures that when the median group is omitted (as the
reference group) from the simulation algorithm of the ER test,
there is always a balanced number of upper and lower risk groups
included in Tc, for all values of the threshold, c.

A second convention for application of the Hosmer-
Lemeshow test is the “no less than 5” events rule, directing
that successive groups be collapsed based on a minimum of
five expected events per group. Examination of this grouping
convention for the GB test generally supports its application,
although it may be conservative (May and Hosmer, 1998, 2004;
Parzen and Lipsitz, 1999). For estimates of the expected number
of events within the risk groups, we take the sum of the Cox-Snell
residuals. The Cox-Snell residual corresponds to the second term
in the martingale residual at t = ∞,

∫
∞

0
Yi(u)exp(β̂

T
zi)dΛ̂0(u), i = 1, . . . , n.

We compared our results with and without application of the ‘no
less than 5’ events rule, and denote the corresponding GB and ER
tests by GBadj and ERadj.

3. SIMULATIONS

We conducted a simulation study to evaluate the performance
of the ER test and compared it with the conventional GB test.
To emulate calibration testing for risk-prediction models using
genetic and environmental factors, we simulated 5 or 10 single
nucleotide polymorphism (SNP) genotypes (G = 0, 1, or 2), one
evnironmental exposure variable (E = 0, or 1), and event times (t
in years) for each subject according to the Weibull hazard

hi(t;Gi) = h0(t)exp(g(β ,Gi,Ei)), (3)

where h0(t) = λαtα−1 is the baseline hazard, α is the shape
parameter and λ is the scale parameter. The function g(·)
specifies the model for the joint risk of the disease associated
with the genotype-covariate vector Gi, exposure variable Ei, and
corresponding effect coefficients, β . We will use the notation
g0·(·) and gA·(·) in (Equation 3) to specify various forms
of the null (working) and alternative (true) hazard models,
respectively. Each Gij was simulated under Hardy-Weinberg
equilibrium from a Binomial distribution to reflect the number
of minor alleles (0,1,2) with minor allele frequency (MAF)
30% at each SNP j = 1, . . . , p, for each subject i =

1, . . . , n. All event times greater than 10 years were treated as
censored at 10 years (administrative censoring). In addition,
event times were uniformly censored prior to 10 years at a 0
or 50% censoring rate for different scenarios (lost to follow-up
censoring). We considered sample sizes of n = 5,000 and 1,500.
Type 1 error and power were assessed at the 0.05 significance
level using 10,000 and 1,000 simulation replicates, respectively.
To estimate the p-value for each ER test statistic, we used
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R = 1, 000 replicate simulations, which provided sufficient
precision for the 0.05 significance threshold. Table 1 provides
an outline of the simulation (and working) models used for
power comparisons with the corresponding results figures. We
chose to use small to moderate main effects for G that might
be plausible for polygenic risk prediction models invovling
complex traits. We also considered alternative effect sizes to
those described in Table 1 and throughout the simulations, and
obtained qualitatively similar comparisons between the ER and
GB tests (results not shown).

3.1. Type 1 Error Control of the ER Test
To assess the type 1 error of our ER test, we simulated data
from (Equation 3) under the null model (Equation 1) using
g01(β ,Gi) =

∑p
j= 1 βGjGij, and then fit a corresponding Cox

model of the same form. We used a fixed βGj across all SNPs of
log(1.2) and log(1.15) for the models with p = 5 and 10 SNPs,
respectively. We specified α at 1, 3 and 0.3, corresponding to a
constant, increasing and decreasing baseline hazard, respectively.
Under each scenario, λ was chosen such that the event rate
prior to 10 years, in the absence of censoring, was 5%, 10% and
20%. For each simulation replicate we tested the Cox model for
lack-of-fit using the ER and GB tests.

The proposed ER test maintained good control of type 1
error across all simulation scenarios for both the 5-SNP and 10-
SNP models with constant, decreasing and increasing hazards
(Table 2, Web Tables 1, 2 in the Supplementary Materials,
respectively). Collapsing of groups based on the ‘less than 5’
expected events rule rarely occurred in the simulations with n =

5,000. For the simulations with n = 1,500, collapsing occurred
more frequently, however, type 1 error results were similar for
ERadj and GBadj (Web Table 2 in the Supplementary Materials)
compared to the unadjusted ER and GB, respectively.

Traditional application of the GB test compares the test
statistic (T in section 2.1) to the χ2

D−1 distribution to obtain a
p-value. Simulation based p-value estimates for GB similarly to
the ER test method are also possible. We compared the type 1
error and power between the asymptotic and simulation based
methods for GB and found the results to be very similar. Thus,
we report only the results of GB based on the asymptotic p-value
estimates.

3.2. Power of the ER Test Under
Misspecified Models-Missing Interactions
To examine the power of the ER test to detect model
misspecification due to missing interactions, we simulated data
from (Equation 3) with the addition of an exposure, E, that
interacted with one or more of the covariates, gA1(β ,Gi,Ei) =∑p

j= 1 βGjGij + βEEi +
∑p

j= 1 βGjEGijEi. We then fit a Cox model

corresponding to (Equation 3) that included the main effect of
E but omitted the interactions, g02(β ,Gi,Ei) =

∑p
j= 1 βGjGij +

βEEi, as well as one that completely ignored the presence of
the exposure, g01(β ,Gi). This may be a common occurrence
as interacting exposures are often unknown to researchers.
Each Ei was a binary (0,1) variable simulated from a Bernoulli
distribution with frequency 0.3; smaller frequencies were also
evaluated (0.2 and 0.1) but led to similar conclusions (results

not shown). We used a fixed βGj of log(1.15) across all SNPs for
the model with p = 10 SNPs. The main effect of the exposure,
βE, was also fixed at the same value as the βGj . We specified α

at 1, corresponding to a constant baseline hazard. Under each
scenario, the event rate prior to 10 years was 20% in the absence
of censoring. To examine the empirical power, we varied a single
exposure effect common to all interactions in the model, βGjE,
across all scenarios.

We expected that data simulated under gA1 and fit using
a Cox PH model with g01 or g02 would show increased
deviation in observed vs. expected risk at the extremes of the
subject risk distribution. Figure 1 demonstrates the deviation
between observed and predicted survival probabilities across the
population risk distribution for the missing interaction scenario.

Empirical power results from the fitted models that included
the main effect of E but omitted the interaction effect(s), g02,
are presented in Figure 2 (n = 5,000) and Web Figure 1 in the
Supplementary Materials (n = 1, 500) for the data simulated
with 1 and 10 interactions between G and E. For both scenarios,
the power of the ER and GB tests increased as the size of the
omitted interactions increased. The ER test appeared to show
an increase in power over GB for both the single and multiple
(10) SNP-interaction models with 0% or 50% lost to follow up
in the samples, for much of the range of the interaction effect,
βGjE. The GB test showed a slight advantage for some of the larger
interaction effect sizes considered.

Results from the fitted models that completely omitted E
(both main effect and interactions), g01, are presented in Figure 3
(n = 5, 000) and Web Figure 2 in the Supplementary Materials
(n = 1,500). For data simulated from models including one
interaction between G and E, ER was more powerful than GB.
For the data simulated under 10 interactions, the performance
of the two tests was comparable. When one large interaction
effect exists (say for G1 · E) but is omitted in the fitted model
along with the main effect E, the estimated effect on risk due
to G1 = 1 will be larger (much larger in the case of G1 = 2)
than the estimated effect of the other SNPÕs. Depending on the
minor allele frequency of G1, individuals with either G1 = 0 or
G1 = 2 will be over represented in either the lowest- or highest-
risk groups, respectively, and contribute less stable martingale
residuals to their risk group (larger in absolute value). On the
other hand, when smaller interaction effects exist for each SNP,
but are omitted, the bias that is introduced is likely to be spread
across more risk groups, reducing the improvement observed for
the ER test.

To demonstrate the usefulness of the ER test beyond models
using only genotypes as predictors, we considered scenarios
involving covariates from a standard Gaussian distribution.
For this scenario, we simulated data under (Equation 3)
using gA3(β ,Zi) = βZ1Zi1 + βZ2Zi2 + βZ1Z2Zi1Zi2, where
Zi1,Zi2 ∼ N (0, 1), and βZj was fixed at log(1.15) for both
covariates, and βZ1Z2 was varied. We then fit a Cox model
(Equation 3) that omitted the interaction term, using g03(β ,Zi) =
βZ1Zi1 + βZ2Zi2, to examine the empirical power to detect the
model misspecification. Similar to the SNP risk model examples,
we expected that data simulated under gA3 and fit using a Cox PH
model with g03 would show increased deviation in observed vs.
expected survival at the extremes of the subject risk distribution
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FIGURE 1 | Log-log survival probability [t = 10 years] versus cumulative number of risk variants under missing interaction models. Time to event data were simulated

under model (Equation 3) using gA1 with 10 SNPs (MAF=0.3 for each) and (A) one interaction with E (gA1(β,Gi ,Ei ) =
∑10

j= 1 1.15Gij + 1.15Ei + 10Gi1Ei ) or (B) ten

interactions with E (gA1(β,Gi ,Ei ) =
∑10

j= 1 1.15Gij + 1.15Ei +
∑10

j= 1 1.35GijEi ). Cox models were fit using the null model g02(β,Gi ,Ei ) =
∑10

j= 1 βGj
Gij + βEEi to

estimate survival probabilities at time t=10 years (Ŝi (t) = Ŝ0(t)
exp(

∑10
j=1 β̂Gj

Gij+β̂EEi )
), which were then averaged by risk group (defined by cumulative number of risk

variants) (solid line - predicted survival). Observed survival probabilities (dashed line - observed survival) were obtained from a Cox model comparing patients in each

risk group with the reference group. The reference group was the subset of individuals with 6 risk alleles; the mean number of risk alleles from the 10-SNP model. The

distribution of subjects per number of risk alleles is shown as a density curve. Survival probabilities estimated for other time points (t < 10 years) yielded similar results.

FIGURE 2 | Power of tests under missing interaction models g02. Power of the ER (solid line) and GB (dotted line) tests when GxE interaction terms are missing from

the fitted Cox model (3), but exposure E is included, using g02. n = 5000 for the 10-SNP model with one interaction (A,B) or ten interactions (C,D) in the underlying

true model gA1, and either 0% (A,C) or 50% (B,D) lost to follow-up censoring.
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TABLE 1 | Outline of simulation study and results figures for power comparisons.

Generating model Working model Parameter values Results tables Conclusions

Missing Interactions (Categorical Covariates) - section 3.2

g01(β,Gi ) =
∑p

j= 1 βGj
Gij n = 5,000, p = 10 Figure 2 ER showed increased power over GB for

n = 1,500, p = 10 Web Figure 1 in the

Supplementary Materials

most models considered, however, GB

showed a slight advantage for some of the

gA1(β,Gi ,Ei ) =
∑p

j= 1 βGj
Gij larger interaction effect sizes.

+βEEi +
∑p

j= 1 βGjE
GijEi g02(β,Gi ,Ei ) =

∑p
j= 1 βGj

Gij + βEEi n = 5,000, p = 10 Figure 3 For data simulated under one interaction,

n = 1,500, p = 10 Web Figure 2 in the

Supplementary Materials

ER was more powerful than GB. For data

simulated under 10 interactions, the two

tests performed comparably.

Missing Interactions (Continuous Covariates) - section 3.2

gA3(β,Zi ) = βZ1Zi1 + βZ2Zi2 g03(β,Zi ) = βZ1Zi1 + βZ2Zi2 n = 5,000, p = 10 Figure 4 ER demonstrated a noticeable power

+ βZ1Z2Zi1Zi2 n = 1,500, p = 10 Not Shown increase over GB.

Additive Effects - section 3.3

gA4(β,Gi ) = log(1+
∑p

j= 1 βGj
Gij ) g01(β,Gi ) =

∑p
j= 1 βGj

Gij n = 5,000, p = 5 Figure 5 ER was more powerful than the GB to

n = 5,000, p = 10 Web Figure 5 in the

Supplementary Materials

detect departures from the multiplicative

model.

Event times were simulated under the Weibull hazard model (Equation 3), hi (t;Gi ) = λαtα−1exp(g(β,Gi )) with a constant baseline hazard, α = 1, and λ chosen to provide a 20% event

rate by time t = 10(years) in the absence of censoring. The function g(·) specifies the model for the joint risk of the disease associated with the genotype-covariate vector Gi and

corresponding effect coefficients, β. Simulation results were grouped into figures by sample size (n) and number (p) of covariates (G or Z). See section 3 for complete simulation details.

TABLE 2 | Type-1 error of tests for constant baseline hazard.

Event rate p = 5 p = 10

0% censoring 50% censoring 0% censoring 50% censoring

GB ER GB ER GB ER GB ER

n = 5,000

0.05 0.049 0.048 0.050 0.049 0.053 0.056 0.054 0.046

0.1 0.050 0.052 0.053 0.050 0.054 0.052 0.052 0.054

0.2 0.052 0.049 0.052 0.051 0.048 0.049 0.052 0.05

n = 1,500

0.05 0.050 0.046 0.054 0.052 0.049 0.046 0.053 0.052

0.1 0.051 0.052 0.048 0.045 0.053 0.049 0.051 0.050

0.2 0.051 0.050 0.052 0.052 0.055 0.052 0.057 0.054

Event times simulated under the Weibull hazard model (Equation 3) with g01 for a constant baseline hazard, α = 1, with p = 5 or 10 covariates (genotypes). Empirical size is presented

for the Gronnesby and Borgen test (GB) and the proposed Extreme Risk test (ER). The empirical type 1 error was estimated from 10,000 simulated replicates at the nominal 5% level.

(Web Figure 3 in the Supplementary Materials). The results
showed a noticeable power increase in ER over GB for this
scenario (Figure 4).

As demonstrated in Web Figure 3 in the Supplementary
Materials, predicted risk can be highly sensitive to quadratic
effects (e.g., interaction terms) of normally distributed covariates.
As an example, patients with large negative values for both Z1
and Z2 will be predicted to have low risk from a fitted model
with positive estimated main effects. However, if a large positive
interaction effect is omitted from the model, the actual observed
risk will be much higher resulting from the product of the
two negative values. This contributes to the more significant
improvement of ER over GB with Gaussian covariates compared
to categorical ones.

3.3. Power of the ER Test Under
Misspecified Models-Additive Covariate
Effects on the HR
Similar to Song et al. (2015), we examined the power of the
ER test to detect model misspecification due to additive effects
on the hazard. For this, we simulated data from (Equation 3)
with gA4(β ,Gi) = log(1 +

∑p
j= 1 βGjGij); it’s easy to see that

this corresponds to additive effects for a fixed baseline hazard,
h0(t). We then fit the corresponding Cox model for (Equation
3) with g01, which assumes a multiplicative effect of G on
the hazard. We expected that the deviation from the assumed
model of multiplicative effects on the HR would show increased
deviation in observed vs. expected survival in the extremes of
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FIGURE 3 | Power of tests under missing interaction models g01. Power of the ER (solid line) and GB (dotted line) tests when main effect of E and GxE interaction

terms are missing from the fitted Cox model (3), using g01. n = 5,000 for the 10-SNP model with one interaction (A,B) or ten interactions (C,D) in the underlying true

model gA1, and either 0% (A,C) or 50% (B,D) lost to follow-up censoring.

the subject risk distribution (Web Figure 4 in the Supplementary
Materials).

We simulated data with a fixed βGj across all SNPs so that
the marginal HR for each SNP in the fitted Cox model would
range between 1 and 1.2, and between 1 and 1.4, for models
with p = 10 SNPs and 5 SNPs, respectively. We specified α

at 1, corresponding to a constant baseline hazard. Under each
scenario, we fixed the event rate prior to 10 years at 20 and 50%
in the absence of censoring.

Simulation results demonstrated that the ER was more
powerful than the GB to detect departures from themultiplicative
model when the truemodel was additive under the 5-SNP and 10-
SNP models (Figure 5 and Web Figure 5 in the Supplementary
Materials, respectively).

4. APPLICATION TO CYSTIC
FIBROSIS-RELATED DIABETES

Cystic Fibrosis (CF) is a life-limiting recessive genetic disorder
caused by mutations in the CF transmembrane conductance
regulator (CFTR). CF affects multiple organs including the
pancreas. As CF patients with severe CFTR mutations age,

there is an increased risk of CF-related diabetes (CFRD), with
a prevalence of 40% by the fourth decade of life (Moran
et al., 2009). Uncontrolled CFRD is associated with muscle loss
and declining lung function, which can be prevented by early
detection and treatment. Models that predict CF individuals at
high risk of developing CFRD could enable targeted surveillance
programs with more frequent glucose monitoring so that CFRD
is diagnosed early.

Multiple genetic factors, beyond CFTR, have been shown to
contribute to CFRD including Type 2 diabetes susceptibility
genes (Blackman et al., 2013) and CF-specific modifier genes (Li
et al., 2014). Age-dependent predictive models (Heagerty et al.,
2000) for CFRD based on genetic markers could be applied at
birth to determine individuals at high risk, potentially benefiting
the length and quality of life for individuals living with CF.
However, if a CFRD risk model is well calibrated globally but
poorly calibrated for the low or high risk groups, we question the
utility of the model.

With CFRD event times based on data from the Canadian
Cystic Fibrosis Gene Modifier Study we build and calibrate
a predictive model for CFRD using a Cox PH model that
includes as predictors six SNPs from six risk genes (coded
additively) in addition to indicator variables for CFTR genotype
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FIGURE 4 | Power of tests under missing interaction models with Gaussian covariates g03. Power of the ER (solid line) and GB (dotted line) tests when interaction

effect of Z1Z2 is missing from the fitted Cox model (3), using g03. n = 5,000 for the 2-covariate model with one interaction in the underlying model gA3, with either 0%

(A) or 50% (B) lost to follow-up censoring. Z1,Z2 ∼ N (0, 1).

FIGURE 5 | Power of tests under additive effect models with 5 SNPs. Power of the ER (solid line) and GB (dotted line) tests for detecting departures from the

multiplicative model with 5 SNPs. Data simulated under additive effects on the HR, gA4, and fit using the multiplicative effects Cox model (3), with g01. n = 5,000 for

the 5-SNP model with event rate 20% (A,B) or 50% (C,D), and either 0% (A,C) or 50% (B,D) lost to follow-up censoring. Gj ∼ Bin(2, 0.3).

severity and sex. Five of the genes (SLC26A9, TCF7L2, CDKAL1,
CDKN2A/B, IGF2BP2) were previously identified in Blackman
et al. (2013) and the sixth gene, PRSS1, encodes the enzyme
cationic trypsinogen which is a biomarker of CFRD at birth
(Soave et al., 2014).

Analysis of 1,330 unrelated CF patients with complete
information on the eight covariates is presented. Details of

data collection, CFRD diagnosis, genotyping, and quality control
procedures are reported elsewhere (Sun et al., 2012; Soave et al.,
2014). Of the 1,330 included in the analysis, 203 patients had a
CFRD diagnosis and the median age in years at last study visit (or
diabetes) was 16.2 (21.6). To illustrate the fit of the model across
the distribution of risks, we plot the observed vs. expected average
absolute risk for each of 11 risk groups stratified according to
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their ordered expected risks (Figure 6). Ideally the points should
cluster around the identity line, and if the model fits the data
well no point should display a large deviation. However, for the
groups with larger expected average risk, the deviations are large
(Figure 6). For patients in the highest risk group, the model
appears to over-estimate risk on average. The p-value for the ER
test for this model is 0.047, whereas, the global GB test calculates
a p-value = 0.2. This discrepancy is not surprising since ER is
designed to have greater power than GB when the bias is greatest
in the tails of the risk distribution.

The observed bias in risk-prediction for these patients,
therefore, gives reason to reconsider the current model. A
number of model fitting issues could contribute to the lack-of-
fit in the tails, as we have demonstrated in this paper. Additional
analyses involving interaction effects, scaling of covariates, and
appropriateness of the multiplicative effects assumption should
be considered.

5. DISCUSSION

The Cox PH model for time-to-event data is straightforward to
implement and does not require specification of a distribution
for survival times. However, the Cox model does make several
strong assumptions that may not be appropriate. Evaluation
of a given model as a prediction tool requires assessment of
both discrimination and calibration. Since the time and cost
to obtain a second independent sample for model validation
may be great, calibration assessment in a training sample can
provide valuable information. Unfortunately, calibration is rarely
reported (Collins et al., 2014).

FIGURE 6 | Observed vs. expected average number of CFRD events across

11 risk groups. Risk groups were defined according to the Cox PH model for

CFRD onset risk with 8 covariates, zi (see section 4 for details). Expected

number of events for each subject was calculated as the estimated cumulative

hazard from the fitted Cox model with 8 covariates, Λ̂i (xi ) = −log(̂Si (xi )), where

Ŝi (xi ) = Ŝ0(xi )
exp(zT

i
β̂). Observed number of events for each subject was

calculated similarly using a Cox model with the risk-group indicator variables

(Ki ) replacing the 8 covariates. Larger deviations from the diagonal line

correspond to larger risk-group sums of martingales. Calibration test results

for ER and GB were p = 0.047 and 0.21, respectively.

The GOF test of Gronnesby and Borgan (1996) has been
proposed as an omnibus test for global lack-of-fit assessment
in Cox models. While this and other GOF methods have been
shown to perform reasonably well as global tests, their power
might be limited to detect bias of predicted risk at the extremes
of the risk distribution where clinical decisions are generally
made. Here, we proposed a new ER calibration test designed to
examine the accuracy of risk predictions for patients at extreme
(high or low) risk to be used alongside existing methods. Due
to its construction, the distribution of the ER test statistic is
intractable, and therefore we demonstrated a simulation method
to estimate empirical significance that can be easily implemented
using existing software.

Model misspecification can result in poorly calibrated risk
estimates that are not detectable from standard GOF tests.
Prediction tools that do not account for important interactions
are likely to produce biased estimates of risk at the extreme
tails of the population risk distribution, and these deviations
should be detectedmore effectively through the proposed ER test.
The simulation examples in section 3.2 indicate that the ER test
could have increased power over the GB test to detect model
misspecification when there are missing interactions. Although
additive models may be a more natural starting point because
they correspond to simple independent effects on the underlying
risk factors (Weinberg, 1986), they are rarely implemented due
to less convenient statistical properties. Similar to the logistic
regression model (Song et al., 2015), model misspecification of
the Cox model due to the assumption of multiplicative effects
can also create bias at the extremes of the risk distribution.
We observed that an incorrect multiplicative effects assumption
in the Cox model can lead to dramatically underestimated
survival probabilities for both extreme high and low risk groups
when the underlying effects are additive (Web Figure 4 in the
Supplementary Materials). In section 3.3, we showed that the ER
test has advantages over the GB test in detecting the resulting bias.

We recognize that among competing calibration tests for
time-to-event data, no single test will be most powerful for
detecting lack-of-fit in all situations. Certainly, for model
misspecification that results in bias over much of the range
of estimated risks, the GB test should demonstrate greater
power over a “max” test that simultaneously considers multiple
subgroups of the data, such as the ER test. In section 3.2, we
observed that the GB test slightly outperformed the ER test when
very large interaction effect(s) were omitted from the working
model but all main effects were included. This is likely because
the larger interaction effects, when omitted, create deviations in
predicted vs. observed risk over more of the risk distribution
range, not just in the tails. In light of this, we recommend that
our test should be thought of as a complementary tool when
examining calibration of a risk model. Such an assessment should
include visual inspection of a calibration plot similar to Figure 6

that can also be useful in explaining situations where the ER and
GB tests give contradictory results.

Based on the convention for collapsing groups with fewer
than 5 expected events, we found that collapsing was rarely
required for the sample sizes of n = 5,000. For samples of n
= 1,500 observations, collapsing occurred, however, it had little
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impact on type 1 error control (Table 2 and Web Table 3 in the
Supplementary Materials). The power of the ER and GB tests
compared with and without collapsing was also quite similar
under most simulation models considered. Not surprisingly, for
simulation models that resulted in frequent collapsing to fewer
than 5 groups, there was a large decrease in power after applying
the collapsing rule. Thus, for both type 1 error and power
considerations, we recommend applying the ER test without
collapsing, provided the sample size is no smaller than considered
here, n= 1,500.

Our development of the ER test here focuses on detecting
lack-of-fit for the purpose of internal model validation in a
training dataset. Often, we need to evaluate the performance
of a model in a new external cohort, where we might examine
predicted survival probabilities. The implementation of both
the GB and ER tests, however, only assesses accuracy of the
linear predictor (estimated model coefficients) and does not
incorporate information about the baseline hazard. As a result,
these tests would be insensitive, in an external dataset, to
detect any systematic bias (high or low) of predicted survival
probabilities that require the baseline hazard estimated in the
training dataset.

As the research community amasses new information
about the molecular basis for disease, progress toward
personalized medicine is being realized, revolutionizing
disease treatment and preventative care. Accurate assessment of
individual risk, incorporating both genetic and environmental
factors plays a critical role in this initiative. Calibration
tests such as the ER will become integral to risk-model
determination to safeguard against biased risk-estimates for
extreme risk patients, potentially most affected by clinical
decisions.
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