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Abstract: The effectiveness of chemotherapy in cancer cell regression is often limited by drug resis-
tance, toxicity, and neoplasia heterogeneity. However, due to the significant complexities entailed
by the many cancer growth processes, predicting the impact of interference and symmetry-breaking
mechanisms is a difficult problem. To quantify and understand more about cancer drug pharmacody-
namics, we combine in vitro with in silico cancer models. The anti-proliferative action of selected
cytostatics is interrogated on human colorectal and breast adenocarcinoma cells, while an agent-based
computational model is employed to reproduce experiments and shed light on the main therapeutic
mechanisms of each chemotherapeutic agent. Multiple drug administration scenarios on each cancer
cell line are simulated by varying the drug concentration, while a Bayesian-based method for model
parameter optimisation is employed. Our proposed procedure of combining in vitro cancer drug
screening with an in silico agent-based model successfully reproduces the impact of chemotherapeutic
drugs in cancer growth behaviour, while the mechanisms of action of each drug are characterised
through model-derived probabilities of cell apoptosis and division. We suggest that our approach
could form the basis for the prospective generation of experimentally-derived and model-optimised
pharmacological variables towards personalised cancer therapy.

Keywords: mathematical oncology; in silico; simulation; Variational Bayesian Monte Carlo; cytostat-
ics; drug testing

1. Introduction

Clinical development of anti-cancer drugs is a resource-intensive and time-consuming
process, which requires effective novel preclinical platforms for screening compounds
targeting neoplasia [1]. The therapeutic success of anti-cancer drugs is highly dependent
upon numerous factors including the type of cancer, the timing, and dosage of adminis-
tered drugs, as well as combinations of these. In vitro tumour models are a valuable tool
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in the pursuit of exploring substances that can exhibit anti-cancer activity, as well as for
assessing their effectiveness [2]. Cancer-mimicking in vitro models offer a reductionist
approach to facilitate a detailed primary screening of anti-cancer drugs, thus preventing
drugs with insufficient anti-tumour activity from entering preclinical animal testing. Can-
cer biologists and pharmaceutics experts rely on well established in vitro models, such
as two-dimensional or three-dimensional tumouroid models, microfluidic devices and
bioreactors, etc. Further to in vitro testing, pharmacological testing using in vivo (animal)
models is carried out to assess bio-availability, toxicity, and therapeutic efficacy of candidate
compounds [3]. Thus, the choice of an appropriate in vitro and in vivo tumour model at
the stage of testing can facilitate timely screening, pre-clinical or clinical, of cytotoxic anti-
cancer agents as it can enable reduction in both financial and time costs [4]. However, drug
screening is a complicated and interdisciplinary process, which involves a laborious path
that starts from the identification of competent drug targets (i.e., enzymes, receptors, ion
channels), target validation through biochemical assays, assay development to screen mod-
ulators and high-throughput screening of a large number of chemical substances against
biological targets (tumour cells). Furthermore, molecular descriptors can be optimised to
improve selectivity and drug potential of lead candidate compounds for drug screening
and drug development—a process known as lead optimisation.

In addition to the experimental methods, theoretical approaches have experienced
an uptake in medicine, as they help simplify and conceptualise underlying biological
complexities. Indeed, concepts such as symmetry and symmetry-breaking are employed
also to formalise cancer dynamics [5,6]. Notably, theoretical models cover topics in oncology
across a wide range of scales and complexities, from genetic and individual-cell processes
to population-level incidence. Mathematical models in cancer biomedicine can be broadly
classified with respect to the type of physics and level of biology they encompass, as well
as the involved spatio-temporal scales of the (cancer) system that is under consideration, as
illustrated in Figure 1 of the Yankeelov et al. review [7]. Along those lines, the advent of
computing and the significant advances in high-performance computing algorithms have
rendered in silico modelling increasingly more practical and popular in cancer biology,
precision medicine and personalised therapy [8,9]. This is strongly motivated by the rising
number of available pre-clinical models (extending from in vitro to in vivo) and clinical
data, which require suitable robust computational methods for their analysis. As such,
modelling the complex biology of cancer and predicting how tumours would respond
to therapies requires in silico approaches that can handle various types of data-derived
information and combine diverse theoretical methods on multiple temporal and spatial
scales [10,11].

At the tissue or organ scale, physics-based in silico models often employ continuum-
based (fluid, solid) biomechanics governed by partial differential equations. Such models have
been reported to simulate avascular or/and vascularised tumour growth, biofluid flow and
drug transport phenomena. Relevant to the above, pharmacokinetics/pharmacodynamics-
based models have been able to simulate the exchange of drugs among compartments and
accumulation of drugs within a particular organ or the cancerous tissue [12].

Another category of in silico models in biomedicine that has been receiving increased
popularity is that of spatially discrete, particle-based models which describe entities as
agents, hence referred to as agent-based models [13]. The major types of these models
include (a) lattice-based models (e.g., cellular automata, lattice gas cellular automata,
Potts models), (b) off-lattice models (e.g., vertex and center-based models, deformable
cell models) and (c) and hybrid continuum–discrete models, e.g., see [14–17]. Agent-
based modelling (ABM) is a computational approach where elements of a system are
modelled as discrete and autonomous entities that can interact with one another, as well
as with their local spatial environment. Agents typically express behaviours that are
governed by internal rules that are inheritable [18]. Within the cancer context, agents can
represent individual cells that can have different phenotypic behaviour (e.g., neoplastic
or healthy, proliferative or necrotic, etc.), while they can also respond to external stimuli,
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for instance mechanical interactions, (intra-/transcellular) signalling, and other important
factors occurring during the evolution of cancer. It is beyond the scope of this paper,
however, to provide an exhaustive survey about ABM in cancer, and so we refer the reader
to the following reviews: [7,19].

In this manuscript, we propose a combined in vitro/in silico approach to evaluate
and characterise the anti-tumoural activity of commonly used chemotherapeutic agents.
The in vitro experiments we conducted report on the effects of selected cytostatics on two
established cancer cell lines (colorectal carcinoma and breast adenocarcinoma) through
pertinent cytotoxicity laboratory tests. The in silico modelling framework we developed
combines off-lattice agent-based modelling and a Variational Bayesian Monte Carlo method
to simulate cancer cell culture development, with or without the presence of a cytotoxic
agent. The in vitro evidence is used within the computer-based modelling procedure for
estimating the probabilities of cell division and apoptosis for each treatment scenario, thus
providing insights into the action of each chemotherapeutic drug. Our work contributes to
cancer research by reporting a new combined in vitro/in silico methodological approach
for cancer drug screening through the quantification of cytotoxicity effects on cancer cell
proliferation and apoptosis. The paper starts with the methodological description of the in
vitro experiments and cytotoxicity analysis, and continues with the presentation of the in
silico framework, including ABM and model parameter optimisation. Subsequently, we
report on the experimental results of the cytotoxicity laboratory tests, the computational
model assessment and verification, and the corresponding model-derived evaluation of the
effect of the different treatment regimes. Important findings of this work are summarised
in Section 4, along with the main limitations of this work, while future prospects in cancer
pharmacodynamics are discussed.

2. Methods
2.1. In Vitro Procedure
2.1.1. In Vitro Experiments of Cell Culturing

We examined cytotoxic and thus anti-proliferative activity of selected cytostatics on
two model systems: a human colorectal carcinoma HCT-116 cell line and a human breast
cancer MDA-MB-231 cell line. The cell lines of low passages were acquired from the
European Collection of Authenticated Cell Cultures and were maintained in Dulbecco’s
Modified Eagle Medium (DMEM) (D5796; Sigma-Aldrich Chemical Company, St. Louis,
MO, USA) supplemented with 10% foetal bovine serum (F4135-500ML; Sigma-Aldrich
Chemical Company, St. Louis, MO, USA) and 1% penicillin/streptomycin (P4333-100ML;
Sigma-Aldrich Chemical Company, St. Louis, MO, USA) in 75 cm2 culture flasks. The cells
were grown in an incubator in a humidified atmosphere with 5% CO2 at a physiological
temperature of 37 ◦C, and, after a few passages and a confluence of about 80%, the cells
were analysed with the MTT assay. Figure 1a depicts in a graphical manner the in vitro
cytotoxicity testing procedure, which starts off with the cancer cell seeding and subsequent
exposure to the cytotoxic drug (treatment). Then, as described in the following paragraph,
the yellow MTT substance is reduced to purple formazan where subsequent absorbance
reading on 550 nm provides indication about the cancer cell viability due to treatment.
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a b
Figure 1. (a) Graphical representation of the MTT viability assay procedure: from cell seeding and
treatment to reduction of yellow MTT to purple formazan crystals for tracking of the metabolic
activity of viable cells to estimate the amount of cells survived after drug treatment; (b) agent-based
model mechanisms accounted for in cell (agent) behaviour include cell growth, migration, division,
and apoptosis. The latter two are also modulated by the presence of cytostatics.

2.1.2. Cytotoxicity Assay

The capability of tested cytostatics to reduce the cell growth of two different cell
lines was assessed by a standardised MTT assay (Laboratory for Bioengineering protocol
CB-005). An approximate 10,000 cell population per well (in 96-well microplates) were
seeded and cultured in an incubator for 24 h to allow cell adhesion. After incubation, the
cells were treated with cytostatics—the cytostatics used in this study are commonly used in
clinical practice. For the colon cancer treatment, 5-Fluorouracil, Oxaliplatin, Leucovorin,
and Irinotecan were used, while, for the breast cancer treatment, Endoxan, Paclitaxel,
Docetaxel, and Doxorubicin were used. The cytostatics/antibodies were kindly donated
by the University Clinical Centre of Kragujevac, Serbia. The chosen concentration range
was standardised from 0.1 to 500 µM, while all drugs were dissolved in DMEM. The
cytotoxic effect on cancer cells was measured 24 and 72 h after treatment by estimation
of the number of cells that survived at that stage of the experiment. The MTT assay
was based on spectrophotometric measurement of reduction of 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT, 158990010; Acros Organics, New Jersey,
USA) to purple formazan crystals subsequently dissolved in dimethyl sulfoxide (DMSO)
(D/4121/PB15; Fisher Chemical, Fair Lawn, NJ, USA). The absorbance measurements at
550 nm were performed using a Rayto 2100C microplate reader. The cytotoxicity was
quantified by the ratio of the absorbance of the treated cells divided by the absorbance of
the negative control (untreated cells) and multiplied by 100 to obtain the percentage of the
viable cells [20].

2.1.3. Statistical Analyses

Cytotoxic activity was experimentally interrogated in six repetitions for each treatment
dose scenario. Statistical analyses were evaluated by using the one-way ANOVA test
for multiple comparisons by employing the SPSS statistical software package (SPSS for
Windows, version 17, 2008). The IC50 values were calculated from the dose curves using the
CalcuSyn software. These values represent the amount of the substance required in order
to decrease the number of cells by 50%. In principle, an anti-cancer drug is anticipated to
express a clear selectivity towards cancer cells. Thus, the in vitro screening permitted us
to measure drug- and cancer (cell line) specific effects—the experimental measurements
yielded IC50 value estimates, expressed in molar concentrations.

http://www.biosoft.com/w/calcusyn.htm
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2.2. In Silico Procedure
2.2.1. Probabilistic Agent-Based Model

Our in silico approach employs a probabilistic agent-based model (ABM) designed
to recapitulate our in vitro experiments and help understand the dynamics of cancer cell
responses to treatment. In principle, ABM is a complex-system modelling method that
assumes autonomous and interactive ‘agents’. Each agent is denoted a particle positioned in
space following an off-lattice modelling approach. This work assumed a two-dimensional
space, albeit ABM can generalise in three dimensions seamlessly. Thus, agents were set to
freely move in a disk plane (diameter 2.4 mm) under specific restrictions for agent–agent
overlap and collapse, while we assumed that the boundary of the simulation domain
extends periodically to encompass the entire in vitro well. The behaviour of each agent was
determined by simple rules and interactions with other agents, as well as external stimuli:
the cytotoxic drugs in this work. These individual rules and interactions created patterns,
structures, and produced time-varying outcomes for the entire biological system, which
was not explicitly programmed into the model.

In this study, agents represented individual cells that were considered as being either
of the human colorectal carcinoma HCT-116 or of the human breast cancer MDA-MB-231
cell line. Figure 1b depicts the cell mechanisms considered in the ABM formulation of our
in silico model. Agents, for both cancer cell lines, were modelled to (i) grow and mature,
(ii) migrate following random movement, (iii) divide symmetrically, and (iv) commit to
apoptosis. In this study, the latter two mechanisms of cell behaviour were allowed to be
modulated in the presence of a cytotoxic agent, thus defining the mode of action of the
drugs under consideration. Contrary to this, cell growth and migration were not affected by
the action of any chemotherapeutic agents. Drug presence was included in the model as a
chemical substance whose concentration was homogeneous everywhere in the extracellular
space of the simulation domain (disk plane of the well). The concentration of the drug
was set constant in time and was not affected by the cells’ uptake of the drug. In addition,
drug transport inside the well was almost instantaneous (drug convection or diffusion was
neglected) while zero drug dissipation was not accounted for in the extracellular matrix.
The series of rules set to describe all agents’ (cells) behaviour is outlined in Algorithm 1 box,
where P• denotes the probability of occurrence for a cell biological process. Presently, the
probability for cell migration and cell growth was set fixed to 99% and 90%, respectively,
whereas the probability for cell apoptosis and cell division (either programmable or induced
by the drug) were the subject of investigation in the parametric analysis that follows in the
Section 3. Regarding cell migration, their movement was taken as a combination of random
walk movement on a fixed average rate of 0.2 µm per minute, and a chemotactically-driven
cell migration towards higher O2 saturation level on a fixed average rate of 0.1 µm per
minute. Cells were modelled to interact mechanically with one another when in close
proximity (enough to warrant contact or overlap) by applying Newton (repellent) forces.
In addition, matrix–cell interaction forces were neglected in this work, since cells in the in
vitro tests were set in a free suspension medium, and cell adhesion is ignored.
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Algorithm 1 Cell behaviour algorithm that is iterated for all cells (agents) and for all
time-steps of an ABM simulation.

if random_number ≤ Papoptose then
Remove cell from simulation
return

if random_number ≤ Pmigrate then
Displace cell

if random_number ≤ Pgrow then
Develop cell diameter, d, unless > dmax
return

if random_number ≤ Pdivide then
Create new copy of (mother) cell: (daughter) cell
Half the volume of (mother & daughter) cells

2.2.2. Model Parameter Optimisation

The unknown parameters of our ABM simulations were estimated using the Varia-
tional Bayesian Monte Carlo (VBMC) method [21]. VBMC belongs to the family of Bayesian
inference methods, which can provide a posterior distribution of the unknown parameters
while accounting for model error and parameter uncertainty. VBMC is a suitable Bayesian
inference framework when dealing with expensive black-box likelihoods. It combines
variational inference with Gaussian-process based, active-sampling Bayesian quadrature
providing an approximate posterior and lower bound to the model evidence. Unlike the
Markov-chain Monte Carlo and other known methods, VBMC can perform efficiently
in realistic scenarios with complex likelihood functions and higher dimensions (up to
D = 10). VBMC is designed to alleviate the computational burden associated with the
multiple model evaluations of such methods by introducing computationally inexpensive
statistical surrogates (e.g., Gaussian processes) to approximate the posterior parameter
distribution. Additionally, VMBC uses the uncertainty in the statistical surrogate to guide
active sampling, which enables further enhancements in the computational efficiency of
the approach [21].

The VBMC framework has been employed within this work to efficiently estimate
approximate posterior distributions and lower bounds to the model evidence of our models.
Specifically, the two unknown ABM parameters for each treatment scenario were estimated
numerically, namely the probability of cell apoptosis, Papoptose, and the probability of cell
division, Pdivide. Gaussian distributions were used as priors for both parameters, while the
prior means were set to µ(Papoptose) = 0.2 and µ(Pdivide) = 0.15, respectively. Parameters were
estimated by fitting the in silico model-derived cell viability to the relevant in vitro values.

2.2.3. Computer Software Implementation

The agent-based modelling method for this work was implemented in a C++ project
invitro_neuro that was built and maintained on Bitbucket. A snapshot of the simulator
can be downloaded from Figshare. Link to access the computer code from Figshare:
https://doi.org/10.6084/m9.figshare.19387094.v1. It employed at its core the open-source
software platform BioDynaMo (version 1.1.70). BioDynaMo [16] was used as it is designed
to meet the computational demands in our ABM by employing highly optimised code that
leverages high-performance computing simulations. Furthermore, implementation of the
VBMC used was based on the open-source GitHub project vbmc that is coded in MATLAB.
All in silico experiments were performed on a MacBook Pro (macOS Catalina 10.15.7) with
a 2.3 GHz 8-Core Intel Core i9, and 64 GB (2667 MHz DDR4) memory. Each individual
ABM simulation run (using our in-house project invitro_neuro was executed using two
threads in a Bourn-again shell) required approximately 2–3 s, whereas each batch of a
full optimisation algorithm run (using the VBMC algorithm implementation in MATLAB)
required 342.1 ± 36.6 s.

https://bitbucket.org/vasvav/invitro_neuro/wiki/Home
https://doi.org/10.6084/m9.figshare.19387094.v1
https://biodynamo.org/
https://github.com/lacerbi/vbmc
https://bitbucket.org/vasvav/invitro_neuro/wiki/Home
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3. Results
3.1. In Vitro Experiments

Cytotoxicity in vitro experiments were performed to investigate the biological influ-
ence of selected commercial cytostatics against colorectal carcinoma HCT-116 and breast
adenocarcinoma MDA-MB-231 cell lines. Figure 2 presents the cytotoxic effect (IC50 values)
of the cytostatics tested on each cancer cell line respectively after 24 and 72 h of exposure to
the drug.

a b
Figure 2. The toxicity effects against cells (IC50 values) of tested cytostatics on (a) HCT-116 and
(b) MDA-MB-231 cells after 24 and 72 h of exposure to each drug (see figure legend).

In Figures 3 and 4, the viability of HCT-116 and MDA-MB-231 cell lines is plotted out
respectively (blue line and symbol) for each single-treatment scenario with respect to the
relevant cytostatic concentration, following 72 h of incubation. Line plots for both cell lines
are also provided, following 24 and 72 h of incubation, in Figures S1 and S2 respectively of
the Supplementary Material document.

The in vitro treatment of HCT-116 cells revealed the most prominent cytotoxic charac-
ter of 5-Fluorouracil (5-FU), Oxaliplatin (Ox-Pt), and Irinotecan after 72 h, while Leucov-
orin exerted a marginal cytotoxic effect at low to moderate drug concentrations (see also
Figure S1). Besides Leucovorin, the rest of the three drugs show time and dose dependent
lowering of the cell viability. Calculation of the IC50 values (Figure 2a) revealed that 5-FU,
Ox-Pt, and Irinotecan exerted significant effects 72 h after treatment (IC50

5-FU = 86.9 µM,
IC50

Ox-Pt = 89.3 µM, IC50
Irinotecan = 143.9 µM). In MDA-MB-231 cells treatment, Doxoru-

bicin exerted predominant anticancer activity in both treatment periods (see also results
depicted in Figure S2). A significant effect after 72 h was also exerted by Paclitaxel and
Docetaxel, while Endoxan did not show significant cytotoxic effects (see Figure 4). IC50
values presented in Figure 2b show the same trend for these drugs. Thus, Doxorubicin and
Paclitaxel with a IC50 < 50 µM can be considered as a very aggressive treatment option
against the above-mentioned breast cancer cell line.
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a b

c d
Figure 3. Comparison plots between the in vitro (blue lines) and the in silico (red lines) results after
72 h of HCT-116 cells’ incubation with respect to the drug type and concentration used per treatment
scenario, drug: (a) 5-Fluorouracil; (b) Irinotecan; (c) Leucovorin; and (d) Oxaliplatin (Ox-Pt).

a b

c d
Figure 4. Comparison plots between the in vitro (blue lines) and the in silico (red lines) results after
72 h of MDA-MB-231 cells’ incubation with respect to the drug type and concentration used per
treatment scenario, drug: (a) Docetaxel; (b) Doxorubicin; (c) Endoxan; and (d) Paclitaxel.

3.2. In Silico Model Verification

Next, the in silico modelling procedure was tested and verified against the in vitro
data of the cytotoxicity assay experiments. Figure 3 shows the in silico predicted HCT-116
cell line viability 72 h following incubation, when different cytotoxics were administered
at different concentration values. Similarly, in Figure 4, in silico predicted MDA-MB-231
cell line viability is compared against the in vitro cell viability. Graphical representations
of the development of the cell populations in 2D are shown in Figures S3 and S4, at
three time points (1 h, 24 h, and 72 h of incubation) and for different drug concentrations.
Animations to the aforementioned figures can be accessed through the following project
on Figshare: https://figshare.com/projects/In_vitro_cancer_drug_pharmacodynamics_via_
Agent-based_and_Bayesian_Monte_Carlo_modelling/133802 (accessed on 20 February 2022).

https://figshare.com/projects/In_vitro_cancer_drug_pharmacodynamics_via_Agent-based_and_Bayesian_Monte_Carlo_modelling/133802
https://figshare.com/projects/In_vitro_cancer_drug_pharmacodynamics_via_Agent-based_and_Bayesian_Monte_Carlo_modelling/133802
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Comparing the in vitro, blue lines, to the in silico results, red lines, the model demon-
strates its capacity to capture the experimentally measured cell viability very well. Indeed,
the in vitro viability (for both cell lines and at most cytostatics) demonstrated a decline
with increased drug concentration, see Figure 3a. This trend is also evident in the in silico
simulation outcomes. In rare cases, the model fails to match exactly the in vitro results,
particularly when significant fluctuations are present, as can be seen in Figure 4a.

The model accuracy was also quantified by assessing the correlation of the in vitro
and in silico cell viability through a linear regression model. Model accuracy was assessed
by calculating the R2, the standard error of the coefficient estimate, and the corresponding
p-value. The values to these quantities are listed in Table 1 (see also Figure S5) and were
calculated by taking the cell viability results from Figures 3 and 4. Examples of the linear
regression fits for both cell lines and for the different chemotherapeutic agents are provided
in Figures S6 and S7 respectively.

Table 1. R2 values, standard error of the estimate (SEE), and p-values for all drugs and for both
cancer cell lines.

Cytotoxic Agent R2 SEE p-Value

5-FU 0.9990 4.084 0.000499
Irinotecan 0.9789 10.3902 0.000168

Leucovorin 0.753259089 15.8834 0.025021
Ox-Pt 0.994785615 3.0653 0.00001

Docetaxel 0.788004721 12.8863 0.01821
Doxorubicin 0.965406075 8.0124 0.000454

Endoxan 0.24742795 14.1856 0.315406
Paclitaxel 0.847478031 3.424 0.00921

To assess the accuracy and reliability of the in silico model, we quantified the impact
of selected model parameters on the final number of cancer cells (i.e., 72 h after incubation)
by considering the untreated case scenario (control) for both cell lines. Parameter sweeps
were performed for assessing the behaviour of model parameters, whereby the apoptosis
and division probability parameters of the agent-based model, Papoptose and Pdivide, were
varied by ±10% compared to their control values. The control values for both probabilities
were estimated through the VBMC method described in Section 2.2.2. However, the baseline
parameter values for the HCT-116 control were Papoptose = 17.5% and Pdivide = 15.65%, while, for
the MDA-MB-231 control, the parameter values were Papoptose = 19.34% and Pdivide = 17.36%.

Figure 5 presents heat-maps of the absolute error of the cell population number (HCT-
116 and MDA-MB-231 cell lines, respectively) under control conditions. The horizontal and
vertical axes indicate the scaling of Papoptose and Pdivide, respectively. A scaling factor of 1
for the apoptosis and division probabilities corresponds to the baseline pair of parameter
values adopted in the control simulations, as demonstrated in the verification tests in
Figures 3 and 4. The diagonal band in Figure 5 indicates the area where absolute errors are
low (<±15%), i.e., the cell viability predictions are similar amongst scenarios within the
band. In other words, limited changes to both Papoptose and Pdivide produce relatively small
changes to the simulation results. Therefore, the pattern of the absolute error distribution
(shown as a diagonal band) in Figure 5 suggests that the two parameters are strongly
coupled, as pairs of parameters that differ significantly can produce very similar results;
this is depicted as multiple minima of the absolute error in the contour plot of Figure 5.
Intuitively, the coupling can be justified by the fact that cell viability declines following the
administration of a chemotherapeutic drug could result by either reducing the probability
of division or by increasing the probability of apoptosis. In turn, the lack of a unique
minimum of the absolute error implies that it is not possible to pinpoint a unique value for
both the probability of division and the probability of apoptosis. However, it is important
to highlight that there is a limit to the change of the parameters that can be performed over
parameter sweeps. As illustrated in Figure S8, more severe changes to apoptosis or division



Pharmaceutics 2022, 14, 749 10 of 15

probabilities result in rapid changes in the number of cancer cells predicted through the
ABM. This is because the model is designed (see Algorithm 1) to check first for cell (agent)
apoptosis and then (if viable) for division, as the main goal is to measure the toxicity of
the drugs. Consequently, considerable values for Papoptose lead towards the cell population
decline—if a cell dies, then it cannot contribute to the overall cell growth regardless to its
propensity to divide and create new cancer cell copies.

a b
Figure 5. Heat-maps of the absolute error of the simulation results for (a) the HCT-116 and (b) MDA-
MB-231 cell line, respectively, under control conditions. Horizontal and vertical axes describe the
scaling of Papoptose and Pdivide, respectively. The colour-bar represents the percentage of absolute
error with black areas corresponding to ≥50%.

3.3. Quantification of Drug Effects in Cell Response

Following the in silico model verification tests, we employed the experimental data of
the cytotoxic agents for both in vitro model systems (human colorectal carcinoma HCT-116,
human breast cancer MDA-MB-231) within our modelling framework to further assess drug
cytotoxicity effects. The mechanisms of action of each drug were examined through the
model-predicted probabilities of cancer cell division, Pdivide, and apoptosis, Papoptose. In or-
der to circumvent any biases due to differences between the various treatment experiments,
the probabilities of division and apoptosis were normalised with respect to their corre-
sponding control values for each drug screening experiment: P*

divide = Pdivide(TREATED) /
Pdivide(CONTROL), and P*

apoptose = Papoptose(TREATED) / Papoptose(CONTROL). Original, non-
normalised values for the apoptosis and division probabilities are provided in Figure S9
for the HCT-116 cell line and in Figure S10 for the MDA-MB-231 cell line. In addition,
Tables S1 and S2 summarise the apoptosis and division probability parameter values for
each simulation scenario for both cell lines, respectively.

Due to the coupling between the probabilities of division and apoptosis (see Figure 5),
a new index was introduced to allow us to reliably characterise the effect of each treatment
on the two cell lines. In particular, although the absolute values of the probabilities cannot
be retrieved, their ratio can be reliably estimated. Accordingly, further insights into each
chemotherapeutic agent were sought by considering an index of cancer survival, namely
the cancer cell survival probability ratio, which is defined as the ratio of the normalised
division and apoptosis probabilities: P*

divide / P*
apoptose. In principle, values of the survival

probability ratio close to 1 could either signify no significant deviations from the control
values or correspond to similar changes in the probabilities of division and apoptosis—the
latter scenario being less probable as a drug would likely act by increasing apoptosis and
decreasing division and vice versa. On the other hand, values of cancer cell survival below
1 denote a stronger anti-tumoural effect.

Figure 6a,b report using box plots for the survival probability ratio for the HCT-116 and
MDA-MB-231 cancer cells, respectively, for low (1 µM) and high (500 µM) concentrations.
The survival probability ratio can be thought of as a complementary index to cell viability
in Figures 3 and 4, as it can also characterise the mechanisms of action of chemotherapeutic
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agents, i.e., whether they act through reducing cell division or by inducing apoptosis.
Complementary to Figure 6, Figure S11 shows the box plots of the reciprocal quantity to the
cancer cell survival probability ratio defined above. Statistical analysis was subsequently
performed to quantify the differences in the drug’s effect at low and high concentrations.
An unpaired t-test with unequal variance was employed to test the hypothesis that the
mean of cancer cell survival for the low-concentration drug is lower than the mean of the
high-concentration drug. Statistically significant results (p-value ≤ 0.05) are depicted with
asterisks in Figure 6. In addition, Tables S3 and S4 tabulate the mean and standard error of
the survival percentage, as quantified through the in silico experiments, for the HCT-116
and MDA-MB-231 cell lines, respectively.

a b
Figure 6. Box plots of the simulation results of the cancer cell survival probability ratio (normalised
division probability to normalised apoptosis probability fraction. Plots for (a) HCT-116 and (b)
MDA-MB-231 cell lines, respectively, for every treatment scenario at two extreme drug concentrations.
Each scenario is illustrated in a different colour; HCT-116: blue for 5-FU, red for Irinotecan, yellow
for Leucovorin, and purple for Ox-Pt drug; MDA-MB-231: blue for Docetaxel, red for Doxorubicin,
yellow for Endoxan, and purple for Paclitaxel drug. t-tests at a 5% significance level are denoted with
a “*” above corresponding boxes.

In view of the in silico HCT-116 results demonstrated in Figure 6a, we can conclude
that the cancer cell survival was near 1 for all four drugs for low concentrations, which
suggest that all cytostatics did not have a strong anti-tumoural effect at such concentration
levels. This fact is in agreement with the experimental and simulation results shown in
Figure 3, whereby cell viability was over 100% at low concentrations (1 µM) for all drugs.
In contrast, for higher concentrations, the cancer cell survival fell consistently below 1 in
Figure 6a, suggesting a stronger cytotoxic effect for all drugs at 500 µM. Furthermore, the
predicted cell survival values for 5-FU and Ox-Pt were lower than those of Irinotecan and
Leucovorin, in agreement with Figure 3, where the cell viability of 5-FU and Ox-Pt was
approximately 35%, while the viability for Irinotecan and Leucovorin was roughly 60%
and 80%, respectively. Notably, the statistical tests indicated that the cancer cell survival
was significantly lower for higher concentrations compared to lower concentrations, for
5-FU and Irinotecan. This finding indicates that these drugs could mainly act by inducing
apoptotic effects rather than by suppressing division of the cancer cells.

The in silico MDA-MB-231 results in Figure 6 show that the median cancer cell survival
is lower than 1 for Docetaxel, Doxorubicin, and Paclitaxel for low concentrations, as shown
in Figure 4a,b,d. This means that—unlike the corresponding HCT-116 cell survival results—
the above drugs have an apoptotic effect on breast cancer cells even at low concentration
levels. Endoxan gives for MDA-MB-231 cell survival a value close to 1—implying a
negligible effect on the cell behaviour—which agrees with Figure 4c, where the cell viability
is higher than 100% for 1 µM. The cancer cell survival index remains high for higher
concentrations of Endoxan, suggesting that the cancer cell survival is not affected by the
concentration increase (in agreement with the in vitro results shown in Figure 4c). Similarly,
Doxorubicin, which exhibited very strong anti-tumoural effects even at low concentrations
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in Figure 2, did not present substantial variation in the survival of the cancer cells under
investigation. Interestingly, both Docetaxel and Paclitaxel caused a statistically significant
decrease in cancer cell survival at higher concentrations, which suggests that their dominant
mechanism of action is to induce cell apoptosis.

4. Discussion

Computational models are increasingly involved in biomedicine and pharmaceutical
development. One of the main reasons for this is that in silico methods offer a complemen-
tary approach to conduct research and development, in addition to wet-lab experimental
work and purely analytical techniques. Indeed, such a precision medicine approach offers
numerous benefits such as lower costs, reduced need for animal experiments, or the po-
tential for highly adaptive and individualised patient care. In particular, it constitutes an
attractive method to deal with complex symmetry-breaking processes, which play a crucial
role during cancer progression [5,22]. We thus demonstrate in this contribution a proof-
of-concept that combines in silico, using agent-based modelling (ABM), with pertinent in
vitro data to provide highly relevant information and guidance on the usage of drugs for
cancer treatment.

Our computational results complement our experimental cancer model results. In
particular, we find that well-established chemotherapeutic drugs have a differential impact
on fundamental tumourigenesis parameters—in particular, the ratios between proliferative
and apoptotic activities. We suggest that this ratio can become a quantitative measure of
cancer progression and viability with a prognostic potential. For instance, drugs could be
chosen in a context-specific manner, taking into account indicators of the proliferative rate
of a patient’s cancer vs. the propensity to migrate and metastasise. Our computational
results also indicate that the effects of these drugs significantly differ with regard to the
concentrations at which they should be administered. Despite the fact that this study
focused on a specific drug mode of action (i.e., suppression of cancer cell division and en-
hancement of apoptosis potential), the proposed in silico ABM methodology can be readily
extended to account for other combinations of cytotoxic effects, e.g., reduce cell invasive-
ness, down-regulate differentiation to metastatic phenotypic behaviours, etc. However,
quantitative measures of these aspects can be inferred by combining ABMs with wet-lab
experiments, accelerating hypotheses’ generation and testing. From a purely experimental
perspective, the treatment of colorectal and breast carcinoma cells revealed that not all
cytostatics exert strong anticancer activity, even though these drugs are commonly used in
clinical practice. This is not surprising because the protocols for patient treatment include
the use of combinations of these drugs depending on the type and stage of the cancer. For
example, in the treatment of colon cancer, the Folfox protocol represents treatment with
Ox-Pt, Leucovorin, and 5-FU on the first and second day. This combination administered
on these two days represents Cycle 1. The next cycle is applied after 14 days. The number of
cycles depends on clinical evaluation. Another example is protocol Folfiri, which represents
a combination of Irinotecan, Leucovorin and 5-FU in the very similar fashion as in the
Folfox protocol. The synergism of applied drugs is crucially important for patient outcome.
Similar to colon cancer, breast cancer patients also undergo protocol-based therapy. An
AC protocol represents a combination of Doxorubicin with Endoxan administered once
every three weeks. Paclitaxel and Docetaxel are used as single therapeutics administered
in weekly intervals prescribed by the medical expert. We are currently conducting in
vitro experiments of combinations of chemotherapeutic drugs, with preliminary results
indicating synergistic drug effects in cancer regression. As such, we plan to carry out
a large-scale parametric analysis study, using our in silico method, to interrogate and
optimise combinatory chemotherapeutic protocols.

Notably, our approach has demonstrated in this paper a moderate computational
footprint, which offers the prospect of exploring a broad model parameter space (e.g., cell
migration, cell differentiation, and invasiveness). Therefore, it further supports the usage
of ABM for determining the most effective treatment schedules or strategies. For instance,
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the in silico can be used to generate causal predictions on the efficacy of different treatment
durations, or scheduling protocols that are not present in the initial training data.

Equally important to incorporating in vitro experimental data is the capability to take
into account other background knowledge on cellular metabolism and drug interactions
that can be seamlessly incorporated into our mechanistic model. This distinguishes our
approach from other computational techniques, such as deep neural networks, where
statistical models are generated from the training dataset. Such ‘black box’ approaches do
not mechanistically model biophysical processes, and so it is not possible to include previ-
ously established rules, or extrapolate scenarios that are not implicit in the training data.
In contrast, our approach allows for generating verifiable hypotheses also for treatment
scenarios not captured by the experimental data.

Last but not least, a particularly promising avenue is to employ our approach to
interrogate and test candidate drugs and tailored combinations of drugs that will likely
have the most beneficial impact in killing specific cancers. In this regard, they constitute a
complementary approach that can be combined with promising and innovative laboratory
methods such as lab-on-a-chip technologies, which allow for incorporating interactions
with the tumour microenvironment. Along those lines, the integration of patient-specific
information, relying on genetic and imaging data, could enable a computationally assisted
and personalised treatment approach in oncology.

We note that this work constitutes a proof-of-concept for the proposed (combined
agent-based and Bayesian Monte Carlo) modelling approach of in vitro chemotherapeutic
experimental results. Prospectively, further experimental validation based on measure-
ments obtained from other research labs are required to solidify the biomedical suitability
and clinical applicability of our in silico approach. We suggest the development of studies
where computational modelling is employed to infer experimentally verifiable predic-
tions, and the validation of these. In this way, contradictory hypotheses can be reliably
discarded, and the models that have the highest explanatory power can be identified. We
highlight that our data are freely accessible and invite interested researchers to conduct
additional, independent validation of our results. Along those lines, the incorporation of
additional model components and experimental data are necessary to realise the usage of
our modelling approach in preclinical studies. Indeed, recent experimental models allow
for obtaining relevant data with regard to interactions with immune cells [23] and the
tumour microenvironment [24,25]. We see significant opportunities in leveraging such
methods in combination with computational modelling to employ precision medicine
in oncology.

Overall, we demonstrate the applicability of ABM as a powerful complementary
tool to experimental methods for probing chemotherapeutic impact. In the future, we
anticipate increased uptake of in silico methods for modelling cancer growth and the
impact of treatments, in particular mechanistic computational models as well as statistics
based models. This is because such models have the capability to generate concrete and
verifiable predictions even when using model parameters that are not directly inferred from
experimental data. The mechanistic modelling approach presented in this paper, including
physics-based and pharmacokinetics/pharmacodynamics models, can help inform about
likely cancer evolution and prognosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14040749/s1, Figure S1: Line plots of the in vitro
results for the HCT-116 cell line expressed with respect to the drug concentration for every treatment
scenario, Figure S2: Line plots of the in vitro results for the MDA-MB-231 cell line expressed with
respect to the drug concentration for every treatment scenario, Figure S3: Snapshots of the in
silico HCT-116 cell population development for the treatment scenario using Irinotecan, Figure S4:
Snapshots of the in silico MDA-MB-231 cell population development for the treatment scenario
using Paclitaxel, Figure S5: Bar charts of the standard error of the estimate evaluated after linear
regression of the in silico results against the in vitro, Figure S6: Line plots of the linear regression
for HCT-116 cell line viability for the various drug treatment scenarios, Figure S7: Line plots of
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the linear regression for MDA-MB-231 cell line viability for the various drug treatment scenarios,
Figure S8: Heat-maps of the absolute error of the simulation results for HCT-116 and MDA-MB-231
under control conditions, Figure S9: Box plots of the in silico model results for the HCT-116 cell line,
Figure S10: Box plots of the in silico model results for the MDA-MB-231 cell line, Figure S11: Box
plots of the simulation results of the normalised apoptosis probability ratio to the corresponding
normalised division probability ratio for HCT-116 and MDA-MB-231, Table S1: HCT-116 cell line
apoptosis and division probabilities as predicted in silico, Table S2: MDA-MB-231 cell line apoptosis
and division probabilities as predicted in silico, Table S3: HCT-116 cell line survival percentage as
quantified in silico, Table S4: MDA-MB-231 cell line survival percentage as quantified in silico.
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