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Abstract

Head and neck carcinoma (HNC) are diseases arising from several tracts of the aerodigestive ways. Most HNC are

squamous cell carcinoma (SCCHN). Immunotherapy is a treatment strategy aimed to reinforce the immune

system. Several types of immunotherapy are available in the clinical scenario. Checkpoint inhibitors were

developed later in SCCHN; nivolumab and pembrolizumab have reached the clinical approval, having both drugs

demonstrated to significantly improve the overall survival, if compared with the standard of treatment (according

to the results of the CheckMate 141 and KEYNOTE-040 trials). Nevertheless, immunotherapy may fail because of

the genetics of SCCHN. In fact, two genetically different types of SCCHN have been discovered, one virus-related

(HPV) and the other mutagens-related. They seem to show in clinical trials very different responses to

immunotherapy. Given the existence of a number of factors predictive of response to immunotherapy in SCCHN,

a future clinical approach may be to characterize the genetic and immunologic feature of SCCHN and to perform a

well-tailored immunotherapy. This review will summarize the main immunotherapy strategies available in SCCHN,

discussing their real efficacy, highlighting also the ways to improve them.

Translational Oncology (2020) 13, 262–274
Immune System and Cancer

Immune Response Against Cancer

Immune system is not just a defense against infective pathogens
but also against cancer cells. In the mid-20th century, Thomas and
Burnet proposed the concept of “immunosurveillance,” in which
lymphocytes acted as sentinels to protect against transformed cells [1].
This theory was supported by several lines of evidence including the
detection of a high incidence of sarcomas in deeply
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immunocompromised mice lacking the recombination activating
gene-2 (RAG-2) as demonstrated by Shankaran et al. [2].

Immunosurveillance represents just part of a dynamic process
known as “cancer immunoediting,” which comprises three phases:

tumor elimination, equilibrium, and escape to clinically overt disease.
Immunoediting is characterized by changes in the immunogenicity of
tumors because of the antitumor response of the immune system, the
final step is the development of immune-resistant cancer cells.
The first phase, called “elimination,” is characterized by innate

and adaptive immune responses against tumor cells. In the second
phase, named “equilibrium phase,” the tumor cells escaped the
elimination phase and have a nonimmunogenic phenotype. During
this phase, specific T-lymphocytes and secreted cytokines (i.e.,
interferon gamma, IFN-g) exert a selection pressure on tumor cells
which are genetically unstable and rapidly mutating. After that,
tumor cell variants which have acquired resistance to elimination
enter in the third phase, called “escape phase” and during which
tumor cells continue to grow and expand in an uncontrolled manner
[3].
Immune response against cancer cells, which characterizes the first

phase of the immunoediting process (elimination), is very complex,
and it can be divided into three phases: the innate immune response,
the activation of specific T-cells against cancer, and the killing of
tumor cells made by the above-mentioned T-cells (Figure 1).
Figure 1. Immune response against cancer may be divided in thr
tumor site, 2) the activation of specific T-cells against cancer, in th
CD8þ T-cells, which migrates in the tumor site.
Tumor Escape from Immune Response
Immune response against cancer may fail, leading to the

“equilibrium” and “escape” phases. There are many mechanisms
underlying the failure of the immune response and most of them
involve the generation of specific class of inhibitory lymphocytes and
other type of immune cells, able to release cytokines suppressive for
cytotoxic CD8 lymphocytes.

T-celledependent immune response against tumor antigens
plays a crucial role in tumor immune surveillance and the critical
effector cells of adaptive antitumor immunity are the activated
CD8þ cytotoxic T-lymphocytes. Immune response failure devel-
ops when the effectors CD8þ T-cells are silenced from several
stimuli, elicited by soluble cytokines or interaction with other
immune-system cells.

The main cells able to induce anergy of the CD8þ T-cells are the
regulatory T-lymphocytes (Treg). Treg cells represent a minor
heterogenic subset of CD4þ T-lymphocytes. Treg cells have been
well characterized by immunohistochemistry (IHC) showing the
following panel of expression: CTLA-4þ (cytotoxic T-lymphocyte
antigen 4), CD25-high, CD127-low, and nuclear expression of
Foxp3. Normally, Tregs are committed to regulate immune response
to prevent an excessive immune reactivity and their activity is mainly
toward other immune cells such as effector T-cells. Tregs also play a
role in cancer because the mechanisms that prevent autoimmunity are
ee phases: 1) the innate immune response that happens in the
e lymph nodes and 3) the killing of tumor cells operated by the
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the same that limit the immune system to recognize tumor cells.
Indeed, the majority of tumor-associated antigens are self-antigens or
only minimal-modified self-antigens harboring genetic modifications
[4]. Elevated levels of Tregs have been found in several cancer types,
including lung, breast, and pancreatic cancer [5]. A number of clinical
and preclinical studies show a general increase of both circulating and
infiltrating Treg during cancer development [5e7]. Treg-mediated
immunosuppression may occur by cell-to-cell contact or by cytokines
secretion.

The mechanisms underlying the potential Treg-driven protumor
effect remain elusive. These cells are probably recruited from
peripheral circulation into the tumor by chemotactic factors released
by cancer cells. Treg infiltration into the tumor microenvironment is
facilitated by the binding of the chemokine receptor CCR4 (CeC
chemokine receptor type 4), which is expressed on their cell surface,
to its ligand CCL22 (CeCmotif chemokine 22), which is secreted by
many types of tumor cells [8]. Tregs are recruited into the tumor
tissue where they are induced toward a highly immunosuppressive
phenotype by tumor-secreted cytokines, such as TGF-b (Transform-
ing Growth Factor), IL-35 and IL-10 [9,10]. Treg cells also dampen
CD8-mediated immune response through direct mechanisms, which
take into account some proteins, such as CTLA-4, T-cell
immunoglobulin and mucin domain-containing protein 3 (TIM-3),
CD39 and CD73.

CTLA-4 (cytotoxic T-lymphocytes antigen 4) is a transmembrane
protein expressed on cell surface of Treg able to link the costimulatory
molecule B7 on the antigen presenting cells (APC), therefore
preventing their interaction with CD28, expressed on the cell surface
of CD8þ T-cells. As results, T-cells cannot be activated by APC,
resulting is a significant reduction of their proliferation.

CD39 and CD73 sequentially convert ATP and ADP into the
immunosuppressive factor adenosine, which inhibits DC and
macrophage functions [11,12], thus inhibiting the antigen presenta-
tion phase, which is important for CD8þ T-cells maturation.

TIM-3 was firstly identified as a main driver for autoimmune
diseases and it is often expressed by Treg. Tim-3 plays a key role in
inhibiting Th1 response and the expression of cytokines such as TNF
and IFN-g. A number of preclinical reports have demonstrated that
Treg strongly expressing TIM-3 have higher immunosuppressive
function than TIM-3-negative Treg, because of their increased
production of IL-10 and other suppressive molecules [13,14].
Stimulation of TIM-3 on the cell membrane of Treg may happen
through its interaction with the Galectin-9, which is expressed by
different tumor cells [15].

Summarizing, the cytokine mediators released by cancer cells
activate and recruit circulating Treg. Treg migrate into the tumor site,
where they are further activated by the cytokines produced in the
tumor stroma, such as TGF-b. Ultimately, Treg suppress the activity
of cytotoxic and effector cells via both cell-to-cell contact and
humoral mechanisms, because of the expression of CTLA-4 and
CD39 and the release of immune modulating factors such as IL-10,
IL-35, and TGF-b (Figure 2).

Failure of immune response against cancer is made complete by the
accumulation of DNA mutations in tumor cells that make them
invisible to the immune system. Tumor cells may avoid immune
surveillance by downregulating histocompatibility molecules, such as
HLA class I gene, required to proper antigen presentation. In
addition, tumor cells can release cytokines able to affect the CD8þ
function [16,17].
Immune Response in Squamous Cell Carcinoma of
the Head and Neck (SCCHN)

Background

Squamous cell carcinoma of the head and neck (SCCHN) are
tumors originating from the first tract of aerodigestive ways and they
are a not rare disease, accounting for 5e7% of all malignancies.
SCCHN development is strongly related to tobacco and/or alcohol
consumption. In the last 15 years, a remarkable change in SCCHN
epidemiology has been observed. Indeed, the incidence of some types
of SCCHN, such as oropharyngeal cancers has raised because of the
increasing occurrence of human papillomavirus (HPV)erelated
tumors [17,18]. Several lines of evidence support the existence of at
least two genetically different types of SCCHN, one virus-related and
the other alcohol and/or tobacco-related, characterized by both
clinical and biological opposite features [19,20].

Virus-related SCCHN are very chemo and radiosensitive, so
suitable for organ preserving strategy. On the other hand, alcohol and
tobacco-related SCCHN are strongly heterogeneous diseases char-
acterized by chemo and radio-resistance [20].

Virus-related and mutagen-related SCCHNs are not only
genetically different but also display diverse immunological features.

The Importance of Cancer Immune Infiltrate
Along with lung cancer and malignant melanoma, SCCHN

present the highest levels of tumor immune infiltration among solid
cancers [20,21]. Several evidences demonstrated that the entity of the
tumor lymphocytic infiltrate correlates with prognosis [21,22].
Indeed, a high density of tumor-infiltrating lymphocytes (TILs) is
associated with improved outcome in SCCHN [23]. In addition, the
phenotyping of the immune infiltrate is also crucial, because TILs
may be either functionally active or inactive (secondary to exhaustion
or anergy). As an example, the predominant T-cell population may be
represented by Treg or CD4þ Th2 lymphocytes, which are not able
to elicit a response against the tumor. Karpathiou et al. demonstrated
that in SCCHN, high density of CD3, CD8, and CD57 cells in the
immune infiltrate was associated with better overall survival (OS) and
progression-free survival (PFS) in patients treated with immunother-
apy. CD3 and CD8 are markers selective for T-lymphocytes and
cytotoxic T-lymphocytes, while CD57 is a marker characterizing a
class of NK cells, particularly active against cancer [24]. In contrast, a
tumor infiltrate rich in CD4þ cells, especially the Th2 subpopula-
tion, inversely correlated with survival.

Taken together, this data suggest that not only the level of the
immune infiltrate but also its composition is important to determine
the grade of inflammation of the tumor. Notably, a more inflamed
tumor, characterized by a robust immune response, is more likely to
benefit from immunotherapy.

Different Etiology and Different Immune Response in SCCHN
Tobacco and alcohol (mutagens) create DNA damage, inducing

mutations and potentially altering the tumor immune microenviron-
ment. These types of genetic and immune microenvironment
alterations are critical factors known to affect tumor response to
immunotherapy. As a matter of fact, several studies indicate that
smokers with head and neck cancer tend to have lower response rates
after immunotherapy [25].

Chung and Walter demonstrated that SCCHN can be subclassi-
fied into four distinct molecular subtypes based on their expression



Figure 2. Mechanisms through which Treg can dampen the cytotoxic immune response CD8þ mediated: Tregs interact with
antigen presenting cells (APC) through CTLA-4, seizing them from the microenvironment; the linkage between PD-1 and PDL-1
expressed by tumor cells allows that lasts to survive; CD39 and CD73 convert ATP in ADP, which is known to be a strong
suppressor of the APC activity; finally, Treg interact directly with tumor cells through the linkage between TIM-3 and Galectin-9,
resulting in their further stimulation.
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profiles: atypical, basal, classical, and mesenchymal [26,27]. The
atypical subtype contains the majority of HPV-positive tumors. The
classical subtype is more frequently associated with tobacco
carcinogenesis [23]. HPV-related SCCHN often belong to the
atypical subtype and, interestingly, they show biomolecular features
opposite respect to the mutagens-related SCCHN (alcohol and
tobacco) [20].
In addition, HPV-related SCCHN are characterized also by a

different immunogenicity if compared with the mutagens-related
counterpart. In fact, Mandal et al. observed that the atypical (among
which HPV-related) and mesenchymal subtypes had the highest
degrees of immune infiltration, while the classical, which contains the
almost totality of mutagens-related SCCHN, showed the lowest one
[28].
Desrichard et al. correlated a specific “smoking-signature,” which

characterizes the smoking-related SCCHN with the entity of the
immune infiltrate in the tumor, and ultimately, with the response to
immunotherapy. They found that a particular smoking-associated
signature (the mutational signature framework defined by Alexan-
drov [29]), characterized by a high-mutational burden and specific
DNA changes induced by the smoke-contained mutagens, strongly
correlated with a low-immune tumor infiltrate and with poor
response to immunotherapy [30]. In addition, they investigated the
correlation of the CD8-mediated response against cancer, estimated
by the levels of the immune effectors (i.e., granzyme and
perforin expression) and interferon-gamma signaling and with the
smoking status. They found that strong smokers showed the lowest
activation of cytolytic activity and interferon-gamma signaling
pathway. The authors concluded that smoking-related SCCHN are
characterized by a low immune infiltrate and a low CD8-mediated
immune response against tumor cells.

Conversely, the HPV-related SCCHN subgroup showed the
opposite features, being characterized by a robust CD8-mediated
response and a better response to immunotherapy.

On the basis of the abovementioned findings, we can conclude that
virus-related and mutagens-related SCCHN are associated to diverse
immunologic phenotypes, showing the firsts a so-called “inflamed
phenotype” and the seconds a noninflamed phenotype. The
immunologic phenotype strongly affects the response to
immunotherapy.

Immunotherapy Strategies in SCCHN

Background

During the years several strategies aimed to reinforce immune
response against cancer have been developed. The ultimate goal of
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these strategies is to generate a class of T-lymphocytes (CD8þ)
strongly and selectively able to recognize the tumor antigens and able
to attack the tumor cells.

Immune-system activation is a multistep process, and the first of
these steps is the direct interaction between immune cells and the
tumor-associated antigens (TAA). One important principle to
consider is that cancer cells express antigens that differentiate them
from their nontransformed counterparts, and these antigens named
TAA, are products of mutated cellular genes, aberrantly expressed
normal genes, mutated self-proteins that do not contribute to
cancerogenesis or genes encoding viral proteins.

The interaction between TAA and immune cells initiates the
immune response. The second step is characterized by the maturation
of a class of CD8þ T-lymphocytes strongly selective and restricted for
TAA. These CD8þ lymphocytes, which were previously “naïve
T-lymphocytes,” mature after their interaction with APC. This step
may be defined as “priming” and hesitates in the generation of
cytotoxic T-lymphocytes selective for TAA [20,31,32].

The third step is the migration of cytotoxic T-lymphocytes in the
tumor site and the attack to tumor cells. In this last phase, the role of
tumor microenvironment (TME) is crucial. TME may be defined as
the set of cells and the substances released by them, surrounding the
tumor. TME may exert an inhibitory effect on effector CD8þ T-cells
in several ways, even on CD8 strongly activated against tumor cells
during the “priming” phase [33,34].

Of note, immunotherapy may restore immune response against
cancer in different ways, which we will discuss below.

Direct Administration of TAA
Unlike prophylactic vaccines that are generally administered to

healthy individuals, therapeutic cancer vaccines are given to cancer
patients and are designed to eradicate cancer cells through reinforcing
patient's own immune responses. Several types of antitumoral
vaccines have been experimented and they may be classified in
different categories, including cell vaccines (tumor or immune cell),
protein/peptide vaccines, and genetic (DNA, RNA and viral) vaccines
[35].

Autologous tumor vaccines are the simplest type of anticancer
vaccine available, and they are prepared using patient-derived tumor
cells. These tumor cells are typically irradiated, combined with an
immune-stimulatory adjuvant (alum or Bacillus of Calmette and
Gu�erin, BCG), and then administered to the individual from whom
the tumor cells were isolated [36,37]. Autologous tumor cells may be
modified to confer higher immune-stimulatory characteristics, and
some of them, for example are engineered to express IL-12, a key
cytokine promoting Th1 mediated immunity.

Allogeneic whole tumor cell vaccines, which typically contain two
or three established human tumor cell lines, may be used to overcome
many limitations of autologous tumor cell vaccines, such as the
difficulty to obtain a large number of immunogenic cancer cells from
the tumor site and expensive procedures used to prepare and render
them more immunogenic [38].

Most vaccination strategies for SCCHN target the HPV-positive
subset where HPV antigens can be used. E6 and E7 oncoproteins are
crucial for HPV-induced cell transformation, thus they have been
targeted by many types of vaccines. Vaccines against these antigens
are currently in clinical trials for SCCHN [39].

A phase I/II trial to assess safety and efficacy of a short
peptide-based vaccine targeting HPV16 E7 [40], in combination
with low dose of cyclophosphamide has recently started in patients
with advanced HPV-related oropharyngeal cancer.

Vaccines should be used not only in virus-related SCCHN but also
in mutagens-related SCCHN. TP53 mutations are frequently found
in mutagens-related SCCHN, especially in those showing a “classical”
subtype, and they usually lead to p53 intracellular accumulation [41].
Schuler et al. in a phase Ib trial enrolling 16 patients with SCCHN,
used a vaccine containing autologous monocyteederived DC loaded
with selected wild type p53 peptides. DC were isolated from
autologous leukapheresis, then they were matured in a cocktail
containing both p53 derived antigens and different cytokine, among
which IL-1b, IL-6, TNF-, and PGE2. DC was ultimately injected
into patients' inguinal lymph nodes. As a result, a two-year
disease-free survival (DFS) of 88% was observed, post vaccination
p53-specific T-cell frequencies were increased in 11/16 patients
(69%), and circulating Treg rates significantly decreased if compared
with prevaccination values [42].

The main types of available therapeutic vaccines experimented in
SCCHN are graphically represented in Figure 3.

Overall, vaccines represent an attractive therapy strategy in
SCCHN. However, the difficulty of stimulating a depressed immune
system, which characterizes most of SCCHN, especially those
virus-unrelated, represents a major obstacle. Indeed, the most
relevant results in clinical trials testing vaccines have been achieved
in patients with HPV-related SCCHN.

Administration of Specific T-cells, Pulsed with TAA (Adoptive
Immunotherapy)

The direct activation of effector T-cells (CD8þ) stimulated in vitro
and reinfused intravenously is an example of “adoptive immunother-
apy”. This is obtained by isolating peripheral blood mononuclear cells
(PBMCs) from patient blood and stimulating them ex vivo in the
presence of cytokines (IL-2) and autologous APCs expressing TAA.
This procedure allows the generation of TAA-restricted cytotoxic
T-lymphocytes, which after intravenous reinfusion can attack cancer
cells and induce perforin-dependent apoptosis with subsequent tumor
mass shrinkage. This strategy has been largely used in clinical trials
enrolling patients affected by nasopharyngeal carcinoma (NPC),
because of the fact that NPC cells often show EBV-associated
antigens which may elicit an immune response [43]. Although the
procedure may seem easy to perform, not rarely it is not possible to
obtain a class of CD8þCells strongly selective for TAA (viral antigens
in this case), thus, efforts have been made with the aim to reinforce
both the selectivity and the number of effector T-cells produced. He
et al., for example, obtained an effector lymphocyte population
particularly enriched in CD3þ/CD8þ and CD3þ/CD4þ cells and
with a low percentage of CD3-/CD16þ NK cells by isolating TILs
directly from the tumor tissue, and by expanding them ex vivo [44].

Adoptive immunotherapy is under clinical evaluation in
EpsteineBarr viruserelated NPC, while its use in SCCHN
remains scarce. An example of adoptive immunotherapy is pictured
in Figure 4.

Several other strategies to increase the specificity of T-lymphocytes
against TAA have been developed, though the most recent as well as
the most promising is the CAR (chimeric antigen receptors)
technology. CAR are chimeric transmembrane receptors constituted
by an antigen specific single-chain variable fragment (against a
predetermined TAA) fused with the CD3 intracellular domain (the
so-called TCR, namely T-cell receptor). The aim of this strategy is to



Figure 3. Therapeutic vaccines available. DNA, mRNA, cancer peptides, viral vector containing immunogenic constructs or
irradiated cancer cells may be directly administered eliciting an immune response against cancer. In alternative, DC may be
stimulated with cytokines and tumor associated antigens (TAA) and then injected in patients.
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combine the specificity of a monoclonal antibody with the
intracellular signal activating machinery of a T-cell, avoiding the
antigen recognition from major histocompatibility complex restric-
tion, which represents one of the hardest barriers for the immune
therapy. On transfection into autologous T-cells, using viral vectors,
the gene encoding for CAR leads to the synthesis and expression on
the T-lymphocyte's cell membrane of a receptor highly specific for its
target. CAR may be divided in three generations on the basis of their
capability to exert a specific immune response. To exert its function, a
T-cell requires not only the binding of a specific antigen through
CD3/TCR but also the presence of costimulatory molecules as such
as CD28 receptor, which binds the CD80 and CD86 expressed by
the APC. Second generation CARs have been engineered to include
also a costimulatory domain, usually derived by the intra-cytoplasmic
portion of CD28. Third generation CARs incorporate three or more
costimulatory domains as such as CD134, CD137, and DAP10
[45,46] (Figure 5). Recent clinical trials using CAR T-cell therapy
have demonstrated clinical responses in several solid tumors [47,48].
An ongoing phase I trial is evaluating the intratumoral administration
of CAR T-cells in locally advanced/recurrent metastatic SCCHN
[49].

Removing the Stimuli Able to Induce T-cells Anergy in the
TME
The mechanisms underlying tumor immune evasion include the

modulation of inflammatory cytokines, downregulation of antigen-
processing machinery, and the expression of immune checkpoint
ligands or receptors to promote immune evasion. The final result is
the development of tolerance to cytotoxic T-cells [50,51]. Tumor
cells in fact, develop mechanisms to thwart immune recognition and
response, and one of these mechanisms is the upregulation of the
so-called inhibitory checkpoint receptors (IR), which, once expressed,
are able to inhibit normal T-cell activation and costimulation to
maintain a homeostatic immune response.

TME may block T-cells activation in different ways and in
different steps, one of which is the “priming” phase. In particular, the
interaction between DC and naïve T-cells takes place in the lymph
nodes and consists in the delivering of two stimulatory signals. The
first is the interaction between TCR (CD3) and the TAA, which have
been processed and presented by the DC through the MHC-II. The
second signal is a costimulatory signal and consists in the interaction
between CD8, present on the cell membrane of T-cells, and the B7.1
protein. This interaction may be compromised through the
expression on the T-cell surface, of the CTLA-4, which can be
upregulated by several stimuli elicited by the TME, such as the
production of immune-suppressive cytokines such as TGF-b.
Blocking the CTLA-4/CD28 interaction using a monoclonal anti-
body, such as ipilimumab, may lead to an unrestricted T-cells
activation by removing the inhibitory effect on T-cell priming [52].

Once activated during the priming phase, T-cells migrate in the
tumor site and exert their antitumor activity on recognition of specific
TAA on cancer cells. This phase can be dampened by the interaction
between PD-1 on the surface of T-cells and its ligand PDL-1 on the
surface of tumor cells which favors T-cells anergy. Several monoclonal
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Figure 4. CTL-based nasopharyngeal adoptive therapy. Reinfusion of EBV-antigens restricted cytotoxic T-lymphocytes (EBV-CTLs),
following ex vivo activation of autologous T-cells in presence of IL-2 and lymphoblastoid cell lines (LCLs), represented by
EBV-infected immortalized B-lymphocytes. PBMC: peripheral blood mononuclear cells; EBV: EpsteineBarr virus; LCL:
lymphoblastoid cell lines; DC: dendritic cells; CTL: cytotoxic T-lymphocytes; IL-2: interleukin-2.

Figure 5. First (1G), second (2G), and third (3G) generation CAR, depending on the presence in the molecule of none, one or more
costimulatory domain. Courtesy of Perri F et al. WCRJ 2018; 5 (1): e1042.
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Figure 6. The twomain phases during which TME (tumor microenvironment) can inhibit T-Cells function and the possible therapies
able to circumvent this phenomenon.
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antibodies inhibiting PD-1/PDL-1 interaction have been tested in
clinical trials. Figure 6 describes different ways by which TME may
inhibit T-cells activation.
While the role of CTLA-4 inhibitors is not yet established in

SCCHN, anti-PD-1 has yet been registered as standard therapy
because of results of two phase III clinical trials (CheckMate 141 and
KEYNOTE-012). Anti-PDL-1 is yet experimental and they are
currently not used in the clinical practice.
The phase III CheckMate 141 clinical trial randomized patients

with recurrent SCCHN, whose disease had progressed within 6
months after platinum-based chemotherapy, to receive nivolumab or
to standard single-agent systemic therapy (methotrexate, docetaxel, or
cetuximab) of investigator's choice. This study showed a statistically
significant improvement in overall survival (OS) from 5.1 months in
standard therapy arm to 7.5 months in the nivolumab arm. The
response rate (RR) was 13.3% in the nivolumab group versus 5.8% in
the standard-therapy group [53].
Interestingly, a subgroup analysis revealed that among patients

with p16-positive tumors, the median OS was 9.1 months in the
nivolumab group versus 4.4 months in the standard-therapy group
(hazard ratio for death, 0.56), and, among patients with p16-negative
tumors, the median overall survival was 7.5 versus 5.8 months (hazard
ratio, 0.73, P ¼ 0.55) [53].
In conclusion, in the ITT (intent to treat) population, nivolumab

appeared to be more efficacious than standard therapy, showing a
longer OS than standard therapy, but, after a subgroup analysis,
survival benefit seemed to be stronger in p16 positive patients. In
addition, the effect of nivolumab on OS was more pronounced in
PD-L1 positive patients.

The phase Ib KEYNOTE-012 enrolled 60 patients with recurrent/
metastatic SCCHN, irrespective of previous therapy, but showing a
PD-L1 expression of at least 1% of tumor cells. Patients received the
PD-1 inhibitor pembrolizumab 10 mg/kg intravenously every 2
weeks. A subgroup analysis revealed that a significant increase in ORR
was observed for PD-L1-positive versus -negative patients (22% v
4%; P ¼ 0.021) [54].

A recently presented analysis from the KEYNOTE-012 study
showed that patients with a T-cell inflamed gene expression profiling
(IFN-g gene expression profile, GEP) such as patients whose tumor
showed a high mutational load (ML) achieved an increased response
rate to pembrolizumab [55].

The phase 3 KEYNOTE-040 trial [56] investigated pembrolizu-
mab in patients with recurrent/metastatic HNSCC after a plati-
num-based first-line chemotherapy. Four hundreds and ninety five
patients were randomized to either pembrolizumab 200 mg every 3
weeks or treatment of the investigator's choice (methotrexate,
docetaxel, or cetuximab). Pembrolizumab prolonged both OS and
PFS, even though the statistical significance was not reached.
Nevertheless, in patients with a PD-L1 combined positive score of
at least 1%, median OS was 8.7 months with pembrolizumab versus
7.1 months with standard therapy (P ¼ 0.0078), while in patients
with a combined positive score (TPS) more than 50%, median OS
was 11.6 versus 7.9 months with pembrolizumab and standard
therapy, respectively (P ¼ 0.0017).
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Finally, the recent results of the KEYNOTE-048 trial have
highlighted the significant advantage in term of response rate and
survival obtained by pembrolizumab alone or in combination with
the chemotherapy (cisplatin and 5-fluorouracil) if compared with the
standard cisplatin-cetuximab-5fluorouracil. Notably, in the subgroup
of patients whose tumor expressed high levels of PDL-1, the
abovementioned advantage resulted much more strike, and in
particular, the authors recommended to use pembrolizumab alone
in tumor whose combined positive score (CPS) was >20, and in
combination with chemotherapy in those with CPS >1 [57].

Resuming, both nivolumab (in United States and Europe) and
pembrolizumab can be considered a new standard of care in the
second-line treatment of patients with recurrent/metastatic SCCHN.
Notably, subgroups of tumors, for example, those expressing high
values of tissue PDL-1 and p16, seem to better respond to checkpoint
inhibitors. Some initial data are also in favor of a better response in
tumors with a so-called “inflamed gene expression profiling”.

These clinical observations pave the way to several hypotheses
about the presence of predictive factors of response to
immunotherapy.

Future Directions of Immunotherapy in SCCHN

Predictive Factors of Response to Immunotherapy
A number of immunomodulatory agents that target immune

system checkpoints such as the CTLA-4, the PD-1 or its ligand
PD-L1, have received regulatory approval for the treatment of
multiple cancers including SCCHN. However, a substantial
proportion of patients treated with checkpoint inhibitors have little
or no benefit at a cost of high toxicity. Hence, the identification of
molecular determinants of response to immunotherapy is needed.

PDL-1 Tissue Expression
CheckMate and KEYNOTE studies have investigated the impact

of PDL-1 tissue expression on response to immunotherapy, finding
conflicting results. The main conclusion which could be taken is that
overexpression of PDL-1 is related to better response to checkpoint
inhibitors [52e56]. Conceptually, overexpression of PD-L1 on
tumor cells would facilitate cancer immune evasion through the
inhibition of cytotoxic T-cell functions, thus, elevated expression of
PD-L1 by the tumor should correlate with worse differentiation and
poorer prognosis. On the other hand, PD-L1 expression on tumor
cells could be secondary to IFN-production by tumor-infiltrating
T-cells, which is normally associated with better outcome [29].
PD-L1 overexpression could be either a negative or positive
prognostic factor depending on the cancer, and in SCCHN, it
seems to be associated with good response to checkpoint inhibitors.

Characteristics of the Tumor-Immune Infiltrate
Recently, Nguyen et al. [58] demonstrated that patients with

highly immune-infiltrated SCCHN had significantly superior OS
compared with the patients with low tumor immune infiltration.
Interestingly, highly immune infiltrated SCCHN correspond to
tumors in which Th1 differentiation has occurred, and consequently,
in which a wide percentage of CD8þ T-cells are detected and a high
production of antitumor cytokines such as IFN-g is observed.

A high immune infiltrate might correlate with high cell mediate
immunity against cancer, thus with the development of a population
of TIL composed in prevalence by CD8þ T-cells, producing high
quantity of IFN-g, perforins, and granzyme.
Lately, Hanna et al. [59] identified a so-called inflamed SCCHN
phenotype, which correlates with good response to immunotherapy.
The inflamed SCCHN phenotype is characterized by a high CD8þ
rate and by a high expression of PD-1 and TIM-3. In the analysis
conducted by Mandal et al., the presence of the NK in the immune
infiltrate was also significantly correlated to immunotherapy response.
NK cells do not function solely as effectors of innate immunity.
Indeed, increasing evidences support the role for NK in influencing
key components of the adaptive immunity through their potent
secretion of IFN-g which helps shaping the immune tumor
microenvironment by activating the effectors of adaptive immunity
particularly the Th1 lymphocytes [28]. The CD56þ NK subpopula-
tion strongly influence the antitumor response and their percentage in
the immune infiltrate correlates with better response to immunother-
apy. The main conclusion is that SCCHN is one of the most highly
immune-infiltrated cancer types, and surely, it is the most highly NK
cell and Treg-infiltrated cancer type.

Interestingly, we can identify a broad diversity in the levels of
immune infiltration across SCCHN, which varies based on clinical
and genetic features, such as HPV status, molecular subtype (classic
versus atypical) and mutational smoking signature. Generally,
smoke-related SCCHN (which may be identified adopting the
mutational signature framework defined by Alexandrov) are
characterized by a low immune infiltrate, constituted in great part
by T-Reg and CD4þ Th2 lymphocytes, while virus-related SCCHN
are characterized by the reversal features. Virus-related SCCHN are
more suitable to respond to checkpoint inhibitors [28].

Tumor Mutational Burden
Analyzing the genetic signatures of tumors might identify patients

who have higher chances to respond to immunotherapy. Several
studies have shown how the mutational burden correlates with greater
efficacy of anti-PD-L1/PD-1 drugs [59,60]. Generally, a higher
number of mutations corresponds to a higher number of neoplastic
clones and thus to a higher number of TAA. A tumor characterized by
a high mutational burden should better respond to immunotherapy,
as demonstrated in different clinical trials [60,61]. This last concept is
not properly true for SCCHN, because smoke and alcohol-related
SCCHN, which are often characterized by a high mutational burden,
have a poor response to immunotherapy is compared with
HPV-related ones that instead show a lower number of DNA
mutations [28]. Concluding, tumor mutational burden alone is not
predictive of good response to immunotherapy in SCCHN.

Future Strategies: Combined Immunotherapy
A way to improve the efficacy of immunotherapy may be to use

drugs acting on different steps of the immune response against cancer.
Often, because of the development of alternative ways to circumvent
immune response, the tumor escape occurs. The CheckMate 651 is
an ongoing randomized trial investigating the combination of
nivolumab and ipilimumab compared with standard chemotherapy
(platinum, 5-fluorouracil, and cetuximab). The rationale of the study
is the double unlock of the CTL at the “priming phase” and at the
“effector phase” [62].

Epacadostat is an oral inhibitor of indoleamine- 2,3-dioxygenase 1
(IDO), an intracellular enzyme that initiates the first and rate-limiting
step of tryptophan degradation in the kynurenine pathway.
IDO-mediated depletion of tryptophan directly suppresses T-cells.
In addition, IDO supports the inflammation in the TME, the
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development of immune tolerance in immune cells, the suppression
of natural killer cells, and the generation and activation of Treg
[63,64].
In the phase II ECHO-202/KEYNOTE-037 trial 38 patients with

recurrent/metastatic SCCHN, progressing after at least one prior
chemotherapy regimen including a platinum agent, were treated with
epacadostat 100 mg daily and pembrolizumab 200 mg every 3 weeks.
The combination therapy achieved a disease response of 34% and a
disease control rate of 39% [65].
In addition to CTLA-4 and PD-1, TIL express a number of other

coinhibitory receptors, including TIM-3, LAG-3 and KIR, which
represent potential targets that could be exploited for inducing
antitumor immune responses. The T-cell immunoglobulin and
mucin-domain containing-3 (TIM-3) is a type I trans-membrane
protein expressed on cell surface of IFN-g-producing Th1 cells, Treg
and innate immune cells where it has been shown to suppress their
responses on interaction with their ligands. A number of report have
highlighted that high levels of Tim-3 expression correlate with
suppression of T-cell responses and T-cell dysfunction, also referred
to as T-cell exhaustion, a process of gradual loss of T-cell function
during chronic infections and tumor development [66]. Studies
carried out in several solid tumors have established that Tim-3 acts as
a negative regulator of antitumor immunity [67]. Interestingly,
Tim-3 expression on exhausted T-cells is often associated with PD-1
expression and is characteristic of the deeply exhausted T-cells,
supporting the functional correlation between Tim-3 and PD-1
during the development of T-cells exhaustion [68,69]. In preclinical
models the combination of Tim-3 and PD-1 pathways blockade is
more effective than single agents [70]. Targeting TIM-3 represent a
suggestive immunotherapy strategy in SCCHN.
Mishra et al. demonstrated that both CD8þ and CD4þ TILs

coexpress inhibitory receptors, PD-1 and LAG-3 (lymphocyte
activation gene-3) in preclinical models. LAG-3 is mainly expressed
by CD4þ Tregs and it plays a key role in suppressing CTL functions
in autoimmune responses, thus maintaining tolerance to self and
tumor antigens via dampening the activity of antigen-specific CD8þ
T-cells [71,72]. Overall these preclinical evidences provided the
rationale for clinical trials of TIM-3 and LAG-3 inhibitors currently
ongoing.
Conclusions
Despite the efficacy of chemotherapy and targeted therapy in solid
tumors, including SCCHN, intrinsic or acquired resistance is
common and negatively impacts patient outcome. During pharma-
cological treatment, DNA mutations frequently occur in tumor and
may be responsible for the emergence of alternative/escape pathways.
Immunotherapy may potentially circumvent the need to target

complex, redundant, and evolving molecular pathways. Immunother-
apy, in fact is based on the stimulation of the immune system of the
patients which may be rendered able to reject the tumor.
Several strategies of immunotherapy have been tested in head and

neck tumors, with conflicting results. In fact, most head and neck
tumors are resistant to immunotherapy ab initio, independently form
the strategy used. Checkpoint inhibitors have shown fairly good
results in clinical trials, if compared with vaccines and adoptive
immunotherapy, but also in this case, tumors develop resistance.
The step forward may be to better understand the immune

response which characterizes SCCHN, other than their biology, with
the aim to realize a well-shaped therapy, consisting in immune drug
combinations added or not to chemotherapy and or targeted therapy.

SCCHN is a very heterogeneous disease, being characterized from
the biological and immunological point of view by at least two
distinct entities, namely, the virus-related cancers and the mutagen-
s-related ones. The virus-related SCCHN is often a oligoclonal disease
with a low mutational burden and a low number of neoplastic clones
[20], other than an high immune infiltrate, composed mainly by
CD8þ T-lymphocytes and CD56þ NK cells, which exert a strong
cytotoxic activity against tumor cells. On the other hand, smoke and
alcohol-related SCCHN (mutagens related), is characterized by a high
mutational burden, a low grade of immune cells infiltration, most of
them being Treg lymphocytes, thus with a local strong immunosup-
pression. The knowledge of how immune response is dampened
leading to tumor progression, the so called “tumor escape”, is crucial
for organizing an effective immunotherapy against cancer.

Tumor escape is often the result of the T-cell exhaustion, a
mechanism which occurs via T-cellespecific intrinsic mechanisms,
such as the PD-1/PD-L1 pathway as well as other immunoregulatory
receptors including CTLA-4, TIM-3, LAG-3, and others [73e75].
In addition, T-cell exhaustion can result from T-cell extrinsic
pathways mediated by Treg, and myeloid-derived suppressor cells
(MDSCs). These cells exert their immunoinhibitory influence
primarily through secretion of immunosuppressive cytokines, such
as TGF-b.

Based on these findings, a number of drugs inhibiting these
pathways are currently under clinical investigation with the rationale
of inhibiting the T-cells exhaustion even with combined immu-
notherapy strategies.

Another important issue to consider is the presence of the
predictive factors of response to immunotherapy, which are still
lacking. Tissue PDL-1 concentration, the mutational burden, the
viral etiology and the characteristics of the immune tumor infiltrate
are under investigation and in the near future, their role will be better
elucidated.

Taken together clinical evidences suggest that virus-related tumors
better respond to immunotherapy strategies compared with the
mutagens-related ones. A step forward may be used, for the treatment
of mutagens-related SCCHN, a combination of new generation
checkpoint inhibitors, with the aim to reactivate a very depressed
immunity, which often characterizes them.

Finally, adoptive immunotherapy (i.e., vaccines) is currently in an
early stage of development and based on the available results, mainly
virus-related SCCHN, such as EBV-related nasopharyngeal and
HPV-related SCCHN, could benefit from them.
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