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ABSTRACT We report the complete genome sequences of 19 cluster CA bacteriophages
isolated from environmental samples using Rhodococcus erythropolis as a host. All of the
phages are Siphoviridae, have similar genome lengths (46,314 to 46,985 bp) and
G�C contents (58.5 to 58.8%), and share nucleotide sequence similarity.

A large collection of sequenced mycobacteriophages reveals substantial genetic
diversity and mosaic genomic architectures (1). Smaller collections of phages have

been isolated on other hosts within the phylum Actinobacteria, including Rhodococcus
spp. (2). Previously described Rhodococcus phages include DocB7, Pepy6, Pine5, Poco6,
REQ1, REQ2, REQ3, and E3 isolated on R. equi, and RER2, RGL3, and RRH1 isolated on
R. erythropolis, R. globerulus, and R. rhodochrous, respectively (3–7), representing nine
different genome types (2).

Students in the Howard Hughes Medical Institute (HHMI) Science Education Alliance–
Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program (8)
isolated phages infecting R. erythropolis RIA 643 using environmental samples from diverse
geographical locations (Table 1). Following purification and amplification, genomic DNA
was isolated and sequenced using Illumina MiSeq 150-base reads and assembled with
Newbler and Consed to major contigs with a 150-fold minimum coverage. Genomes were
annotated using DNA Master (http://cobamide2.bio.pitt.edu/), Glimmer (9), GeneMark
(10), ARAGORN (11), and tRNAscan-SE (12). Functions were assigned using BLASTp (13),
HHpred (14), and Phamerator (15). The 19 genomes have similar lengths (46,314 to
46,985 bp) and G�C contents (58.5 to 58.8%), and have defined genome ends with
10-base 3= single-stranded extensions (5=-CGGCCGTGAT). All share nucleotide sequence
similarity (�93% pairwise DNA identity) with each other and with phages RER2 and
RGL3 (7), and are grouped in cluster CA. CosmicSans, Lillie, Rhodalysa, and TWAMP were
isolated from distinct but geographically similar locations and have similar genomes,
differing by 2 to 6 nucleotides.

We identified 64 to 67 predicted protein-coding genes in each genome, of which
~50% were ascribed putative functions, as well as 2 to 3 tRNA genes located approx-
imately 1.5 kbp from the left genome end. The genome architectures are reminiscent
of the cluster A mycobacteriophages such as L5 (16), with the virion structure and
assembly genes transcribed rightward in the left arms and regulatory and replication
genes transcribed leftward in the right arms. All of the cluster CA Rhodococcus phages
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are predicted to be temperate and encode putative immunity repressors (e.g., Alatin
gp57) and serine integrases (e.g., Alatin gp29) close to the genome center; the
chromosomal integration site is not known. Stable lysogens have been isolated for
several of the phages, and all of those tested are homoimmune.

Although these Rhodococcus phages do not share extensive nucleotide sequence
similarity to the cluster A mycobacteriophages, over 40% of the predicted gene
products have amino acid sequence similarity to cluster A gene products. They likely
also share a regulatory system with cluster A phages in which the immunity repressor
binds to multiple short (13-bp) asymmetric repeats (operators and stoperators) located
in small intergenic gaps (17, 18) preventing lytic gene transcription in the prophage.
The cluster CA Rhodococcus phages each have up to 20 copies of repeated sequences
related to the 13-bp consensus 5=-TGTCTATTGTCAA, positioned in intergenic spaces
and primarily in one orientation with respect to the direction of transcription. This
array of features shared between cluster A mycobacteriophages and cluster CA
Rhodococcus phages suggests they may warrant inclusion in a higher taxonomic
level, a “supercluster” (19).

Accession number(s). The 19 Rhodococcus erythropolis phage genome sequences
are available in GenBank with accession numbers as shown in Table 1.
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