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Simple Summary: The aim of this study is to investigate the relationship between fecal microbiota
and the backfat thickness of pigs by 16S rRNA gene sequencing. Our study found that there were
significant differences in the composition of microbiota at the species level, characterized by a
higher abundance of Lactobacillus reuteri (L. reuteri) in pigs with low-backfat thickness. Additionally,
functional profiling of microbial communities indicated that the isoquinoline alkaloid biosynthesis,
arachidonic acid metabolism, and styrene degradation were significantly different between low- and
high-backfat thickness groups. Furthermore, feeding L. reuteri reduced the intake-to-gain ratio and
had the potential to reduce backfat thickness. These findings show that microbiota could alter the
production performance of pigs.

Abstract: The backfat thickness of pigs not only affects the physical properties and taste of meat, but
it also closely relates to the reproduction performance of sows. Accumulating evidence indicates
that, apart from genetic factors, gut microbiota can also modulate the fat deposition and muscle
growth. However, the differential microbiota in pigs with different backfat thickness, and whether
microbiota affects backfat thickness, remains elusive. Firstly, 16S ribosomal RNA (16S rRNA) gene
sequencing was performed on 62 fecal samples from pigs with different backfat thicknesses, and the
compositions of microbiota among different groups with different backfat thicknesses were different.
The abundance of Lactobacillus. reuteri (L. reuteri) and Prevotella sp RS2 was significantly higher in pigs
with low-backfat thickness than that in pigs with middle and high-backfat thickness; meanwhile, the
abundance of Desulfovibrio piger was significantly lower (p < 0.05) in pigs with low-backfat thickness.
Furthermore, the functional profiling of microbial communities suggested that the abundance of
isoquinoline alkaloid biosynthesis and styrene degradation were significantly lower (p < 0.05) in
the low-backfat thickness group than that in middle and high-backfat thickness groups. Finally,
L. reuteri fed to Meishan piglets was capable of improving the production performance and had the
potential to reduce backfat thickness. This study provides new evidence that microbiota can regulate
the phenotype of the host, and dietary supplementation with L. reuteri can improve the production
performance of piglets.

Keywords: pigs; fecal microbiota; backfat thickness; Lactobacillus reuteri

1. Introduction

The thickness of the backfat of pigs not only affects the physical and chemical proper-
ties of meat, but it is also closely associated with the reproductive performance of sows [1].
Due to the long-term breeding process, excessive attention has been paid to the selection of
backfat thickness, lean meat percentage, and the growth rate, which seriously affect meat
quality. On the one hand, excessive backfat thickness hinders the reproductive ability of
sows [2,3]. On the other hand, during the stage of gestation, too-thin backfat thickness
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reduces the number of swine born alive. Thus, suitable and stable backfat thickness is
essential for maintaining the reproductive performance of sows [4]. Importantly, fat de-
position and muscle growth on the back are a very complex process. A large number of
genes are involved in fat deposition and muscle growth [5,6]. Additionally, environmental
factors, including nutrition and feeding management, also affect fat deposition.

It is currently believed that backfat thickness is related to genetic factors. Backfat
thickness is a quantitative trait with economic value and has high heritability. Five hundred
and ninety-four quantitative trait loci (QTL) were related to the average backfat thickness
(https://www.animalgenome.org/cgi-bin/QTLdb/SS/qtrait?trait_ID=2, accessed on 26
February 2022) Additionally, some genes were reported to have the function of regulating
backfat thickness. Insulin-like growth factor (IGF2) is one of the genes related to fat
deposition, which is highly expressed in the liver, and plays a major role in cell proliferation,
differentiation, transformation, and metastasis [7]. Additionally, the IGF2 gene of pigs
is related to the growth rate, the content of intramuscular fat, the thickness of backfat,
and the eye muscle area [7]. Lysine demethylase 2A (KDM2A), which participates in cell-
cycle transformation and DNA methylation, is linked to the average daily gain (ADG)
of pigs from birth to market [7]. Furthermore, translation elongation factor 1 (TEF1) is
highly expressed in skeletal muscle, is a critical transcription factor, and is TEF-1’s highly
conserved subunit TAE can interact with the M-CAT element, and the latter of which
regulates the expression of muscle-specific genes [8,9]. Genes for the ADG and backfat
thickness of pigs are mainly located on chromosomes 1, 2, 4, and 7 [10].

Pig intestines are rich in microorganisms, which play an important role in the growth
and development of the animal body. Intestinal microbiota, the largest symbiotic ecosystem
within the host, can interact with the intestinal mucosa and maintain intestinal homeostasis.
Importantly, intestinal microorganisms can be involved in the process of energy intake
and carbohydrate metabolism. Certain intestinal microorganisms produce antibacterial
substances, such as antibiotics, lipopeptides, and glucanase [11]. Additionally, microorgan-
isms can also stimulate the body to produce defensins and interferons to resist the invasion
of external pathogens [12,13]. Recent studies have shown that intestinal microbiota can
regulate the fat deposition of the host. Firmicutes in mouse intestines can promote fat
deposition [14]. Additionally, it was found that obese pigs have a lower diversity in gut
microbiota than lean pigs, and the abundance of Firmicutes is lower than that of lean
pigs. Microbiota depletion promotes the browning of white adipose tissue and reduces
obesity, and it can also promote the development of functional beige fat in the inguinal
subcutaneous adipose tissue and perigonadal visceral adipose tissue [15]. L. reuteri is a
kind of probiotic that colonizes a variety of mammals, and the abundance of L. reuteri is
different in different individuals [16]. Serval beneficial effects of L. reuteri has been reported.
Firstly, L. reuteri can secrete some bioactive molecules. L. reuteri was reported to secrete
reuterin to inhibit the growth of harmful bacteria, such as Enterotoxigenic Escherichia coli
and Salmonella [17]. In addition, L. reuteri can also increase the content of butyric acid in the
intestine which helps maintain intestinal homeostasis. Moreover, L. reuteri, as a lactic acid
bacterium, is capable of producing lactic acid and a variety of enzymes in animal intestines,
such as lipase and bile salt hydrolase, which are beneficial in improving the pH of animal
intestines, inhibit bacterial growth, and improve feed utilization. Additionally, L. reuteri
can synthesize B vitamins to enhance the growth performance of poultry and domestic
animals [18]. Overall, L. reuteri plays a major part in the metabolism and the development
of the intestine.

The Chinese Meishan pig breed is well-known for its high reproductive performance,
great meat physical properties, and tolerance for rough feed. It is also known that Meishan
pigs have a thicker backfat than commercial breeds, such as Landrace [19,20]. Hence, how
to reduce the backfat thickness of Meishan pigs is one of the issues that the pig industry
needs to address. Gut microbiota can regulate phenotypes, including the growth and
development of mammals by different mechanisms. Herein, the purpose of this study is to
explore the changes of fecal microbes from pigs with different backfat thicknesses by using
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16S rRNA gene sequencing, and to further investigate the potential impact of microbiotas
on the productive performance and backfat thickness.

2. Materials and Methods
2.1. Animal Management and Sample Collection

A total of 62 150-day-old crossbred pigs (Large White × Landrace, all gilts) with a
similar weight (85 ± 2.0 kg) from a large-scale pig farm in Jiangsu Province were used for
the sample collection. All pigs were kept on the same farm under standardized conditions
with ad libitum access to water, and a commercial formula diet was provided to pigs two
times a day. Pigs were randomly distributed to pens and there were 15–20 pigs per pen. All
pigs were in healthy condition and had not been fed with antibiotics for at least 3 months
prior to collecting fecal samples. Pigs were divided into three groups on the basis of backfat
thickness (7–14 mm, n = 23; 14–20 mm, n = 23; 20–28 mm, n = 16). The backfat thickness
of the pigs was measured by using an A-mode ultrasonography Lean-meater (Renco,
Minneapolis, MN, USA) and measurements were taken by the same employee throughout
the trial. The total measurement range and accuracy of this apparatus, including skin,
was 4–35 mm, ±1 digit. The operating procedures were as follows: briefly, the P2 site
(approximately 6–8 cm away from the dorsal midline at the last rib curve) was found,
and the couplant was applied to the pigs after the excess hair was removed. Then, the
probe was closely fitted to the measured site, and the backfat thicknesses of the pigs were
measured based on the screen of the machine.

Fresh stool was collected in sterile tubes by stimulating the perianal area when pigs
were 150-days old with an empty stomach, and the fresh stool was snap-frozen in liquid
nitrogen, then stored at −80 ◦C until DNA extraction.

2.2. DNA Extraction and PCR Amplification

The fecal samples were thawed and ~300 mg fecal samples were utilized to extract the
microbial genomic DNA by the QIAmp DNA Stool Mini Kit (Qiagen, Hilden, Germany).
The DNA purity and yield were examined through 1% agarose gels. The V4 region of
the 16S rRNA gene was chosen for the identification of bacterial species. The primer pair
341F/806R (341F: CCTACGGGNGGCWGCAG; 806R: GGACTACHVGGGTATCTAAT) was
used to amplify the V4 region. PCR reactions were carried out in triplicate with a 50 µL
mixture consisting of 5 µL of KOD buffer, 5 µL of 2 mM dNTP, 3 µL of 25 mM MgSO4, 1.5 µL
of forward/reverse primers (10 mM), 1 µL of KOD Polymerase, and 100 ng of template
DNA (Toyobo, Osaka, Japan). Barcoded V4 amplicons were sequenced on an Illumina
HiSeq2500 platform (Illumina, San Diego, CA, USA) following the standard protocols.

2.3. 16. S Ribosomal RNA Sequencing and Analysis
2.3.1. Quality Control and Reads Merge

Briefly, the primer, low-quality, and barcode sequences were removed to obtain clean
sequence reads. FLASH (Version 1.2.11) [21] was used to merge the paired-end clean reads
with a minimum overlap of 10 bp and mismatch error rates of 2%. The quality control
details are shown in Supplementary Table S1.

The UPARSE (Version 9.2.64) [22] pipeline was used to cluster effective tags into
operational taxonomic units (OTUs) of 97% similarity. We removed OTUs with a relative
abundance of 0.01% and less than 1% presence in experimental pigs from further analysis.
The tag sequence with the highest abundance was elected as the representative sequence
within each cluster. Between groups, Venn analysis was performed in the R project’s
VennDiagram package (Version 1.6.16) [23] and an UpSet plot was performed in the R
project’s UpSetR package (Version 1.3.3) [24] to identify unique and common OTUs.

2.3.2. Alpha and Beta Diversity Analysis

Chao1 and Shannon indices were computed by QIIME (Version 1.9.1) [25]. OTUs’
rarefaction curve was generated in the R project’s ggplot2 package (Version 2.2.1) [26].
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Alpha index comparisons in different groups were calculated using the Kruskal–Wallis H
test in the R project’s Vegan package (Version 2.5.3) [27].

The R project’s Vegan package (Version 2.5.3) [27], plotted in the R project’s ggplot2
package (Version 2.2.1) [26], was applicated to compute multivariate statistical techniques,
including principal coordinates analysis (PCoA), non-metric multidimensional scaling
(NMDS) of the weighted-UniFrac, and Bray–Curtis distances. The R project’s Vegan
package was used to analyze the Kruskal–Wallis H test.

2.3.3. Function Prediction

The microbial gene function was predicted using the PICRUSt software (Version
2.1.4) [28]. The predicted genes and their functions were then annotated using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database. Welch’s test was used to calcu-
late function differences between groups in the Vegan package of the R project (Version
2.5.3) [27].

2.4. Meishan Pigs Feeding Experiments

Eighteen 35-day-old female Meishan pigs of a similar weight were separated into
two groups randomly (n = 9 per group) and kept under standardized conditions. All pigs
had ad libitum access to water and were orally administrated with corn- or soy-based
fodder, or L. reuteri (CICC 6118) plus basal fodder three times per day. The control group
were fed with basal fodder for 35 days. The L. reuteri powder (5 × 1010 CFU/kg) evenly
added into the basal fodder was fed to pigs for 10 days, and then changed to basal fodder
for 25 days.

The body weight of the Meishan pigs with an empty stomach was recorded at day 35
and day 70, and the weight gain and the average daily gain (ADG) of pigs during the
experiments were recorded. The backfat thickness at the back P2 point was recorded
using an A-mode scanner Lean-meater (Renco, Minneapolis, MN, USA) at the end of the
experiments. Additionally, the intake amount of the pigs was calculated based on the total
amount of the fodder and the daily feed refusals each morning, and the average daily
feed intake (ADFI) was calculated. The feed conversion rate was calculated by the ratio
of ADFI-to-ADG. SPSS (Version 21.0) software (IBM Corp, Armonk, NY, USA) was used
to carry out an independent sample t-test and a one-way analysis of variance (ANOVA),
and the data are expressed as means ± standard deviation (Mean ± SD). * p < 0.05. NS, not
significance.

3. Results
3.1. The Richness of Fecal Microbes in Pigs with Different Backfat Thickness

The backfat thickness was measured from different pigs by using the A-mode ul-
trasonography. The use of L, M, and H represent low- (7–14 mm, n = 23), middle-
(14–20 mm, n = 23), and high-backfat thicknesses (20–28 mm, n = 16), respectively. The
16S rRNA sequencing generated 6600919 clean reads and 6574015 clean tags from 62 sam-
ples (Supplementary Table S1). The rarefaction curve was performed to compare species
richness in different groups, which suggested the richness was similar among different
groups (Figure 1a). In order to further detect the richness of fecal microbes in pigs with
different backfat thicknesses, the Chao1 index and the Shannon index were used to reflect
the alpha diversity in separate groups. The Chao1 index of the fecal microbes of the low-,
middle-, and high-backfat thickness groups was 1555.09, 1568.76, and 1629.25, respectively.
In addition, the Shannon index showed the diversity of fecal microbes with different backfat
thicknesses, which was 7.22, 7.20, and 7.28, respectively. Moreover, the Kruskal–Wallis
(KW) rank sum test was performed based on the Chao1 and Shannon index to test the
significance, and both the Chao1 index (p = 0.627) and the Shannon index (p = 0.750) did
not exhibit a significant difference among different groups (Figure 1b,c).
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3.2. Analysis of Microbial Community and Structure Composition

A cluster analysis of OTUs was carried out to explore the structure and composition of
different groups. Supplementary Table S2 lists the details of tags and OTUs from different
samples. The Venn chart shows that there were 1189 shared OTUs in pig feces with
different backfat thicknesses, accounting for 80% of all OTUs; there were 94 unique OTUs
for the low-backfat thickness group, 60 unique OTUs for the middle-backfat thickness
group, and 130 unique OTUs for the high-backfat thickness group (Figure 2a), which
suggests that the compositions among different groups were different and there was a
potential relationship between the phenotype of backfat thickness and microbiotas. OTU
analysis also revealed that, at the phylum level, the Bacteroides and Firmicutes accounted
for the highest proportions in each group, and even exceeded 90% (Figure 2b). At the
species level, Streptococcus, Lactobacillus gasseri, Lactobacillus reuteri, Ruminococcus flavefaciens,
Bacteroidales bacterium H4, and Prevotella sp RS2 differed in composition among the three
groups (Figure 2c). In order to further explore the differences in the bacteria species of
pigs among different groups, Welch’s t-test was computed. The results showed that the
abundance of L. reuteri was significantly higher in the low-backfat thickness group than that
in the high-backfat thickness group (p = 0.013) and in the middle-backfat thickness group
(p = 0.007) (Figure 2d). Prevotella sp RS2 (p = 0.013) also had a higher abundance in the low-
backfat thickness group compared to that in the high-backfat thickness group. Otherwise,
Desulfovibrio piger (p = 0.036) had a lower abundance in the low-backfat thickness group
than that in the high-backfat thickness group. Additionally, the abundance of Bacteroidetes
bacterium H4 was higher in the middle-backfat thickness group compared to that in the
high-backfat thickness group. These results indicate that the microbial community and
structure compositions among groups with different backfat thickness were different, and
L. reuteri may take part in regulating backfat thickness.



Vet. Sci. 2022, 9, 527 6 of 13
Vet. Sci. 2022, 9, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Microbial composition and diversity among the groups with different backfat thickness. 
(a) Venn plot of OTU numbers in each group with different backfat thickness. (b) Summary of bac-
terial phylum detected in the three groups. (c) Summary of bacterial species detected in the three 
groups. (d) Significance analysis of species abundance between different backfat thickness groups 
based on the Welch’s t-test. 

3.3. Community Structures of Different Backfat Thickness Groups 
Beta diversity was analyzed to reflect the difference among different groups. The re-

sults constructed by an unweighted pair group method with arithmetic mean (UPGMA) 
algorithm reflected the similarities and differences between multiple samples. UPGMA 
clustering of microbiome taxonomic profiles among groups using the Bray distance did 
not show a clear separation among the three groups (Figure 3a). In addition, PCoA based 
on the Bray–Curtis distance and weighted-UniFrac distance, respectively, was performed, 
and the results showed that the samples did not obviously cluster based on neither the 
Bray–Curtis distance (ADONIS; L vs. M vs. H, p = 0.109), nor the weighted-UniFrac dis-
tance (ADONIS, L vs. M vs. H, p = 0.257) (Figure 3b). 

In order to show the non-linear structural relationship of the ecological data between 
the samples, in this study, we used NMDS to display the species information contained 
in the samples in the form of points in a multi-dimensional space. The results indicated 
that there was no significant separation between samples from different groups based on 
neither the Bray distance (ANOSIM; L vs M vs. H, p = 0.272), nor the weighted-UniFrac 
distance (ANOSIM; L vs. M vs H, p = 0.346) (Figure 3c). 

Figure 2. Microbial composition and diversity among the groups with different backfat thickness.
(a) Venn plot of OTU numbers in each group with different backfat thickness. (b) Summary of
bacterial phylum detected in the three groups. (c) Summary of bacterial species detected in the three
groups. (d) Significance analysis of species abundance between different backfat thickness groups
based on the Welch’s t-test.

3.3. Community Structures of Different Backfat Thickness Groups

Beta diversity was analyzed to reflect the difference among different groups. The
results constructed by an unweighted pair group method with arithmetic mean (UPGMA)
algorithm reflected the similarities and differences between multiple samples. UPGMA
clustering of microbiome taxonomic profiles among groups using the Bray distance did not
show a clear separation among the three groups (Figure 3a). In addition, PCoA based on the
Bray–Curtis distance and weighted-UniFrac distance, respectively, was performed, and the
results showed that the samples did not obviously cluster based on neither the Bray–Curtis
distance (ADONIS; L vs. M vs. H, p = 0.109), nor the weighted-UniFrac distance (ADONIS,
L vs. M vs. H, p = 0.257) (Figure 3b).

In order to show the non-linear structural relationship of the ecological data between
the samples, in this study, we used NMDS to display the species information contained
in the samples in the form of points in a multi-dimensional space. The results indicated
that there was no significant separation between samples from different groups based on
neither the Bray distance (ANOSIM; L vs. M vs. H, p = 0.272), nor the weighted-UniFrac
distance (ANOSIM; L vs. M vs. H, p = 0.346) (Figure 3c).
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3.4. Functional Profiling of Microbial Communities in Different Backfat Thickness Groups

PICRUSt software was utilized to investigate the function of microbiota given the 16S
rRNA sequencing genome [28]. In order to further research the differences in the KEGG
pathways among diverse groups, the function distribution heat map of all groups was
drawn. The results showed that the abundance in the metabolic pathways was high in all
three backfat thickness groups (Supplementary Table S3), which suggests that microbiotas
regulate the host phenotype mainly by affecting the process of metabolism. Additionally,
the signaling pathways in the low-backfat thickness group were enriched in methane
metabolism and pyrimidine metabolism. The high-backfat thickness group had a higher
relative abundance in ribosomes, purine metabolism, amino-acid-related enzymes, and
aminoacyl-tRNA biosynthesis functional pathways (Figure 4a and Supplementary Table S4).
As Figure 4b shows, the isoquinoline alkaloid biosynthesis (p = 0.0046), arachidonic acid
metabolism (p = 0.0182), and styrene degradation (p = 0.0118) of the functional pathway
was exhibited significantly less in the low-backfat thickness group compared with that in
the high-backfat thickness group. Additionally, the abundance of isoquinoline alkaloid
biosynthesis (p = 0.0468) and styrene degradation (p = 0.0293) was also significantly lower in
the low-backfat thickness group than that in the middle-backfat thickness group (Figure 4b),
suggesting that the isoquinoline alkaloid biosynthesis and styrene degradation influenced
by microbiotas plays an important role in backfat thickness. Additionally, the abundance of
beta-lactam resistance, ion channels, and staphylococcus aureus infection was significantly
lower in the middle-backfat thickness group than that in the high-backfat thickness group
(Figure 4b). Overall, these results suggest that microbiotas may influence backfat thickness
by regulating the functions of isoquinoline alkaloid biosynthesis and styrene degradation.
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3.5. Feeding L. reuteri Improved Piglets Production Performance

The results described above indicate that the abundance of L. reuteri in the low-backfat
thickness group is greater than that of the high-backfat thickness group, hinting at a
potential role that L. reuteri plays in the phenotype of backfat thickness. The Meishan pig
breed has thicker backfat than commercial breeds. In order to further investigate whether
L. reuteri also has the same effect on Meishan pigs with a thicker backfat thickness, the
animal experiment was constructed and the Meishan piglets were continuously fed with
L. reuteri for 10 days. The results showed that the weight gain of pigs fed with L. reuteri
was significantly higher than that of the control group in the entire state under the same
management condition (p < 0.05) (Figure 5a). Moreover, the average daily gain (ADG)
during the experiments was also significantly higher than that of the control group (p < 0.05)
(Figure 5b). Importantly, the backfat thickness of the control group was 6.33 mm, whereas
the backfat thickness of the treated group was 5.96 mm, suggesting that feeding Meishan
piglets with L. reuteri for only 10 days could reduce their backfat thickness (p > 0.05)
(Figure 5c). Meanwhile, to detect the feeding utilization rate influenced by L. reuteri,
the feed-to-gain ratio was calculated and compared between the two groups. Notably, no
obvious difference was observed in the intake between the two groups (p > 0.05) (Figure 5d).
The feed conversion rate was calculated by the ratio of average daily feed intake-to-average
daily gain, and the results showed that the ratio of feed-to-meat in the L. reuteri-treated
group was significantly lower than that of the untreated group (p < 0.05) (Figure 5e),
indicating that feeding Meishan piglets with L. reuteri could improve their feed utilization
and production performance.
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4. Discussion

Backfat thickness is an important trait which reflects the body condition of pigs. The
backfat thickness of sows before farrowing has a more significant impact on the birth weight
and the number of piglets born alive [1]. Studies have shown that the optimal backfat
thickness range of sows is different at different stages [29,30]. The sow’s backfat thickness
should not be less than 15 mm during breeding, and the optimal backfat thickness gradually
increases with the development of gestation, but the highest backfat thickness should not
be greater than 22 mm. Additionally, backfat thickness influences sow’s lactation, over-
thick or over-thin backfat thickness impairs the lactation of sows and hinders the uterus
function [31]. Hence, maintaining suitable and stabled backfat thickness throughout the
reproductive cycle is more important than fixing this parameter by breeding alone. Thus, it
is essential to maintain a moderate backfat thickness and explore the factors which affect
backfat thickness. However, the relationship between microbiota and backfat thickness,
and how microbiota regulates the backfat thickness and production performance of pigs,
remains unknown. This study found that an abundance of L. reuteri was higher in pigs with
low-backfat thickness, and dietary supplementation of L. reuteri has the potential to reduce
the backfat thickness and improve the performance of Meishan piglets, which provides
new evidence that the feeding of probiotics is beneficial for the growth and development
of animals.

The gut microbiota has the capability to change the phenotypes of the host; intrigu-
ingly, it confers the host the ability to consume intractable food sources, which opens a new
ecological possibility to the host. Accumulating evidence suggests that the gut microbiota
is linked to many different modern-day illnesses, such as obesity [32,33] and diabetes [34].
Studies in humans and mice have demonstrated that, in obese individuals, the Firmicutes
had a larger proportion [35], and Bacteroides had a lower proportion [36]. The abun-
dance of Bactericide thetaiotaomicron, which can secrete short-chain fatty acids to inhibit
the accumulation of excess fat and prevent obesity, was reduced in obese individuals [32].
Additionally, the obesity-associated microbiota alters the host’s energy harvesting and fat
deposition. Intestinal microbiota can regulate central appetite and food-reward signaling,
which together have crucial roles in obesity [37]. Pigs are considered to be biomedical
models for energy metabolism and obesity in humans because of their similar metabolic
features. In this study, among the groups with different backfat thicknesses, the proportions
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of Firmicutes and Bacteroides were in higher abundance. Elevated levels of Firmicutes and
depleted levels of Bacteroidetes were identified in obese individuals [38]. Moreover, all
three groups with different backfat thicknesses had 1189 shared OTUs: the difference was
that there were 94 unique OTUs in the low-backfat thickness group, 60 unique OTUs in the
middle-backfat thickness group, and 130 unique OTUs in the high-backfat thickness group,
which suggested that the compositions and the structures of microbiota from pigs with
different backfat thickness were distinct. These results prompted the notion that there may
be one or some certain bacteria that could affect the fat deposition and further influence
the growth and development of pigs. In line with previous studies which indicated that
fatness-associated OTUs were mainly ascribed to Prevotella [39], the abundance of Prevotella
sp RS2 in the low-backfat thickness group was much higher than that of the middle-backfat
thickness group and the high-backfat thickness group, suggesting that Prevotella is able to
regulate lipid metabolism. In this study, importantly, we also found that, compared with the
high-backfat thickness group and aside from Prevotella sp RS2, the abundance of L. reuteri
was also higher in the low- and middle-backfat thickness group, hinting that L. reuteri may
participate in the regulation of the fat deposition of the back. Jiang et al. indicates that
Lactobacillus reuteri A9 and Lactobacillus mucosae A13 reduced total cholesterol levels [40].
Lactobacillus reuteri HI120 also has the potential to reduce serum cholesterol levels in obese
mice [41]. A recent study also reported that, in obese mice models, Lactobacillus reuteri J1
changes gut microbiota to prevent obesity by regulating bile acid metabolism [42]. Taken
together, these results suggest that Prevotella and L. reuteri may play essential roles in the
fat deposition of backfat by regulating lipid metabolism, and they have the potential to
prevent obesity.

The Meishan pig breed is a Chinese indigenous pig breed which is well known for its
precocious and prolific traits [43,44]. Nevertheless, the Chinese Meishan pig breed has a
higher backfat thickness than that of other commercial pig breeds, such as Landrace [19,20],
and the too-high backfat thickness of the Meishan pig breed is an issue that affects the
higher lean-meat percentage [45]. Hence, reducing the backfat thickness of the Meishan
pig breed by a convenient method, such as feeding probiotics, is an effective way to change
this phenotype. Weaning at around 28 to 35 days old is a stressful event which impairs
the function of the intestinal and immune systems and further results in the reduced
production performance of piglets [46,47]. Furthermore, the nursing phase of piglets after
weaning has a profound influence on the growth and development of pigs. Hence, the
feeding management of nursing pigs is very vital to the pig industry. In this study, we
found that L. reuteri with a higher abundance in crossbred gilts with low-backfat thickness
can also influence the production performance of Meishan piglets. Feeding piglets with
L. reuteri significantly increased the average daily gain and reduced the feed-to-gain ratio
of piglets. In accordance with the study in which oral administration of L. reuteri D8
significantly increased the body weight and improved the development of intestines of
3-day-old Meishan piglets [48], the increased mucosal, villi length, lipase, and protease may
contribute to the improved production performance of Meishan piglets [49]. Additionally,
L. reuteri fed to piglets reduced backfat thickness by 0.37 mm on average, although it did
not reach the significant level. This may be due to the short feeding period, suggesting
that feeding L. reuteri has the potential to reduce the backfat thickness of Meishan pigs.
Moreover, experiments with a longer feeding time and more pigs will be needed to further
determine the effect of L. reuteri on fat deposition. Studies report that some metabolites
produced by L. reuteri can participate in the regulation of the pathways in lipid metabolism,
including the AMPK signaling pathway. The short-chain fatty acids produced by L. reuteri
may reduce backfat thickness of Meishan piglets by regulating lipid metabolism [50–52].
Collectively, feeding L. reuteri to piglets could alter the metabolism process and improve
feed utilization.
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5. Conclusions

Taken together, in this study, we found that L. reuteri has a higher abundance of fecal
microbiota from pigs with low-backfat thickness, and the biological functions of microbiota
is mainly associated with the metabolism pathway. Importantly, feeding L. reuteri to
Meishan pigs could enhance their average daily gain and decrease their feed to gain ratio.
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