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Abstract: Dynamics of mRNA from circulating tumor cells (CTCs), mRNA from extracellular vesicles
(EVs), and cell-free DNA (cfDNA) were assessed to examine the relevance of a longitudinal multi-
parametric liquid biopsy strategy. Eighteen milliliters of blood was drawn from 27 hormone receptor-
positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer
(MBC) patients at disease progression and at two subsequent radiologic staging time points. CTC
mRNA and EV mRNA were analyzed using multi-marker qPCR, and cfDNA was analyzed using
targeted next-generation sequencing (NGS). The presence of ERBB2 or ERBB3 overexpression signals
in CTCs significantly correlated with disease progression (87% specificity, 36% sensitivity, p-value
= 0.023), and the presence of either ERBB3 signals in CTCs or EVs or cfDNA variants in ERBB3
also showed a significant association with progressive MBC. Fluctuations during treatment were
detected in the EV fraction with the appearance of hitherto undetected ERCC1 signals correlating with
progressive disease (97% specificity, 18% sensitivity, p-value = 0.030). Allele frequency development
of ESR1 and PIK3CA variants detected at subsequent staging time points could be used as a predictor
for therapy success and, importantly, might help guide therapy decisions. The three analytes, each
with their own unique features for disease monitoring, were shown to be complementary, underlining
the usefulness of the longitudinal multi-parametric liquid biopsy approach.

Keywords: multi-parametric; multi-modal; multi-analyte; follow-up; serial sampling; gene expres-
sion; molecular signature; mutation; next-generation sequencing; unique molecular indices

1. Introduction

Liquid biopsies provide analytes that are powerful for disease monitoring and for
the identification of molecular disease features [1,2]. In contrast to spatially and tempo-
rally limited tissue biopsies, liquid biopsies can serve as a real-time snapshot to mirror
tumoral heterogeneity [3]. Besides the determination of somatic alterations and disrupted
pathways, liquid biopsy testing harbors great potential for sensitive detection of minimal
residual disease (MRD) or therapy resistance and, consequently, recurrence or disease
progression [4].

In breast cancer (BC), the leading cancer in women worldwide [5], an increase in
circulating tumor cell (CTC) count [6] and an increase in circulating tumor DNA (ctDNA)
concentration have been shown to correlate with disease progression [7,8]. More specifically,
in metastatic BC (MBC) patients, a reduction of the apoptotic CTC count by ≥50% (after one
completed treatment cycle) correlated with stable disease, while a reduction of apoptotic
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CTCs ≤ 10% was specific for early disease progression in 74% of the cases [9]. In primary
BC, the persistent detection of Cytokeratin-19-positive CTCs during the first 5 years after
surgery has been related to an increased risk of late relapse [10].

Besides a serial analysis of CTCs, sequencing of cell-free DNA (cfDNA) sampled dur-
ing the course of treatment has frequently been shown to provide monitoring information.
For the detection of MRD in a primary BC setting, mostly patient-specific sequencing
assays were used to enhance sensitivity [11]. In MBC, the disappearance of truncating
cfDNA PIK3CA mutations after 2 weeks of treatment with palbociclib predicted sensitivity
to this cyclin dependent kinase (CDK) 4/6 inhibitor and better progression-free survival
(PFS) [12]. Furthermore, an increase in the PIK3CA variant allele frequency (VAF) in cfDNA
has been shown to be associated with acquired resistance to paclitaxel, while an increased
representation of cfDNA RB1 or MED1 mutations was correlated with acquired resistance
to tamoxifen plus trastuzumab [13]. Moreover, the disappearance of RASSF1A methylation,
detected in cfDNA after adjuvant tamoxifen treatment, indicated response [14]. Persistent
ESR1 methylation in CTCs of advanced hormone-receptor (HR)-positive human epidermal
growth factor receptor 2 (HER2)-negative BC patients was related to a lack of response [15].
Occurrence of cfDNA ESR1 mutations under aromatase inhibitor therapy in HR+ MBC
patients correlated with progression [16] and loss of these specific mutations during the
course of endocrine treatment was shown to be related to a longer response [17]. On
the other hand, in HER2+ MBC patients, a decrease in copy number variations in the
ERBB2 gene on anti-HER2 treatment was associated with a clinical response and has been
described as a monitoring marker [18,19].

These studies showed numerous single liquid biopsy analytes which are applicable
for monitoring purposes. However, the question which of these analytes might be the most
suitable one and, more importantly, whether a combination of analytes might increase the
sensitivity or specificity of disease progression detection, still remains open.

Here, we studied the mRNA expression profile of CTCs and extracellular vesicles
(EVs), along with the mutational profile of cfDNA, all isolated from only 18 mL blood
from HR+ HER2– MBC patients at three time points during the course of treatment. With
this longitudinal multi-parametric liquid biopsy approach, we aimed to identify a marker
(consisting of one or more parameters) for disease monitoring, compare the compatibility
of the different analytes, and investigate the potential additive value of the three analytes.

2. Patients and Methods
2.1. Patients

Blood samples from 27 MBC patients were studied. All participants were ≥18 years,
had no second malignancies and no severe co-morbidities, but had Eastern Cooperative
Oncology Group (ECOG) scores for performance status of 0–2. All kinds of prior treatment
of BC were permitted. MBC patients had estrogen receptor (ER) and/or progesterone
receptor (PR)-positive primary tumors (summarized as hormone receptor-positive (HR+))
but HER2-negative primary tumors (DAKO score 0–1 or DAKO score 2 with negative in situ
hybridization results). Patients with ER-positive and/or PR-positive and HER2-negative
metastases were also included if their ER, PR, and HER2 status in the primary tumor
was unknown (n = 5). All patients showed a progressive MBC at the time of first blood
draw/initial time point (TP0). The blood draw was then repeated at the two subsequent
staging time points (TP1 and TP2). Consequently, blood specimens at three time points,
each characterized by staging via computed tomography (CT) or magnetic resonance
imaging (MRI) and evaluated according to the RECIST criteria [20], were obtained and
portrayed the disease across a treatment duration of about 9 months (staging every third
month). Non-responders were classified as having progressive disease (progress, PD),
which was characterized by at least a 20% increase in the sum of the longest diameter of
target lesions. Responders showed the following RECIST evaluation: complete response,
partial response, or stable disease (SD).
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The results from the first blood draw at TP0 have already been used for a comparison
of cfDNA with genomic DNA of CTCs [21], and the results from all three blood draws
have already been used for CTC mRNA and EV mRNA comparisons [22].

Patient characteristics are listed in Supplementary Table S1. Written informed consent
was obtained from all participants during enrollment and specimens were collected using
protocols approved by the Ethics Committee of the University Hospital of Essen (12-5265-BO).

2.2. Sample Collection and Liquid Biopsy Analyte Extraction

Two samples of 9 mL EDTA blood were collected and stored for a maximum of 4 h at
4 ◦C. CTCs were isolated in duplicate from 5 mL of whole blood by positive immunomag-
netic selection targeting EpCAM, EGFR, and HER2 (AdnaTest EMT-2/StemCell SelectTM,
QIAGEN) [22]. The CTC-depleted blood remaining after positive immunomagnetic selec-
tion [23], as well as the remaining blood (not used for CTC isolation) were centrifuged
at 1841× g for 8 min and the obtained plasma was frozen at −80 ◦C. EVs were isolated
from 4 mL prefiltered (0.8 µm pore size) plasma by affinity-based binding to a spin col-
umn [22,24]. Subsequently, the total RNA was isolated and purified (exoRNeasy Kit,
QIAGEN). The mRNA was isolated from the CTC lysates and from the vesicular RNA
eluates by Oligo(dT)25 beads and was reverse transcribed (AdnaTest EMT-2/StemCell
DetectTM, QIAGEN) [22]. cfDNA was isolated by affinity-based binding to magnetic beads
(QIAamp MinElute ccfDNA Kit, QIAGEN), as previously described [25], using plasma
from CTC-depleted blood (≥1 mL, preferentially the maximal available volume; mean:
4.6 mL). cfDNA quantification was performed using the Agilent Chip High Sensitivity
DNA assessing the concentration of all fragments with lengths between 100 and 700 bp.

2.3. Quantitative PCR

For CTC and EV mRNA profiling, multi-marker RT-qPCR was performed with the
AdnaTest TNBC Panel prototype (QIAGEN), already described in detail [22]. Transcript-
specific multi-plex pre-amplification was followed by a SYBR green-based qPCR with
the StepOnePlus™ (Life Technologies) real-time system analyzing 17 transcripts (namely,
AKT2, ALK, AR, AURKA, BRCA1, EGFR, ERCC1, ERBB2, ERBB3, KIT, KRT5, MET, MTOR,
NOTCH1, PARP1, PIK3CA, SRC, plus CD45, and GAPDH) in single-plex reactions. Melting
curves were obtained to exclude the results of unspecific amplicons. Potential PCR inhi-
bition and contamination were checked by an artificial RNA spike and negative controls.
Data evaluation was performed according to previously published protocols [22]. In brief,
transcripts not exclusively expressed in CTCs were normalized to the leukocyte-specific
transcript CD45 (also known as PTPRC). CTC and EV expression data of the patients
were normalized to matched expression data of healthy donor controls and signals were
analyzed binarily (overexpression yes/no). In contrast to cellular overexpression being
a reason for the overrepresentation of a transcript in CTCs, the reasons for the overrepre-
sentation of a transcript in EVs, also termed here as “overexpression”, may include (1) the
overexpression of the transcript in donor cells, (2) selective export of the transcript into
EVs, (3) the increased stability of those EVs carrying the transcript, or (4) enhanced release
of EVs of the cell population expressing the transcript.

2.4. Sequencing

The cfDNA libraries were constructed with a customized QIAseq Targeted DNA Panel
Kit (QIAGEN) targeting all exonic regions of 17 genes (namely AKT1, AR, BRCA1, BRCA2,
EGFR, ERBB2, ERBB3, ERCC4, ESR1, KRAS, FGFR1, MUC16, PIK3CA, PIK3R1, PTEN,
PTGFR, and TGFB1) as previously described in detail [21]. The preferred input amount
for library preparation was in the range of 30–60 ng, but cfDNA samples with a lower
input were also included in the library preparation (mean DNA input per sample: 44 ng).
Libraries were quantified by qPCR (those with a yield of <4 nM were excluded) and the
quality was checked using Agilent Chip High Sensitivity DNA. All pooled libraries were
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analyzed by paired-end sequencing on an Illumina NextSeq instrument using the NextSeq
500/550 High Output Kit v2.5 with 2 × 150 bp reads.

Bioinformatic analysis of the raw sequencing data was performed on the basis of
a pipeline previously described [21]. Sufficient sequencing quality of all samples was
guaranteed by the exclusion of cfDNA libraries with fewer than 4 million read fragments,
which simultaneously excluded all samples with a unique molecular index (UMI) coverage
lower than 400 and samples that only had ≤94% of the target region covered with at least
5% of the mean UMI coverage. The input amounts, library yield, and sequencing quality
parameters for each sample are summarized in Supplementary Table S2. For analysis, we
used the next-generation sequencing (NGS) Analysis service for QIAseq Targeted DNA
Panels available at QIAGEN’s GeneGlobe, which allowed reliable variant calling based
on UMI information. Ingenuity Variant Analysis (IVA; QIAGEN) was further used for
annotation, scoring, filtering, and interpretation of the resulting variant files. All filter
settings are described in detail [21]. All called variants and their corresponding allele
frequencies are listed per patient and time point in Supplementary Table S3.

2.5. Statistical Analysis

The data evaluation workflow is visualized in Figure 1.

Figure 1. Data evaluation workflow.

To identify a monitoring marker, we first expressed

Hypothesis 1. that the presence of a parameter correlates with progressive disease proven by
radiologic imaging at the same time point (results in Section 3.2).

To test this hypothesis and the others to follow, we defined true positives (parameter
yes, progress yes), true negatives (parameter no, progress no), false positives (parameter
yes, progress no), and false negatives (parameter no, progress yes). Sensitivity, specificity,
and accuracy were calculated as follows:

Sensitivity =
∑ True positives

∑ all samples at disease progression
,

Specificity =
∑ True negatives

∑ all samples not at disease progression
,

Accuracy =
∑ True positives + ∑ True negatives

∑ all samples
.
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Parameters were sorted according to their sensitivity, specificity, and accuracy as well
as according to the sum of their respective sensitivities, specificities, and accuracies.

Additionally, an evaluation of the correlation of a parameter’s presence with the
staging results was performed using a two-tailed Fisher’s exact test with significant p-
values defined as <0.05 (SPSS, version 11.5). To adjust for multiple testing, we performed
the Holm–Bonferroni correction with α = 0.05 [26].

Furthermore, we formulated

Hypothesis 2. that the appearance of a signal not present at the previous time point correlates with
progressive disease proven by radiologic imaging (Section 3.4).

We also hypothesized

Hypothesis 3. that the signal disappearance from one time point to the next time point is correlated
with response.

The evaluation of sensitivity, specificity, and accuracy, as well as the two-tailed Fisher’s
exact test and its adjustment, were then carried out as described above.

The stochastic equivalence between the non-binary data of the difference in VAF
of ESR1 and PIK3CA variants and staging results was examined using the two-tailed
Mann–Whitney U-test (SPSS, version 11.5).

Diagrams were computed with OriginPro version 2019 (OriginLab Corporation) and
Microsoft Excel (Microsoft Corporation).

3. Results
3.1. Longitudinal Multi-Parametric Liquid Biopsy Approach

The patient cohort consisted of 27 HR+ HER2– MBC patients (Supplementary Table S1).
At primary diagnosis, most patients presented with ductal BC and histologic Grade 2 tumors,
tumor size T2, and no metastasis. At the initial blood draw (TP0), all patients had metastases
and at the time of data evaluation, 6/27 patients were still alive while the others had died. The
median follow-up time (first diagnosis of BC to death/last contact) was 136 months (interquartile
range: 114).

Patient specimens were only included in this multi-parametric liquid biopsy study if
sufficient material existed for matched CTC isolation (10 mL whole blood), EV isolation
(4 mL plasma), cfDNA isolation (≥1 mL plasma from CTC-depleted blood), and reliable se-
quencing result interpretation (>4 nM library yield, >4 million reads fragments per sample).
As this is a longitudinal study, patient samples were only included if the abovementioned
inclusion criteria were fulfilled for all three blood samples drawn at the three consecutive
staging time points (progressive disease TP0 and the two subsequent staging time points,
TP1 and TP2). Consequently, the sample cohort consisted of 81 samples (three samples
from each of the 27 patients) with three liquid biopsy analytes characterized in each sample.
The characterization of each analyte included the results of 17 parameters in each analyte
due to a multi-marker qPCR with 17 transcript-specific assays for CTC and EV mRNA
profiling and targeted NGS with 17 genes of interest for cfDNA mutational analysis. In
summary, the data matrix consisted of 81 samples and 51 parameters (17 parameters in
each of the three analytes; Figure 2).

Of the 81 samples, 44 samples were drawn at a time point when progressive disease
was proven by radiologic imaging, while the remaining 37 samples were obtained at
time points at which the patients were characterized as having a stable disease (including
complete response and partial response).

The heatmap visualizes the data matrix (Figure 2) by dividing the 51 parameters into
the three analytes, i.e., cfDNA, CTCs, and EVs. MUC16 variants were the most prevalent
variants (48%), while mTOR overexpression signals were the most common signals in
CTCs (69%). ERBB2 and ERBB3 overexpression signals in CTCs were both detected with a
prevalence of 15%. Overall, the largest number of signals occurred within the CTC fraction
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(186 overexpression signals) when compared with 131 overexpression signals in the EV
fraction and 105 variants in the cfDNA fraction.

Figure 2. Heatmap of the entire data matrix. Three blood samples from the initial progression time
point (TP0) and two subsequent staging time points (TP1 and TP2) of each of the 27 HR+ HER2–
metastatic breast cancer (MBC) patients were used to characterize 17 parameters in each of the
three liquid biopsy analytes: cell-free DNA (cfDNA, light blue), circulating tumor cell (CTC) mRNA
(blue), and extracellular vesicle (EV) mRNA (dark blue). The presence of a variant (cfDNA) or
overexpression signal (CTC or EV) is denoted by gray squares. The results of the radiologic imaging
performed at the time of blood draw divided the samples into two clinically relevant populations
[progressive disease (PD), in red; stable disease (SD), in green].
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Moreover, we hypothesized that the appearance of variants or signals not detected
at the prior time point would be correlated with progressive disease (Hypothesis 2 in
Section 2). Supplementary Figure S1 depicts the 54 samples in which we analyzed whether
the signals hitherto undetected (at the previous time point) appeared. Signal appearance
was just as prevalent in the CTC fraction (70 signals) as in the EV fraction (62 signals),
while only 18 cfDNA variants newly occurred. Thus, the mRNA profiles of CTCs and
EVs were shown to be similarly dynamic across treatment, but the genomic information
obtained from cfDNA remained roughly stable during the 9 months (three time points,
staging every third month). In almost a quarter of all patients (24%), EV AURKA signals
appeared during treatment, thereby representing the most dynamic parameter within the
dataset. In contrast, EV ERCC1 signals appeared in only 9% of all cases, which is slightly
more common than the mean signal appearance of all CTC and EV parameters (7%).

3.2. Signals as Monitoring Markers

The parameters were sorted according to the difference in their prevalence at the PD
time point versus the SD time point (Figure 3). CTC_ERBB3, cfDNA_PIK3CA, CTC_KIT,
CTC_ERBB2, CTC_PIK3CA, cfDNA_ESR1, cfDNA_BRCA2, CTC_BRCA1, and EV_ERCC1
were more prevalent in the PD samples when compared with the SD samples. Interestingly,
CTC_ERCC1, cfDNA_MUC16, EV_AURKA, and cfDNA_AKT1 were more common (differ-
ence in prevalence > 5%) in SD samples when compared with PD samples. A two-tailed
Fisher’s exact test showed that none of the signals was significantly correlated with disease
progression. Hypothesis 1 (Section 2) was therefore proven to be false, meaning that the
presence of single parameters is not useful for monitoring.
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Specificity calculations for each parameter revealed 14 parameters (mostly cfDNA
variants and EV signals) with 100% specificity (Supplementary Table S4), implying that
these signals were only present in PD samples. The only parameter with a sensitivity
of >50% was CTC_mTOR with 68% sensitivity (Supplementary Table S4), while mostly
CTC signals (CTC_mTOR among others), cfDNA_ESR1, and cfDNA_PIK3CA showed an
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accuracy of >50%. CTC_ERBB3 and CTC_PIK3CA had the highest accuracies, with 56%
and 54%, respectively.

3.3. Parameter Combinations as Monitoring Markers

It is worth examining whether a combination of parameters using a disjunction (i.e.,
a logical OR operation) would result in monitoring markers that are more suitable than
single parameters. Not all 1275 pairwise combinations of two parameters were tested,
but the parameters with the best sensitivity were combined with those having the best
specificity, namely:

EV_AURKA OR cfDNA_ERCC4
EV_PARP OR cfDNA_ERCC4

CTC_ERBB3 OR cfDNA_ERBB2
CTC_ERBB3 OR cfDNA_ERBB3
CTC_ERBB3 OR EV_ERBB2
CTC_ERBB2 OR cfDNA_ERBB2
CTC_ERBB2 OR cfDNA_ERBB3
CTC_ERBB2 OR EV_ERBB2

Additionally, disjunctions of two parameters with the best sensitivity were also tested:

CTC_mTOR OR CTC_PIK3CA
CTC_PIK3CA OR cfDNA_PIK3CA
CTC_ERBB3 OR CTC_ERBB2
cfDNA_ESR1 OR cfDNA_PIK3CA

As some of the same genes and transcripts were tested in all three analytes, combina-
tions of these parameters were also tested for their ability to be used as monitoring markers:

cfDNA_AKT1 OR CTC_AKT2 OR EV_AKT2
cfDNA_AR OR CTC_AR OR EV_AR

cfDNA_BRCA1 OR CTC_BRCA1 OR EV_BRCA1
cfDNA_EGFR OR CTC_EGFR OR EV_EGFR

cfDNA_ERCC4 OR CTC_ERCC1 OR EV_ERCC1
cfDNA_ERBB2 OR CTC_ERBB2 OR EV_ERBB2
cfDNA_ERBB3 OR CTC_ERBB3 OR EV_ERBB3

cfDNA_PIK3CA OR CTC_PIK3CA OR EV_PIK3CA

None of the parameter combinations above showed a specificity of 100%, but CTC_mTOR
OR CTC_PIK3CA and cfDNA_PIK3CA OR CTC_PIK3CA OR EV_PIK3CA showed a sensitivity
of >50% (Supplementary Table S4). CTC_ERBB3, CTC_PIK3CA, and CTC_ERBB2 were
the most frequently occurring parameters among the combinations with the best accuracy
(Supplementary Table S4). Importantly, two significant correlations with disease progression
were identified by the two-tailed Fisher’s exact test, namely: CTC_ERBB3 OR CTC_ERBB2
(p-value = 0.023), and cfDNA_ERBB3 OR CTC_ERBB3 OR EV_ERBB3 (p-value = 0.032). Some
parameter combinations were thus shown to validate Hypothesis 1.

3.4. Signal Appearance as Monitoring Marker

Here, we examined whether signal dynamics during treatment were more informative
as monitoring markers than signals at a given time point. First, we analyzed the data to
test Hypothesis 2: whether the appearance of a signal hitherto undetected at the previous
time point was correlated with progressive disease (Supplementary Figure S1).

Signal appearance showed 100% specificity in 20/51 parameters—mostly cfDNA
variants (Supplementary Table S4). While none of these parameters showed a sensitivity
of > 50%, all parameters performed with an accuracy of >50%. Seven out of 51 parameters
showed an accuracy of >70%, with EV_ERCC1_appearance being one of them. This is salient,
because the appearance of EV_ERCC1 significantly correlated with disease progression
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(p-value = 0.03 using the two-tailed Fisher’s exact test) and this was significant even after
Holm–Bonferroni adjustment for multiple testing, thereby validating Hypothesis 2.

Furthermore, it is noteworthy that the appearance of the combinations CTC_ERBB3
OR CTC_ERBB2 and cfDNA_ERBB3 OR CTC_ERBB3 OR EV_ERBB3 was not significantly
correlated with disease progression and the signal disappearance of any parameter from
the first time point to the subsequent time point was not related to stable disease. As a
result, Hypothesis 3 was rejected.

3.5. The Best Monitoring Markers

In order to evaluate all parameters in the three categories “parameters”, “parameter
combinations”, and “signal appearance” together, the parameters were sorted in descend-
ing order based on the sum of their respective sensitivity, specificity, and accuracy values.
Following this, the 15 best potential monitoring markers were selected (Table 1). Most of
the top 15 parameters originated from the category “signal appearance” indicating that
observing the dynamics across treatment by evaluation of serial liquid biopsies is more
informative for disease monitoring than the detection of variants or overexpression signals
at a single time point.

Table 1. The top 15 parameters with the greatest sum of sensitivity, specificity, and accuracy values. The parameters in bold
were shown to significantly correlate with disease progression.

Parameter Sensitivity Specificity Accuracy Sensitivity + Specificity + Accuracy
EV_ERCC1_appearance 0.1765 0.9730 0.7222 1.8717

EV_KIT_appearance 0.1176 1.0000 0.7222 1.8399
CTC_AR_appearance 0.1765 0.9459 0.7037 1.8261

CTC_ERBB3_appearance 0.1765 0.9459 0.7037 1.8261
CTC_ERBB3ORCTC_ERBB2 0.3636 0.8649 0.5926 1.8211
cfDNA_PIK3CA_appearance 0.1176 0.9730 0.7037 1.7943

cfDNA_ERRB3ORCTC_ERBB3OREV_ERBB3 0.3182 0.8919 0.5802 1.7903
CTC_BRCA1_appearance 0.1765 0.9189 0.6852 1.7806
EV_ERBB3_appearance 0.1765 0.9189 0.6852 1.7806

EV_SRC_appearance 0.1765 0.9189 0.6852 1.7806
cfDNA_FGFR1_appearance 0.0588 1.0000 0.7037 1.7625

EV_PIK3CA_appearance 0.0588 1.0000 0.7037 1.7625
CTC_AURKA_appearance 0.1176 0.9459 0.6852 1.7488

EV_AR_appearance 0.1176 0.9459 0.6852 1.7488
CTC_ERBB3 0.2273 0.9459 0.5556 1.7288

As mentioned in Sections 3.3 and 3.4, EV_ERCC1 appearance, the disjunction of
CTC_ERBB2 and CTC_ERBB3, and the disjunction of the three ERBB3 analytes were shown
to significantly correlate with disease progression. These three parameters were also
listed among the top 15 potential monitoring markers with the greatest sum of sensitivity,
specificity, and accuracy values (Table 1). The difference between the accuracy of the two
parameter combinations is not significant (with accuracies of 58% and 59%, respectively)
owing to almost similar fractions of false positives, false negatives, true positives, and true
negatives (Figure 4). In comparison, the appearance of EV_ERCC1 was characterized by a
higher accuracy of 72%. The detection of newly occurring ERCC1 overexpression signals in
EVs from one time point to the next had a specificity of 97% (only 1.9% false positives) but
the rate of true positives was just 7.4% (sensitivity of 18%) (Figure 4).

3.6. Allele Frequency Development of ESR1 and PIK3CA Variants

In accordance with the finding in Section 3.5 that the molecular dynamics detected in
longitudinal liquid biopsies were, in general, very informative and taking into account the
clinical relevance of ESR1 variants and PIK3CA variants for MBC treatment management, it
is worth evaluating whether the appearance of ESR1 or PIK3CA cfDNA variants is a reliable
indicator for disease monitoring. In the entire cohort, the accuracy for detecting disease
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progression was 70% and 66% for PIK3CA and ESR1 variant appearances, respectively
(Supplementary Table S4), and cfDNA_PIK3CA_appearance ranged among the top 15
parameters in Table 1.

Figure 4. Characteristics of the three monitoring markers identified. A significant correlation (p-value < 0.05) between the
signal appearance (A) or parameter combination (B + C) and disease progression was shown using the two-tailed Fisher’s
exact test. The accuracy of the three monitoring markers decreases from left to right.

If the VAF is considered as a non-binary parameter, it is possible to compute differences
in VAF between two time points (∆VAF). For samples with variants detected at two
consecutive time points (n = 15), the difference between the VAFs at the two time points
was computed. The waterfall plot depicts a significant correlation of ESR1 OR PIK3CA
allele frequency development with disease progression, here called non-response (Figure 5;
p-value = 0.014 using the two-tailed Mann–Whitney U-test). Qualitative analysis of the
increase or decrease in VAF also revealed a significant correlation in these 15 samples
with disease progression (p-value = 0.007 using the two-tailed Fisher’s exact test), with an
accuracy of 87%. It is noteworthy that neither the standalone evaluation with respect to
ESR1 nor the standalone evaluation with respect to PIK3CA VAF reached significance.

3.7. Six Index Patients

To understand the value of a longitudinal multi-parametric liquid biopsy strategy
in greater detail, six index patients were chosen (Figure 6). All six index patients were
characterized by ESR1 and PIK3CA cfDNA variants detected at more than one time point. In
the individual patients depicted, it was observed that signals from only a single analyte were
particularly prominent at all three given points in time (Supplementary Figure S2). The multi-
parametric liquid biopsy approach might, thus, cover a range of inter-patient heterogeneity.
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Figure 5. Waterfall plot mapping the cfDNA variant allele frequency (VAF) development of ESR1
or PIK3CA variants and therapy response. Difference in variant allele frequencies (∆VAF) of ESR1
variants or PIK3CA variants between two consecutive staging time points correlated with therapy
response (at the second time point evaluated by radiologic imaging and according to RECIST). Only
the 15 cases with a detectable VAF at one time point and the next time point were evaluated. The
two-tailed Mann–Whitney U-test and the two-tailed Fisher’s exact test were used to evaluate the
∆VAFs thus obtained.

The diversity of CTC signals is illustrated by the different overexpression signals in
different colors (Figure 6A, especially in HR+ HER2– #16). In contrast, within the EV and
cfDNA fractions, a low number of different signals was detected (with the exception of HR+
HER2– #27 at T2). Especially in the latter patient, large fluctuations in EV signals during
treatment were observed. Patients HR+ HER2– #27 and #29 exemplified the appearance of
signals or variants at disease progression, whereas the appearance of CTC signals at T2 in
patients HR+ HER2– #2 and #28 did not support the hypothesis that disease progression
is characterized by signal appearance. In general, the three analytes showed a similar
development in signal prevalence at the three time points in patients HR+ HER2– #16 and
#29. Interestingly, however, the pattern of signal or variant presence and appearance in the
three analytes in patients HR+ HER2– #4, #16, and #28 was dissimilar and indicated the
additive value of using multiple analytes.

More specifically, the prevalence of some of the CTC signals and their matched EVs
(e.g., BRCA1 signals) were observed to be inversely proportional during treatment in
patient HR+ HER2– #16, whereas a similar reduction in the prevalence of cfDNA_PIK3CA
and CTC_PIK3CA signals occurred after successful chemotherapy in patients HR+ HER2–
#16 and #29. An observation concerning CTC_ERCC1 signals and chemotherapy: A switch
to chemotherapy induced CTC_ERCC1 signals in one case (HR+ HER2– #28). In three other
cases, CTC_ERCC1 signals persisted despite the patients responding to the administered
chemotherapy—proven by radiologic imaging (in patients HR+ HER2– #2, #16, and #29).

From the observations above, although concrete inferences cannot be drawn about an
individual analyte being the most conducive monitoring marker, one can recognize the
benefits of a longitudinal multi-parametric liquid biopsy strategy in being able to capture
tumoral heterogeneity and tumoral evolution.
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Figure 6. Development of CTC and EV overexpression signals and cfDNA variants in six index patients at three consecutive
staging time points. The staging result (by radiologic imaging according to RECIST guidelines) at the time point at which
blood was drawn is indicated as PD (progressive disease) or SD (stable disease). (A) CTC mRNA signals, (B) EV mRNA
signals, and (C) cfDNA variants. Within each analyte, each color indicates a variant in another gene or overexpression
signal of another transcript, while data of the same gene or transcript in different analytes are indicated with the same color.
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3.8. The Course of cfDNA PIK3CA and ESR1 Variants in Three Index Patients

To examine the clinically relevant cfDNA_ESR1 and cfDNA_PIK3CA signals more
closely, three index patients with variants in these two genes (both detected at two time
points at least) were selected (Figure 7). The different variants in the PIK3CA gene were
color-coded in different shades of green and the different ESR1 variants with shades
of purple.

Two and one out of three index patients (Figure 7) were polyclonal for PIK3CA and
ESR1, respectively. In patients HR+ HER2– #16 and #27, two PIK3CA variants (one variant
being PIK3CA H1047R) were observed at the progression time point TP0 after endocrine
treatment. In the latter patient (HR+ HER2– #27), one new cfDNA variant in the PIK3CA
gene was detected after the second unsuccessful endocrine treatment line with exemestan
plus everolimus, while the two PIK3CA variants detected previously demonstrated an
increase in VAF. After 3 months with no treatment, the same variants were detected, with
increased VAF in patient HR+ HER2– #16. In contrast, after successful chemotherapy,
neither PIK3CA variants nor ESR1 variants could be detected in two cases (HR+ HER2–
#16 and #28).

Figure 7. cfDNA variants across three consecutive staging time points. The cumulative allele frequency of all detected
cfDNA variants at each of the three time points was exemplified in three patients. Therapy regimens and staging results
(SD: stable disease; PD: progressive disease) are indicated. PIK3CA (green) and ESR1 (purple) variants were called in these
patients, mostly with varying allele frequencies across the observation period.

Interestingly, ESR1 Y539S was detected in both cases with disease progression under
aromatase inhibitor therapy (HR+ HER2– # 16 and #27). Importantly, in one case (HR+
HER2– #27), the appearance of this ESR1 variant was documented 3 months before the
radiologic imaging determined the disease to be progressive.

4. Discussion

Within the last decade, liquid biopsy has become a frequently studied tool with a high
potential for disease management [27–29], and has gained acceptance for prognosis and
treatment decision-making in MBC [30,31]. Since one of the major advantages of liquid
biopsies is the possibility for longitudinal assessment by repeated minimally invasive
sampling, single liquid biopsies have already been studied as potential monitoring markers
in MBC [9,12–15,17,32]. Here, we conducted a longitudinal multi-parametric liquid biopsy
study, including the characterization of CTC mRNA, EV mRNA, and cfDNA—all isolated
from a minimized blood volume. By applying this strategy to samples from 27 HR+ HER2–
MBC patients at three time points during the course of treatment, we identified markers for
disease monitoring, revealed the unique features of the different analytes for monitoring
purposes, and, consequently, deliberated on the additive value of using three analytes.
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The cohort was composed only of samples from patients whose blood was drawn at
the initial progression time point and the two subsequent staging time points thereafter, and
samples for which the isolation and reliable analysis of all three liquid biopsy analytes was
achieved. These stringent criteria resulted in a dataset containing 51 analyzed parameters
and 81 samples, of which half were collected at a stable disease time point, while the
other half of the samples were drawn at disease progression, thereby enabling a balanced
evaluation of all parameters with regard to disease monitoring. This study is based
on the assumption that the visual staging via CT or MRI and evaluation according to
RECIST guidelines accurately mirror tumor growth. This assumption, however, prevents
us from evaluating the extent to which liquid biopsy results might be more sensitive than
radiologic imaging.

CTC_ERBB3 as well as CTC_ERBB2 overexpression signals were prevalent in 15%
of all samples. Furthermore, both parameters were more prevalent in the PD samples
when compared with SD samples. Among all the parameters considered, CTC_ERBB3
signals performed the best, with an accuracy of 56%. When combined with CTC_ERBB2,
CTC_ERBB3 signals offered a sensitivity of 36%, a specificity of 86%, and an accuracy of
59% in disease monitoring and were significantly correlated with disease progression. The
importance of ERBB3 for MBC patient stratification also became apparent by the significant
correlation of the disjunction of the three ERBB3 analytes (cfDNA_ERBB3 OR CTC_ERBB3
OR EV_ERBB3) with progression (sensitivity: 32%, specificity: 89%, accuracy: 58%).

The sequential nature of this study enabled the observation of signal appearances from
one time point to the next across 3 months of treatment. The appearance of EV_ERCC1
signals not present at the previous time point was a significant indicator for disease
progression with a specificity of 97% and an accuracy of 72%. However, the sensitivity
was only 18%, which stems from a rather low signal prevalence of just 9%. The strength of
most “signal appearance” parameters was the increased specificity, but this was dampened
by low sensitivity. Along these lines, specific ERCC1 polymorphisms have been shown
to associate with increased BC susceptibility [33], and high ERCC1 protein expression in
the primary tissue has been shown to associate with poor outcomes in metastatic triple
negative BC patients treated with platinum-based chemotherapy [34].

Among the top 15 monitoring parameters (based on the sum of their sensitivity, speci-
ficity, and accuracy), most parameters originated from the category “signal appearance”.
We therefore conclude that the dynamics during treatment are more informative for disease
monitoring than the detection of variants or overexpression signals at a single time point.
However, the appearance of the signal combinations identified as monitoring markers,
namely CTC_ERBB3 OR CTC_ERBB2 and cfDNA_ERBB3 OR CTC_ERBB3 OR EV_ERBB3,
were not significantly correlated with disease progression. Despite many studies showing
an effect of variant clearance under therapy [12,17], in this work, we could not prove that
signal disappearance from one time point to the next was related to stable disease.

In general, the appearance of new signals was as frequent in the CTC fraction as in
the EV fraction. However, the most dynamic parameter originated from the EV fraction,
with EV_AURKA occurring newly in 24% of all cases. Since most signals were detected
in the CTC fraction, the most accurate monitoring parameters also originated from it and
a great diversity of CTC signals existed at a given time point (as demonstrated in the
index patients). A unique feature of the cfDNA fraction was neither the diversity and
high prevalence of signals (as in the CTC fraction) nor the dynamics across treatment (as
demonstrated in the EV fraction), but the actionability of detected variants. The success
of a liquid biopsy-guided therapy by assessing PIK3CA, ESR1, and AKT1 mutations in
the CTCs of four MBCs from successive blood draws has already been demonstrated in a
proof-of-concept study [35]. While Yanagita et al. preferred cfDNA monitoring over CTC
monitoring [36], here, the advantages and disadvantages of cfDNA and CTCs for disease
monitoring were shown to be balanced.

Here, we would like to discuss the value of rigorous exclusion criteria for cfDNA
variant detection. The expected low VAF of tumor-derived variants necessitated a great
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diversity of DNA fragments as library input and thus, cfDNA had to be isolated from a
large plasma volume [37,38]. A mean of 4.6 mL plasma from CTC-depleted blood was
used for cfDNA isolation, and after sequencing, only the samples with more than 4 million
read fragments were included for the analysis. The latter criterion indirectly led to the
exclusion of samples with <400 UMI coverage. The high sequencing depth, the use of
UMIs, and the other aforementioned criteria resulted in a good limit of detection of 1.3%
across all target regions, meaning that variants with VAFs of ≥1.3% were called with a
probability of 90%. However, for a detailed analysis of specific PIK3CA and ESR1 variants
in the index patients, we refrained from including non-detected variants for VAF difference
calculation, since we could not rule out false negative results (despite the good limit of
detection mentioned above).

In accordance with the benefit of alpelisib for PIK3CA mutant MBC patients [30] and
the endocrine resistance caused by ESR1 variants [39–43], we observed a difference in the
VAFs of detectable variants in both genes and showed them to be significantly correlated
with disease response when the two were jointly analyzed. Within the entire cohort,
cfDNA_ESR1 and cfDNA_PIK3CA showed an accuracy of >50% for disease monitoring
but, due to their low prevalence, a significant correlation with disease progression could
not be found. In six patients, the detection of PIK3CA variants was described at the time
point of progression under endocrine treatment and ESR1 variants occurred in relation to
unsuccessful aromatase inhibitor therapy. In one case, we even detected a newly occurring
ESR1 variant 3 months before radiologic imaging detected the disease to be progressive.
The acquired dominance of an ESR1 variant has already been demonstrated for serial
monitoring in one exemplary case by Schiavon et al. in 2015 [43]. PIK3CA variants seem to
relate to tumor burden in the index patients, marked by an increase in VAF at PD, and a
dramatic decrease in VAF after successful chemotherapy. In line with these results, it has
already been shown that PIK3CA variants reflect responses to therapies more accurately
than carcinoembryonic antigen (CEA) or carcinoma antigen 15-3 (CA15-3) [8] and that
changes in PIK3CA ctDNA levels correlated with treatment response [37,44].

Interestingly, only signals from a single analyte were particularly prominent at any
given point in time for a specific patient, indicating that the multi-parametric liquid biopsy
approach could prove advantageous in reflecting inter-patient heterogeneity. The multi-
parametric approach also provides additive value when compared with single liquid biopsy
strategies due to dissimilar fluctuations observed in the three analytes over time.

It is important to mention that the multi-parametric liquid biopsy approach requires
the isolation and molecular analysis of three analytes, thereby resulting in high costs.
Reimbursement of liquid biopsy testing was shown to save costs by preventing the ad-
ministration of ineffective drugs and avoiding the need for multiple tissue biopsies [45].
This leads us to surmise that multi-parametric liquid biopsy testing could become more
widely accepted by healthcare systems in the future and thereby make reimbursements
easier. However, to the best of our knowledge, full financial coverage of a multi-parametric
approach is currently unavailable.

The study’s major limitation is the lack of a germline control. Analysis of variants
within the buffy coat DNA could have identified some cfDNA variants which are actually
germline variants. Furthermore, buffy coat DNA could have captured somatic variants
originating from clonal hematopoiesis of indeterminate potential (which increases with
age) and not from the solid MBC [46].

Furthermore, it is of note that the sensitivity of the identified monitoring markers
is low and thus utilizing them in clinical practice might be difficult. The advantage of
these markers, however, is the high specificity. Consequently, detection of the monitoring
markers would indicate disease progression with high probability, while the absence of the
markers might not suffice to describe a SD.

Another crucial aspect of our work is the multiple testing. The same dataset was used
to test significant correlations of disease response with the 51 parameters and with some pa-
rameter combinations. Additionally, a reduced dataset was used to assess the correlation of
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progression and the fluctuations in the presence of the 51 parameters. This multiple testing
increased the Type I errors and was consequently adjusted using the Holm–Bonferroni cor-
rection [26]. However, this adjustment led to an increase in Type II errors, translating into
the fact that significant correlations with progression were missed (false negative results).
It is to be noted that in this study, we did not want to prove that all tested parameters cor-
related with disease progression, which is the ultimate goal of Bonferroni corrections [47].
Moreover, we also did not compare the p-values, but just used the two-tailed Fisher’s exact
test to examine a potentially significant correlation between the response and a parameter’s
presence. These arguments led us to the conviction that adjustment for multiple testing
is not mandatory in this study, which is in accordance with Perneger [47]. Nonetheless,
here, we state that CTC_ERBB3 OR CTC_ERBB2 and cfDNA_ERBB3 OR CTC_ERBB3 OR
EV_ERBB3 did not significantly correlate with disease progression after adjustment for
multiple testing, while the appearance of EV_ERCC1 signals was significantly correlated
with progression even after Holm–Bonferroni adjustment.

5. Conclusions

In conclusion, the characterization of each of the three analytes showed unique features
for monitoring purposes. While CTC mRNA profiles were diverse and commonly found,
mirroring the spatial tumoral heterogeneity, EV signals fluctuated greatly across treatment,
thereby mirroring the temporal heterogeneity. The VAF development of the less frequent
but actionable variants ESR1 and PIK3CA in cfDNA, and a combination of the ERBB3
and ERBB2 signals in CTCs, or the appearance of ERCC1 signals in EVs were found to
be suitable for monitoring. Along these lines, none of the analytes is favored for disease
monitoring, but the virtues of a longitudinal multi-parametric liquid biopsy strategy in
being able to deconvolute tumoral heterogeneity and tumoral evolution are presented.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
409/10/2/212/s1. Supplementary Figure S1: Heatmap of signal appearance. The appearance of
cfDNA variants (light blue) and CTC (blue) or EV (dark blue) overexpression signals was calculated
between time points TP0 to TP1 and between TP1 and TP2, and then correlated with the staging
result (PD, n = 17, red; SD, n = 37, green) at TP1 or TP2, respectively. The signal appearance is
denoted by gray squares. Supplementary Figure S2: Radar plot with the number of different signals
or variants in the three analytes. Each radar plot depicts a given patient and the changes in the three
analytes observed at various points in time are depicted by planes of different colors. Supplementary
Table S1: Patient characteristics. Supplementary Table S2: Sequencing quality parameters for cfDNA
sequencing. Supplementary Table S3: cfDNA variants and corresponding variant allele frequencies
(VAFs) called after the described stringent variant filtering listed for all patients (n = 27) at all three
time points. Supplementary Table S4: Summary of the parameters with the best sensitivity, specificity,
and accuracy and a significant correlation with disease progression. For the categories “parameters”,
“parameter combinations”, and “signal appearance”, the parameters with specificity = 100%, or
sensitivity > 50%, or accuracy > 50%, or a significant correlation with disease progression based on
the two-tailed Fisher’s exact test (p–value < 0.05) are listed.
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Abbreviations

BC Breast cancer
CDK 4/6 Cyclin dependent kinase 4/6
CEA Carcinoembryonic antigen
CA 15-3 Carcinoma antigen 15-3
cfDNA Cell-free DNA
CT Computed tomography
CTCs Circulating tumor cells
ctDNA Circulating tumor DNA
∆VAF Difference in variant allele frequencies
ECOG Eastern Cooperative Oncology Group
ER Estrogen receptor
EVs Extracellular vesicles
HR Hormone-receptor
HER2 Human epidermal growth factor receptor 2
IVA Ingenuity variant analysis
NGS Next-generation sequencing
MRI Magnetic resonance imaging
MBC Metastatic breast cancer
MRD Minimal residual disease
PD Progressive disease progress
PFS Progression-free survival
PR Progesterone receptor
SD Stable disease
VAF Variant allele frequency
List of genes
AKT1 AKT serine/threonine kinase 1
AKT2 AKT serine/threonine kinase 2
AR Androgen receptor
AURKA Aurora kinase A
BRCA1 BRCA1 DNA repair associated
BRCA2 BRCA2 DNA repair associated
EGFR Epidermal growth factor receptor
EpCAM Epithelial cell adhesion molecule
ERCC1 ERCC excision repair 1, endonuclease non-catalytic subunit
ERCC4 ERCC excision repair 4, endonuclease non-catalytic subunit
ERBB2 Erb-b2 receptor tyrosine kinase 2 coding for the HER2 protein
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ERBB3 Erb-b2 receptor tyrosine kinase 3
ESR1 Estrogen receptor 1
FGFR1 Fibroblast growth factor receptor 1
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
KIT KIT proto-oncogene receptor tyrosine kinase
KRT5 Keratin 5
KRAS KRAS proto-oncogene, GTPase
MET MET proto-oncogene, receptor tyrosine kinase
mTOR Mechanistic target of rapamycin
MUC16 Mucin 16, cell-surface associated
NOTCH1 Notch 1
PARP1 Poly(ADP-ribose) polymerase 1
PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
PIK3R1 Phosphoinositide-3-kinase regulatory subunit 1
PTEN Phosphatase and tensin homolog
PTGFR Prostaglandin F receptor
PTPRC Protein tyrosine phosphatase, receptor type, C (also known as CD45)
SOX17 SRY-box transcription factor 17
SRC SRC proto-oncogene, non-receptor tyrosine kinase
TGFB1 Transforming growth factor beta 1
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