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Abstract
Background: Metabolic reprogramming is one of the essential features of tumo-
rigenesis. Herein, this study aimed to develop a novel metabolism- related gene 
signature for head and neck squamous cell carcinoma (HNSCC) patients.
Methods: The transcriptomic and clinical data of HNSCC samples were col-
lected from The Cancer Genome Atlas (TCGA) and GSE65858 datasets. The 
metabolism- related gene- based prognostic signature (MRGPS) was constructed 
by the Least Absolute Shrinkage and Selection Operator (LASSO) regression 
model. The time- dependent receiver operating characteristic (ROC) and Kaplan- 
Meier (K- M) survival curves were plotted for evaluating its predicting perfor-
mance. At the same time, univariate along with multivariate analysis was carried 
out to explore its correlation with clinicopathologic factors. Furthermore, GSEA 
analysis was performed to explore the signaling pathways affected by MRGPS. 
We also analyzed the associations of MRGPS with the tumor immune microenvi-
ronment (TIME), as well as identified potential compounds via Connectivity Map 
(CMap) and molecular docking.
Results: A total of 12 differentially expressed metabolism- related genes were 
identified and selected to construct the MRGPS. Notably, this signature performed 
well in predicting HNSCC patients’ survival and could serve as an independent 
prognostic factor in multiple datasets. In addition to the metabolism- related 
pathway, this signature could also affect some immune- related pathways. The 
results indicated that MRGPS is correlated with immune cells infiltration and 
anti- cancer immune response. Furthermore, we identified cephaeline as a poten-
tial therapeutic compound for HNSCC.
Conclusion: Taken together, we established an MRGs- based signature that has 
the potential to predict the clinical outcome and immune microenvironment, 
which help to search for potential combination immunotherapy compounds and 
provide a promising therapeutic strategy for treating HNSCC patients.
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1  |  INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) rep-
resents a frequently occurring malignant tumor globally. 
Due to its complex and diverse anatomical parts, involving 
appearance and various essential physiological functions, 
it seriously affects patients’ life quality. According to the 
WHO statistics, there are 830,000 new cases along with 
430,000 deaths across the world in 2018.1 Furthermore, 
more than 70% of HNSCC patients have already been at 
the moderate and advanced stages when they are diag-
nosed, with a low 5- year survival rate of <40%.2 Thus, it 
is urgently needed to develop a novel predicting approach 
in order to enhance the prognostic outcome of HNSCC 
patients.

Metabolic reprogramming is extensively regarded as a 
hallmark of cancer, which contributes to tumorigenesis in 
HNSCC.3 Numerous studies have demonstrated that it is 
possible to use metabolic phenotypes for imaging tumors, 
providing prognosis data, and treating tumors.4 Targeting 
specific metabolic pathways can be an effective cancer 
treatment strategy. For example, both 5- fluorouracil (5- 
FU, pyrimidine analog) and cytarabine (antimetabolite 
nucleoside analog) exhibit favorable antitumor effects.5,6 

Noteworthily, it has been previously revealed that HNSCC 
progression is closely related to several metabolic path-
ways, and energy metabolism may become a promising 
therapeutic target for HNSCC patients.3,7 Nonetheless, for 
metabolism- related genes (MRGs) that mediate metabolic 
reprogramming, their expression patterns and clinical val-
ues in HNSCC remain unclear. Therefore, systematically 
analyzing the characteristics and clinical significance of 
MRGs may be crucial for treating HNSCC.

In this study, by comprehensively analyzing the 
transcriptomic and clinical data of HNSCC samples, a 
metabolism- related gene- based prognostic signature 
(MRGPS) was formed and sufficiently validated in a vari-
ety of data sets. Afterward, this study explored the associ-
ation of MRGPS with multiple clinicopathologic factors 
and constructed a prognostic nomogram. Interestingly, 
our gene set enrichment analysis (GSEA) concluded 
that MRGPS was tightly associated with the immune- 
related pathways. Hence, we explored the relationships 
between MRGPS and tumor immune microenviron-
ment (TIME) as well as anticancer immune response. 
Besides, we identified the potential compound specific 
to MRGPS. Figure 1 summarizes the experimental tech-
nical roadmap.

K E Y W O R D S

head and neck squamous cell carcinoma, metabolic reprogramming, metabolism- related 
genes, prognostic signature, tumor immune microenvironment

F I G U R E  1  Experimental technical roadmap. The whole process is divided into five steps: data collection, signature construction, 
verification of predictive potential, correlation analysis, and identification of potential compounds
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2  |  METHODS

2.1 | Collection of HNSCC sample 
information and MRGs

The Cancer Genome Atlas (TCGA) cohort (n = 502) from 
TCGA data portal and the GSE65858 cohort (n  =  270) 
from Gene Expression Omnibus (GEO) were selected 
and used for collecting transcriptomic and clinical data of 
HNSCC samples.8,9 Thereafter, at a random order, the en-
tire TCGA cohort was subdivided into the TCGA training 
set (n = 251) and TCGA validation set (n = 251). The en-
tire TCGA cohort and GSE65858 cohort were also applied 
as the internal testing set and external testing set, respec-
tively. In the TCGA cohort, there were 413 human pap-
illomaviruses (HPV) negative cases and 70 HPV- positive 
cases, with 19 cases of unlabeled HPV status. Among the 
GSE65858 cohort, there were 196 HPV- negative cases and 
73 HPV- positive cases, with 1 case of unlabeled HPV sta-
tus. Table Figure S1 displayed patient demographics and 
clinical features of the included data sets. Furthermore, 
1454 specifical MRGs involved in 69 metabolism- related 
pathways were obtained from c2.cp.kegg.v7.2.symbols.
gmt at the GSEA website.10

2.2 | Identification of DEMRGs

Using the thresholds of |log2(Fold Change)| >1 and 
p < 0.05, differentially expressed genes (DEGs) were iden-
tified between 502 HNSCC samples and 44 noncarcinoma 
samples with the use of R package “limma”.11 Moreover, 
the differentially expressed metabolism- related genes 
(DEMRGs) were subsequently extracted from all DEGs. 
The volcano plot and Venn diagram of DEMRGs were 
drawn with the use of the R package “ggplot2”12 and an 
online tool (http://bioin forma tics.psb.ugent.be/webto ols/
Venn/), respectively.

2.3 | Construction of MRGs- based 
prognostic signature (MRGPS) and 
functional enrichment analysis

The associations of DEMRGs with overall survival (OS) 
were analyzed using the univariate Cox proportional haz-
ard regression model in the TCGA training set, followed 
by the identification of prognosis- related DEMRGs with 
the cutoff of p  <  0.05. Thereafter, the most optimal gene 
set was selected using the Least Absolute Shrinkage and 
Selection Operator (LASSO) penalized Cox proportional 
hazards regression through R package “glmnet.” Thereinto, 
the optimal gene set was used to construct the MRGPS, and 

the MRGs incorporated into the MRGPS were regarded as 
hub MRGs. In addition, differential expression of these hub 
MRGs was also confirmed through the Oncomine data-
base.13 Ultimately, the risk score of each HNSCC patient was 
determined by the following: risk score = [Gene 1 expres-
sion level × coefficient] + [Gene 2 expression level × coef-
ficient] + … + [Gene n expression level × coefficient]. Later, 
all HNSCC patients were categorized as the low-  or high- 
risk group on the basis of the median risk score.

Besides, this study carried out the functional en-
richment analysis with the purpose of investigating 
the biological roles of these hub MRGs, including Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) through the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) 6.8. 
Therefore, the GO terms consist of biological process (BP), 
molecular function (MF), and cellular component (CC). 
Using p < 0.05 as the screening criterion, the R package 
“ggplot2” was adopted for enriching and visualizing the 
GO terms and KEGG pathways.

2.4 | Evaluation of MRGPS- 
predictive capability

In order to evaluate the predictive capability of MRGPS, 
the Kaplan– Meier (K– M) survival curves of the low- 
risk and high- risk groups were plotted by R package 
“survival”.14 In addition, the time- dependent receiver- 
operating characteristic (ROC) curves (containing 1- , 3- , 
and 5- year survival) were plotted via R package “survival 
ROC,” aiming to determine the specificity and sensitivity 
of MRGPS.15

2.5 | Associations between MRGPS and 
clinicopathologic variables

In the entire TCGA and GSE65858 cohorts, R package 
“survival” was utilized for univariate and multivariate 
analyses of MRGPS and clinicopathologic variables on 
OS.14 Besides, the relationships between MRGPS and clin-
icopathological variables were evaluated by independent 
t- tests. Combining these clinicopathological variables with 
MRGPS, this study attempted to construct a prognostic 
nomogram via R package “rms,” aiming to quantitatively 
assess individual HNSCC patients’ survival probability.16

2.6 | Gene set enrichment analysis

GSEA has been developed as the calculation approach to 
determining the significant and consistent differences in a 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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previously defined gene set between two distinct biologi-
cal states (such as phenotypes). With the cutoff of FDR 
<0.25, GSEA analysis was performed to elucidate the 
enriched BPs, CCs, and MFs, together with the related 
KEGG pathways in the low-  or high- risk group.

2.7 | Analysis of immune cell 
infiltration and immunotherapy efficacy

To analyze the association between MRGPS and immune 
cell infiltration, we adopted CIBERSORT to estimate the 
infiltration levels of 22 immune cell subtypes in the low-  
and high- risk groups.17 Meanwhile, the correlations of 
hub MRGs with immune cell infiltration were analyzed. 
In addition, the survival analysis was conducted to explore 
the relationship between the infiltration levels of 22 im-
mune cell subtypes and the prognosis of HNSCC patients. 
Immunotherapy is a promising treatment strategy for 
HNSCC patients, which can be conceptualized as seven- 
step anticancer immune responses via the TIP database 
(http://biocc.hrbmu.edu.cn/TIP/).18 Therefore, we per-
formed a correlation analysis between anticancer immune 
responses and MRGPS. Moreover, immune checkpoint 
inhibitor (ICI) is an essential component of immunother-
apy, so we explored the differences in expressing several 
prominent immune checkpoints in both groups.

2.8 | Connectivity map analysis

To identify the candidate compounds that target MRGPS, 
connectivity map (CMap) (https://porta ls.broad insti tute.
org/cmap/), an online tool used to predict the compounds 
that activate or inhibit a previously defined gene signature 
in diverse cell lines, was adopted in this study.19 With the 
pattern- matching algorithms, a positive score represents 
the promoting effect of the compounds on the query sig-
nature, whereas a negative score indicates the inhibiting 
effect. Furthermore, the mechanism of actions (MoAs) 
information of these compounds was collected from the 
CMap tool “repurposing” (https://clue.io/repur posin g- 
app) in order to explore their shared MoAs.

2.9 | Construction of the PPI 
network and molecular docking

With the purpose of screening the key target, all MRGPS- 
related genes were mapped to the STRING database 
(https://strin g- db.org/) to construct a protein– protein 
interaction (PPI) network,20 followed by the topological 
analysis based on the Network Analyzer plug- in con-
tained in Cytoscape. Besides, molecular docking was car-
ried out to screen candidate compounds. Schrodinger’s 
Glide module was applied for molecular docking, and 
MM- GBSA analysis was applied to calculate the relative 
binding free energy of candidate compounds with the key 
target.21

2.10 | Statistical analysis

The R package “survival” was used for univariate and 
multivariate Cox regression analyses.14 The hazard ratios 
together with the corresponding 95% confidence inter-
vals were collected. In addition, an independent t test was 
adopted for comparing the heterogeneities among diverse 
clinical factors. A difference of p < 0.05 was regarded to 
present statistical significance.

3  |  RESULTS

3.1 | Construction of MRGPS

By comparing HNSCC samples and normal samples, we 
obtained 4788 DEGs. Meanwhile, we acquired 1454 MRGs 
via the GSEA website. Ultimately, altogether 261 DEMRGs 
were extracted, among which, 146 showed upregulation, 
whereas 115 presented downregulation (Figure 2A,B).

There were 38 DEMRGs in the TCGA training 
set significantly associated with OS of HNSCC cases 
(p  <  0.05, Table  S2). The most appropriate tuning pa-
rameter (lambda) from the LASSO model was chosen 
to prevent overfitting (Figure 2C,D), which contributed 
to the production of the optimal model. In total, 12 
genes were selected to as hub MRGs, including PIP5K1B 

F I G U R E  2  Establishment of MRGPS and enrichment analysis of hub MRGs. (A) Volcano plot regarding the DEMRGs in HNSCC 
samples versus normal samples. (B) Venn diagram visualizing the intersections of DEGs with MRGs. (C) LASSO coefficient profiles in 
LASSO Cox regression analysis. (D) Screening of the tuning parameter (lambda) from the LASSO model through 10- fold cross- validation 
according to the minimal OS threshold. (E) Established coefficient of hub MRGs used for MRGPS. (F) GO enrichment analysis for the 12 
identified hub MRGs. The green, blue, and orange modules stand for BP, CC, and MF terms, separately. (G) KEGG enrichment analysis 
of 12 hub MRGs. BP, biological process; CC, cellular component; DEGs, differentially expressed genes; DEMRGs, differentially expressed 
metabolism- related genes; GO, Gene Ontology; HNSCC, head and neck squamous cell carcinoma; LASSO, Least Absolute Shrinkage and 
Selection Operator; MF, molecular function; MRGPS, metabolism- related gene- based prognostic signature; MRGs, metabolism- related 
genes; OS, overall survival

http://biocc.hrbmu.edu.cn/TIP/
https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
https://clue.io/repurposing-app
https://clue.io/repurposing-app
https://string-db.org/
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(Phosphatidylinositol- 4- phosphate 5- kinase type- 1 beta), 
ADA (adenosine deaminase), KYNU (Kynureninase), 
P4HA1 (Prolyl 4- hydroxylase subunit alpha- 1), MTHFD2 
(Methylenetetrahydrofolate dehydrogenase 2), HPRT1 
(hypoxanthine phosphoribosyltransferase 1), ALG3 

(alpha- 1,3-  mannosyltransferase), PYGL (Glycogen 
phosphorylase L), DNMT1 (DNA methyltransferase 1), 
POLE2 (DNA polymerase epsilon 2), PDE6G (phospho-
diesterase 6G), and CYP2D6 (cytochrome P450 family 2 
subfamily D member 6) (Figure  2E). Their expression 
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was markedly upregulated in diverse tumor tissues com-
pared with that in noncarcinoma tissues (Figure  S1). 
Afterward, the MRGPS was established based on these 
12 hub MRGs expression profiles and their Cox re-
gression coefficients as follows: risk score = [PIP5K1B 
expression level  ×  0.033363]  +  [ADA expression level 
× 0.024469] + [KYNU expression level × 0.013974]  
+ [P4HA1 expression level × 0.012453] + [MTHFD2 ex-
pression level × 0.010309] + [HPRT1 expression level 
× 0.010282] + [ALG3 expression level × 0.005389] 
+ [PYGL expression level  ×  0.004299]  +  [DNMT1 
expression level  ×  (−0.014064)]  +  [POLE2 expres-
sion level  ×  (−0.077976)]  +  [PDE6G expression level  ×   
(− 0.081091)] + [CYP2D6 expression level × (−0.160250)].

In the functional enrichment analysis of these 12 hub 
MRGs, the most significantly enriched term in the aspect 
of BP, CC, and MF was “hypoxanthine salvage,” “cyto-
sol,” and “pyridoxal phosphate binding,” respectively 
(Figure  2F), whereas the significantly enriched KEGG 
pathways were “metabolic pathways” and “purine metab-
olism” (Figure 2G).

3.2 | Evaluation of the MRGPS 
predicting ability in different data sets

Based on the established MRGPS, we calculated the 
risk score for each HNSCC patient and classified all 
HNSCC patients into the low-  or high- risk group 
in accordance with the median risk score (0.049) 
(Figure  3A). According to our results, the low- risk 
group presented favorable survival in comparison with 
the high- risk group in multiple data sets (Figure  3B, 
p  <  0.05). Furthermore, the time- dependent ROC 
curves were plotted to evaluate the predicted perfor-
mance of MRGPS (Figure  3C). It was calculated that 
the area under the curve values for 1- , 3- , and 5- year 
survival were 0.697, 0.727, and 0.679, separately, in the 
TCGA training set, indicating that MRGPS performed 
well in monitoring survival. In the meanwhile, MRGPS 
was highly accurate in predicting survival of TCGA 
validation set, entire TCGA cohort, and GSE65858 
cohort.

3.3 | Relationships of MRGPS 
with patient prognosis and 
clinicopathologic variables

To explore the association of MRGPS and clinicopatho-
logic variables with OS, we carried out Cox proportional 
hazards regression analysis on the entire TCGA co-
hort and the GSE65858 cohort. It was illustrated from 

Figure 4A,B that MRGPS was obviously related to OS in 
both univariate and multivariate analyses (p  <  0.001), 
which showed that MRGPS might play the role of a 
factor in independently predicting the prognosis in 
the entire TCGA cohort along with GSE65858 cohort. 
Noteworthily, HPV status was also significantly corre-
lated with OS in the GSE65858 cohort (Figure 4B). In ad-
dition, we explored the potential associations of MRGPS 
with multiple clinicopathologic variables. The risk score 
markedly increased in cases at advanced tumor status, 
T grade, and pathological stage in the entire TCGA co-
hort (p  <  0.05, Figure  4C). Besides, the elderly cases, 
HPV- negative cases, and those at advanced T stage in 
the GSE65858 cohort generally had high- risk scores 
(p  <  0.05, Figure  4D). According to the above results, 
MRGPS showed a significant correlation with several 
clinicopathologic variables.

Furthermore, we constructed a prognostic nomogram 
based on MRGPS and multiple clinicopathological vari-
ables, with the purpose of quantitatively estimating the 
survival probability among individual cases (Figure S2A). 
Typically, the calibration curves of our constructed prog-
nostic nomogram were well consistent between the pre-
dicted and measured 1- , 3- , and 5- year survivals in the 
entire TCGA cohort (Figure S2B– D).

3.4 | Functional enrichment analysis 
by GSEA

To further study the underlying mechanism related to 
MRGPS, functional enrichment analysis was performed 
between high-  and low- risk groups via GSEA. The most 
significantly enriched BP in the high- risk group was 
the “glycolytic process through fructose- 6- phosphate” 
(Figure  5A). Intriguingly, in the low- risk group, en-
riched BPs were closely correlated with immune re-
sponse, such as “CD4 positive T cell activation,” “CD4 
positive T cell differentiation,” and “T cell activation in-
volved in immune response” (Figure 5A). In terms of CC 
(Figure 5B), the “T cell receptor complex” was the most 
obviously enriched component in the low- risk group, 
further demonstrating that MRGPS was tightly related 
to immune response. In terms of MF, metabolism- 
related terms were significantly enriched, including 
“acylglycerol 3 phosphate o acyltransferase activity,” 
“protein serine- threonine kinase inhibitor activity,” 
and “steroid hydroxylase activity” (Figure 5C). Besides, 
GSEA- enriched results of KEGG pathways revealed that 
several metabolism- associated pathways were enriched 
in the high- risk group, such as the “pentose phosphate 
pathway,” “galactose metabolism,” and “purine me-
tabolism” (Figure 5D). In the low- risk group, except for 
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“arachidonic acid metabolism,” several immune- related 
pathways were enriched, such as “T cell receptor and B 
cell receptor signaling pathways”, also indicating that 
MRGPS might be significantly associated with the im-
mune response (Figure 5D).

3.5 | Relationships of MRGPS 
with immune cells infiltration and 
immunotherapy

To further explore the relevance of MRGPS to im-
mune response, the infiltration levels of 22 immune 
cell subtypes in all HNSCC samples were assessed by 
CIBERSORT. As shown in Figure 6A, the relative abun-
dances of naive B cells, plasma cells, CD8 T cells, ac-
tivated memory CD4 T cells, follicular helper T cells, 
and resting mast cells were significantly negatively 

correlated with a risk score, whereas those of resting 
NK cells, M0 and M2 macrophages were significantly 
positively correlated with risk score (p  <  0.05). In ad-
dition, the prognostic value of these 22 immune cell 
subtypes was also analyzed. As a result, the infiltration 
levels of B cells, plasma cells, resting mast cells, as well 
as activated mast cells were markedly associated with 
survival rate (p  <  0.05, Figure  6B). The increased in-
filtration levels of naive B cells, plasma cells, and rest-
ing mast cells predicted favorable OS, whereas that of 
activated mast cells predicted dismal OS. Besides, we 
explored the correlation between HPV status and im-
mune cell infiltration, finding that HPV+ patients have 
more immune cell infiltration and better prognosis than 
HPV-  patients (Figure S3).

The status of anticancer immune responses is an 
important part of the complex tumor immunophe-
notype underlying the tumor microenvironment. 

F I G U R E  3  MRGPS accurately predicts the survival of HNSCC patients. Distribution of risk scores, survival status, as well as expression 
levels of 12 hub MRGs for HNSCC patients in low-  and high- risk groups (A), KM survival (B), and time- dependent ROC curve (C) 
analyses of the TCGA training set, TCGA validation set, entire TCGA cohort, and GSE65858 cohort. HNSCC, head and neck squamous 
cell carcinoma; MRGPS, metabolism- related gene- based prognostic signature; MRGs, metabolism- related genes; ROC, receiver- operating 
characteristic; TCGA, The Cancer Genome Atlas
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F I G U R E  4  MRGPS is an independent prognostic indicator for HNSCC patients. Forest plot for univariate and multivariate Cox 
regression analyses of MRGPS and multiple clinicopathological variables in the entire TCGA cohort (A) and GSE65858 cohort (B). The 
correlations between the MRGPS and multiple clinicopathological variables in the entire TCGA cohort (C) and GSE65858 cohort (D). 
HNSCC, head and neck squamous cell carcinoma; MRGPS, metabolism- related gene- based prognostic signature; TCGA, The Cancer 
Genome Atlas
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Therefore, we further analyzed the correlation be-
tween MRGPS and anticancer immune responses. It 
was illustrated from Figure 6C that MRGPS exhibited 

a negative correlation with T cell recruiting, CD4 T 
cell recruiting, Th22 cell recruiting, as well as priming 
and activation of immune (p < 0.05). Besides, ICI was 

F I G U R E  5  The enriched GO terms and KEGG pathways detected by GSEA. The representative GO terms of BP (A), CC (B), and MF (C) 
enriched in the high-  and low- risk group. (D) The representative KEGG pathways enriched in the high-  and low- risk groups. BP, biological 
process; CC, cellular component; GO, Gene Ontology; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; MF, molecular function
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a key component of immunotherapy. Therefore, we 
further investigated the associations between MRGPS 
and certain key immune checkpoints’ expression. As a 

result, the low- risk group had higher levels of CTLA- 4, 
PD- 1, LAG- 3, and TIGIT compared with the high- risk 
group (Figure  6D). Above all, MRGPS is correlated 



3178 |   QIANG et al.

with immune cells infiltration and anticancer immune 
response to some extent.

3.6 | Potential compounds 
targeting MRGPS

In order to find out the potential compounds that target 
MRGPS, CMap analysis was conducted. According to 
the obtained results, a total of 34 compounds have the 
potential to reverse MRGPS (Figure  7A). Moreover, we 

constructed a PPI network using the genes associated 
with the signature and identified HPRT1 as a key target 
(Figure 7B and Table S3). For this key target, 34 candidate 
compounds were adopted for molecular docking with it. 
As shown in Figure 7C, we found the top 10 compounds 
among which cephaeline ranked first. The interaction 
diagram of cephaeline at the active site of HRPT1 showed 
hydrogen bonds’ formation with the key residues ASP- 43 
and TYR- 80 (Figure 7D). Meanwhile, pi– pi stacking inter-
actions with ARG- 86 and TRY- 80 also made contributions 
to stabilizing the ligand at the active sites. Apart from that, 

F I G U R E  6  Relationship of MRGPS with tumor immune microenvironment. (A) Association between MRGPS and immune cell 
infiltration. The green and orange violins represented the low-  and high- risk groups, respectively. The white points inside the violin 
indicated median values. (B) Association of OS with naive B cells, plasma cells, resting mast cells, and activated mast cells. (C) Correlation 
matrix regarding MRGPS with the anticancer immune responses, where the red and blue dots represent positive and negative correlations, 
respectively. (D) The relationships between MRGPS and the expression of several major immune checkpoints. *, **, and *** represent 
p < 0.05, p < 0.01, and p < 0.001, respectively. MRGPS, metabolism- related gene- based prognostic signature; OS, overall survival

F I G U R E  7  Screening of potential compounds. (A) Enrichment score of each potential compound from the Connectivity Map analysis. 
(B) The PPI network of MRGPS. (C) Top 10 compounds binding to key target HPRT1 based on molecular docking. (D) Structure and 
orthogonal view of the binding pocket between cephaeline and key target HPRT1. HPRT1, hypoxanthine phosphoribosyltransferase 1; 
MRGPS, metabolism- related gene- based prognostic signature; PPI, protein– protein interaction
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the relative binding free energy of cephaeline to the key 
target HPRT1 was also the lowest, indicating that their 
binding was stable. Therefore, we believe that cephaeline 
may be a potential therapeutic compound for HNSCC, 
which is worthy of further study.

4  |  DISCUSSION

Extensive studies have shown that cancer cells have ab-
normal metabolic behaviors such as the Warburg effect.22 
Metabolic reprogramming is a vital hallmark in the develop-
ment of cancer, which can facilitate cancer cell proliferation 
and invasion.23 Enhanced glycolysis is one of the character-
istic features of HNSCC, and thus [18F]- fluorodeoxyglucose- 
positron emission tomography (FDG- PET) that can reflect 
the glucose uptake is often used for clinical diagnosis and 
evaluation of HNSCC patients.24 Besides, frequent muta-
tion of P53 was found in HNSCC, which regulates the gly-
colysis pathway by inhibiting glucose intake, glycolysis flow, 
pentose phosphate pathway, and other pathways.3 Given 
the above, targeting energetic metabolism as an anticancer 
therapy is promising for HNSCC treatment.

In the present study, the expression of MRGs, together 
with their prognostic significance in HNSCC cases, was 
analyzed based on transcriptomic data. As a result, 12 
MRGs were identified as hub MRGs and adopted for con-
structing MRGPS. Therefore, P4HA1 was upregulated and 
significantly relevant to the clinical features of HNSCC.25 
Besides, ALG3 may play a key role in the oncogene ex-
pression in HNSCC, and its combined overexpression 
with PPFIA1 is significantly associated with poor survival 
outcomes.26 Some genes, such as CYP2D6,27 POLE2,28 
DNMT1,29,30 MTHFD2,31,32 and PYGL,33 have also been 
suggested to present significant associations with can-
cer prognostic outcomes. Although the other five genes 
have not been explored in HNSCC, their biological roles 
in HNSCC need to be further explored. Based on the me-
dian risk score (0.049), we classified HNSCC cases into 
the low-  or high- risk group. The obtained findings demon-
strated that low- risk patients had superior survival to 
high- risk patients. Time- dependent ROC curves revealed 
that MRGPS had a high potential for predicting survival. 
Besides, univariate or multivariate analysis indicated that 
MRGPS was an independent prognostic indicator.

Among the pathogenic factors of HNSCC, HPV infec-
tion is another crucial risk factor in addition to smoking 
and alcohol consumption. It is reported that HPV+ HNSCC 
patients tend to be slightly younger, male, and primarily 
non- smokers.34 In addition, HPV+ HNSCC patients were 
often regarded as closely associated with improved prog-
nosis than HPV− patients.35 Consistent with these reports, 
in the present study, HPV status was also significantly 

correlated with OS in the GSE65858 cohort in both univari-
ate and multivariate analyses. Besides, HPV- negative cases 
generally had higher risk scores than HPV- positive cases. 
Therefore, HPV status was also included in the nomogram, 
which helps to predict patients’ survival better.

GSEA is a powerful tool for exploring the potential 
molecular mechanisms between different samples. By 
performing GSEA analysis, some metabolism- associated 
pathways, such as “pentose phosphate pathway” and 
“purine metabolism,” were found to be enriched in the 
high- risk group, whereas “arachidonic acid metabolism” 
was enriched in the low- risk group. Notably, purine me-
tabolism has been suggested to be associated with cancer 
progression, and purine nucleotides play crucial roles in 
providing cellular energy and intracellular signaling.36 
Additionally, regulating the metabolism of arachidonic 
acid helps to regulate the occurrence of active inflamma-
tory mediators. Noteworthily, low- risk patients were as-
sociated with some immune pathways, which suggested 
that MRGPS might have an important connection with 
immune response. In recent years, numerous landmark 
studies have found that changes in metabolism may exert a 
vital part in immune regulation.37,38 The abnormal metab-
olism of cancer cells can profoundly influence the tumor 
microenvironment that is commonly acidic, hypoxic, and 
depleted of essential nutrients necessary for immune 
cells.39 Furthermore, aerobic glycolysis within cancer cells 
assists in shaping the immune system through upregulat-
ing cytokine transcription while suppressing monocytes’ 
differentiation to dendritic cells.40 In addition, for im-
mune cells themselves, metabolism is also a crucial deter-
minant of viability and functions. As a result, metabolism 
is closely related to immunity, and the establishment of 
a metabolism- related prognostic signature may contribute 
to predicting the state of the immune response.

To better explore the association of the MRGPS with 
immunity, this study compared TIME in the high- risk 
group with that in the low- risk group. As a result, the 
infiltration levels of a majority of immune cell subtypes, 
such as naive B cells, CD8 T cells, and activated memory 
CD4 T cells, enhanced in the low- risk group in compar-
ison with those in the high- risk group. In further anal-
yses, it could be discovered that the higher infiltration 
levels of naive B cells, plasma cells, and resting mast cells 
were associated with better OS, whereas the increased 
infiltration level of activated mass cells predicted dismal 
OS. These results were consistent with previous reports, 
pointing out that the metabolically active tumor cells 
created a detrimental microenvironment for immune 
cells.41 The anticancer immune response is another 
vital part of the complex tumor immunophenotype un-
derlying the TIME. The abnormal metabolism possibly 
results in a diverse prognosis through altering immune 
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cell state within TIME. This conforms to the report that 
targeted metabolism can be conducive to regulating the 
antitumor immune response.

Some strengths should be noted in the present work. 
First of all, this is the first constructed signature based 
on metabolic reprogramming that can reflect the prog-
nosis and TIME of HNSCC patients. Second, multiple 
data sets were adopted for validating and evaluating 
the predictive performance of our constructed signa-
ture. Third, we identified the potential compound that 
targeted our constructed signature. Nevertheless, fur-
ther prospective cohort studies should be conducted 
to assess the clinical value of this prognostic signature. 
Meanwhile, the potential compound needs to be further 
explored in the future.

5  |  CONCLUSIONS

In summary, we conducted a comprehensive analysis of 
the expression patterns of MRGs in HNSCC patients and 
established an MRGs- based signature that has the poten-
tial to predict the clinical outcome and immune microen-
vironment. As an effective tool, this signature may help 
to search for potential combination immunotherapy com-
pounds and provide a promising therapeutic strategy for 
treating HNSCC patients.
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