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The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown.
While autoantibodies to pancreatic beta-cell antigens are often the first biological
response and thereby a useful biomarker for identifying individuals in early stages of
T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic
targets by autoreactive T-cells plays a pathological role in T1D development. Recently,
several beta-cell neoantigens have been described, indicating that both neoantigens and
known T1D antigens escape central or peripheral tolerance. Several questions regarding
the mechanisms by which tolerance is broken in T1D remain unanswered. Further
delineating the timing and nature of antigenic responses could allow their use as
biomarkers to improve staging, as targets for therapeutic intervention, and lead to a
better understanding of the mechanisms leading to loss of tolerance. Multiple factors that
contribute to cellular stress may result in the generation of beta-cell derived neoepitopes
and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-
cells to produce neoantigens has direct implications on development of therapies to
intercept T1D disease progression. In this perspective, we will discuss evidence for the
role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular
mechanisms. We will additionally discuss the pathways leading to neoepitope formation
and the cross talk between the immune system and the beta-cells in this regard.
Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will
determine their role as biomarkers as well as therapeutic targets.
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THE EVOLVING UNDERSTANDING OF THE PATHOGENESIS OF
HUMAN T1D

The immune system plays a pivotal role in type 1 diabetes (T1D), as demonstrated by numerous
studies and experiments in vitro, ex vivo, in animal models, and in humans (1, 2). However, our
understanding of the disease continues to evolve, with a greater recent appreciation for the role of
pancreatic beta-cell factors and beta-cells themselves in disease etiology (3, 4). Our knowledge of the
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immunopathology of T1D is incomplete, partially due to the
difficult access to human pancreas samples. This limitation has
been partially overcome in recent years thanks to the emergence
of several large tissue biobanks like the Network for Pancreatic
Organ Donors with Diabetes (nPOD) (5, 6) and the Exeter
Archival Diabetes Biobank (EADB) (7), which now permit the
investigation of immune cell populations in the human pancreas.
The presence of immune cells in the islets, known as insulitis, is a
hallmark of T1D (8–11). The importance of CD8+ T-cells in
T1D is evident by their abundance in islets that have remaining
beta-cells, as well as in those with only a few beta-cells left. CD8+
T-cells are also found in the exocrine portion of the pancreas in
individuals with T1D, even when beta-cells are lost (12). While
CD4+ T-cells are also present in the islets, they are not
considered a major component of the immune infiltrate in
established diabetes; this is not unexpected given the more
prominent role of CD4+ T-cells in disease initiation (13)
rather than in disease progression/amplification. In addition,
their potential role in sustaining the effector functions of CD8+
T-cells should not be neglected (14). Both CD4+ and CD8+ T-
cell populations decline with beta-cell loss, suggesting that their
presence is driven by a beta-cell antigen (11, 12, 15). However,
the exact role infiltrating T-cells play in the pathogenesis of the
disease remains to be determined both in terms of specificity
and function.

Antigen-specific CD8+ T-cells recognizing diverse islet
antigens have been detected in the pancreas of individuals with
T1D (16). T-cells with single specificity were detected early in the
disease process, whereas in long-standing donors, islets usually
contained multiple islet-reactive specificities indicating epitope
spreading (16). Interestingly, in recent onset cases, different islets
harbored different reactivities, which could reflect different stages
of the autoimmune process. More recently, a high proportion of
preproinsulin (PPI) specific cells have been detected in the islets
of donors with T1D (17, 18), confirming previous data obtained
from blood samples and highlighting the role of PPI as one of the
most prominent antigens in disease pathogenesis (15, 19–22).
Attempts to detect neoantigens in situ have not been reported so
far but are on the horizon. Characterizing the frequency and
localization of neoantigens at different disease stages therefore
remains an important goal.
THE EXPANDING CATALOGUE OF
EPITOPES WITH PUTATIVE ROLES IN T1D

The exact mechanisms and timing of the antigenic events, the
initial loss of tolerance, as well as the role of autoimmunity to
both native and modified epitopes in the pathogenesis of T1D
remains unknown. Recently, a comprehensive overview of the
known T1D epitopes and neoepitopes was published (22).
Sixteen CD8+ T-cell conventional epitopes have been
identified and five of these are contained within the major
known antigens insulin, glutamate decarboxylase (GAD),
insulinoma-associated antigen 2 (I-A2), zinc-transporter 8
(ZnT8) and islet-specific glucose-6-phosphatase catalytic
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subunit-related protein (IGRP). CD8+ T-cells reactive against
epitopes from islet amyloid polypeptide (IAPP), insulin gene
enhancer protein (ISL1), urocortin-3 (UCN3) and SLC30A8
(also known as ZnT8) have been also identified in the pancreas
(23, 24). Their frequencies were higher in T1D donors compared
to non-diabetic donors and their phenotype was predominantly
antigen-experienced. In addition, CD8+ T-cell reactivity against
other granule proteins such as prohormone convertase 2
(PCSK2), secretogranin 3 (SCG3) and 5 (SCG5) have been
recently reported, highlighting the immunogenic potential of
beta-cell granule proteins (25). The specificity of islet infiltrating
T-cells directly sorted or grown from individual islets isolated
from donors with T1D has been also investigated (26). Several
CD4+ T-cell clones were obtained, which reacted against
proinsulin, GAD65 and chromogranin A (ChgA). CD8+ T-cell
clones recognized epitopes from insulin, IA-2 and IGRP. The
differential antigenic drivers, including number of targets,
diversity of epitopes, environmental triggers, host genetics and
even clinical age, may contribute to these varying antigen
recognition and disease pathways (27).
GENERATION OF NEOEPITOPES
THROUGH POST-TRANSLATIONAL
MODIFICATIONS

In the case of T1D, autoantibodies to native proteins are highly
prognostic of future disease but there is little evidence of their
pathogenic role (28–30). While loss of tolerance to insulin has
long been thought to be involved early in disease pathogenesis,
responses to modified proteins may add to disease heterogeneity,
in terms of variations in risk and rate of progression to clinical
T1D (31). However, clinical evidence has shown that not all cases
of T1D start with reactivity to insulin, and reactivities to different
non-conventional antigens may be due to different clinical and
pathogenic features (32).

PTMs are part of normal physiological processes. However,
they can also be formed as a result of an inflammatory assault
restricted to inflamed tissues, and as such, be associated with
autoimmunity. As neoepitopes are exclusively expressed in the
peripheral target tissue, and not present in their modified form in
the thymus, their escape from thymic deletion through negative
selection in medullary thymic epithelial (mTEC) cells accounts
for the lack of central tolerance to PTMs (33, 34). In the context
of T1D, several neoantigens generated through PTMs have been
described (Figure 1). In some cases, autoantibodies against
modified proteins can be both pathogenic and predictors of
disease onset (35). Antibodies directed against citrullinated
proteins can predate clinical onset of rheumatoid arthritis (RA)
by up to two decades (36). The most extensively studied
enzymatically mediated PTMs are citrullination, the conversion
of arginine into citrulline residues, and deamidation, the
conversion of glutamine into glutamic acid residues. These
PTMs are mediated by peptidylarginine deiminase (PAD) and
tissue transglutaminase (TGM) enzymes, respectively.
Citrullinated proteins are preferentially bound by RA-
April 2021 | Volume 12 | Article 667989
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FIGURE 1 | A catalogue of neoepitopes and their production sites/mechanisms in beta-cells. (A) Referenced list of known neoepitopes in type 1 diabetes
where the type of PTM, the potential mediator, the antigen and how it is recognized and identified, the species in which it was identified and the reference to the
original publication are shown. Cat-L, cathepsin L; ROS, reactive oxygen species; AutoAbs, autoantibodies; TGM, tissue transglutaminase; ChgA, chromogranin
A; ER, endoplasmic reticulum; PAD, peptidylarginine deiminase; GAD: glutamate decarboxylase; IA-2: insulinoma-associated antigen 2; ZnT8, zinc-transporter 8;
IGRP, islet-specific glucose-6-phosphatase catalytic subunit-related protein; GRP78, glucose-regulated protein 78; IAPP, islet amyloid polypeptide; SCG5,
secretogranin 5. (B) Schematic representation of a beta-cell showing the current view on sub-cellular origin of specific classes of neoepitopes, as well as the
types of products produced.
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susceptible HLA class II and presented to T-cells, implicating
them in disease pathogenesis (37). With similar HLA-susceptible
haplotypes shared between RA and T1D, citrullination of
multiple proteins has also been implicated in T1D
pathogenesis (38, 39). Autoantibodies and circulating and islet
infiltrating CD4+ T-cells have been found to react against
citrullinated glucose-regulated protein 78 (GRP78) epitopes in
T1D individuals (38, 40), following up on earlier observations in
NOD mice (41). In addition, circulating CD4+ T-cells reactive
against citrullinated GAD65 (39) and islet CD4+ T-cells reactive
against citrullinated IAPP have been detected in people with T1D
(40). Deamidated peptides, in which glutamine was converted
into glutamic acid, were described in both murine T1D (42) and
human T1D (39, 43), with several autoantigens identified (39,
42–44).

Oxidative post-translational modifications and cross-linking
of proteins are important mechanisms that may contribute to
autoreactivity in T1D (Figure 1). TGM-mediated crosslinking of
the naturally processed ChgA cleavage product WE14 increased
its immunogenicity, eliciting strong CD4 T-cell responses both
in NOD mice (45) and T1D patients (46). Oxidation of the
insulin A-chain, resulting in a disulfide bond formation between
two adjacent cysteines, was shown to be responsible for
recognition of the peptide by a T-cell clone isolated from the
circulation of a T1D patient (47). More recently, autoantibodies
against oxidized insulin were detected in prediabetic children
(48) and in recently diagnosed T1D subjects (49).

Hybrid insulin peptides (HIPs) are also potential neoantigens,
formed through a covalent cross-linking reaction between the C-
terminal carboxylic acid group of proinsulin fragments and the
N-terminal amine group of other secretory granule peptides (26).
HIPs have been identified by LC-MS/MS in human (50) and
mouse islets (51), as well as in the mouse MHC-peptidome (42).
An increasing number of studies have shown autoreactive
responses against such HIPs, both in NOD mice and in human
T1D (26, 52). CD4+ T-cells isolated from pancreatic islets
recognized different proinsulin C-peptide fragments fused to
IAPP1, IAPP2, neuropeptide-Y or insulin A chain (40, 51).
Increased reactivity to several HIPs was shown in peripheral
blood of T1D patients (53, 54), Furthermore, in genetically at risk
individuals, HIPs were detectable, and were shown to have a
predominantly pro-inflammatory profile in those that
progressed to developing disease (55), making them interesting
candidates for novel biomarkers. Finally, a recent report suggests
that transpeptidation of beta-cell antigens, mediated by
cathepsin L, generates chimeric epitopes through fusion of
secretory granule proteins with WE14, for diabetogenic CD4
T-cells (56). In regard to HLA class I epitopes, spliced peptides,
generated in the proteasome through a process referred to as
transpeptidation by which two different regions of a protein or of
two different proteins are fused (57, 58), have been identified in a
human beta-cell line by HLA-peptidomics (21, 25) and were
recognized by circulating and pancreas-infiltrating CD8+ T-cells
from T1D donors. Furthermore, defective ribosomal products
(DRIPs) (24) are also regarded as potential neoepitopes against
which CD8+ T-cells were shown to be reactive in human subjects.
Frontiers in Immunology | www.frontiersin.org 4
BETA-CELL STRESS AS A CONTRIBUTOR
TO NEOEPITOPE GENERATION

There are many factors that could theoretically lead to the
production of and reactivity to autoantigens in a subset of
beta-cells (Figure 1). Beta-cells could produce a modified
protein via genetic or epigenetic up-regulation of transcription,
or increased translation. Alternatively, errors in mRNA
transcription, splicing, or translation processes could generate
neoantigens from modified proteins (24, 59), and they could
build up as a result of impaired quality control of the modified
protein in the endoplasmic reticulum (ER), post-ER
compartments, or during proteosomal degradation (Figure 1).
Autoantigens may also result from increased expression or
activity of PTM modifying enzymes (44). In the case of insulin,
the T1D at-risk allele at rs3842753 (60–62) was reported to
increase insulin production in a small number of human
pancreata (60, 63, 64), a result supported by recent meta-
analysis of single-cell RNA sequencing data (65). One might
speculate that increased insulin production could both increase
neoepitope production and beta-cell vulnerability to ER stress
(66). This may be a contributing factor to the increased risk of
T1D development observed with childhood obesity (67).

Increasing evidence points to the beta-cell itself as an active
player in mediating such processes, thereby participating in its
own destruction (3). Beta-cells have a highly developed ER,
making it possible for individual cells to react rapidly to
changes in metabolic demand and produce enormous amounts
of insulin in a short time. On the other hand, this highly
specialized secretory task makes the most active beta-cells
highly vulnerable to ER stress, which is present to some degree
even in normal basal conditions (66). When the demand for
protein synthesis and folding overwhelms the capacity of the ER,
the cell-autonomous Unfolded Protein Response (UPR) is
initiated, aiming to restore ER homeostasis (68). This UPR
response is mediated by three UPR ‘sensors’, which are
inactive in physiological conditions through their association
with the abundant ER chaperone GRP78. With an increased load
of unfolded proteins in the ER, GRP78 is released from these
UPR sensors, thereby initiating the UPR.When an excessive level
of stress is maintained, the UPR fails, and beta-cell apoptosis is
triggered (69, 70). ER stress has also been implicated in the
generation of neoantigens (71), with increasing recognition of
autoreactive T-cell clones specific for deamidated peptides in
multiple experimental systems (44, 72). Of importance, such
increased immunogenicity was observed when beta-cells were
stressed with thapsigargin, but not with tunicamycin, an ER
stressor acting through the blocking of glycoprotein synthesis. A
similar increase in activity of TGM2 upon inflammatory stress
with cytokines has been observed in rodent MIN6 cells
and was associated with an increased number of deamidated
peptides. Moreover, an increase in non-enzymatically
mediated deamidations was observed in this model upon
cytokine exposure (73). Finally, insulin DRIP polypeptides
increase by Ca-2+ -mediated ER stress, shown by exposure of
INS-DRiP-GFP transfected cells to thapsigargin (24).
April 2021 | Volume 12 | Article 667989

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Rodriguez-Calvo et al. Neoepitopes in Type 1 Diabetes
As to the role of alternative splicing, it has been shown that
the beta-cell alternative spliced repertoire is largely affected by
the pro-inflammatory cytokines, interleukin-1b (IL1b) and
interferon-g (IFNg), changing the expression of more than 30
RNA binding proteins, thereby affecting the splicing of more
than 3000 genes involved in beta-cell function and survival (3,
59). In addition, PTMs, alternative splicing and first exon usage
are induced by interferon-1a (IFNa) (74). The fact that such
transcriptional regulation could lead to neoantigen formation
was shown for IGRP, with generation of autoantibodies and CD8
T-cells against a pancreas specific IGRP alternative spliced form
(75). Recent evidence further showed that the ‘alternative
splicing signature’ is also seen in the immunopeptidome of
HLA-A2 and HLA-A3 restricted epitopes, leading to the
generation of islet-reactive CD8+ T-cells both in T1D patients
and healthy subjects (21, 25). All these studies point to a role for
ER stress in increasing the prevalence of a variety PTMs where
pro-inflammatory cytokines are likely to expand the repertoire of
proteins and transcripts generated by beta-cells.
ENVIRONMENTAL FACTORS IN THE
GENERATION OF NEOAUTOANTIGENS

Viruses and other environmental triggers have been implicated in
T1D and may not only contribute to beta-cell stress and production
of neoepitopes, but may be responsible for antigen-specific
targeting. One such potential pathway is molecular mimicry,
where viruses, microbiota or other environmental targets express
epitopes similar to those expressed on beta-cells. Cross-reactive
T-cells against these epitopes have the potential to eliminate
both the environmental stimulus (i.e. viruses) and pancreatic
beta-cells (76–78). Cross-reactivity between epitopes present in
Coxsackievirus B (CVB) and GAD65 have been reported (79, 80).
Furthermore, a dominant epitope present in IA-2 elicited T-cell
responses in relatives and shared sequence similarity with a protein
of human rotavirus (81). This IA-2 epitope also had some identity
and similarity to sequences in Dengue, cytomegalovirus, measles,
hepatitis C, and canine distemper viruses, and the bacterium
Haemophilus influenzae. Interestingly, two other IA-2 epitopes
were similar to amino acid sequences in milk, wheat, and bean
proteins (81). More recently, ZnT8-reactive CD8+ T-cell clonotypes
were found to cross-recognize a Bacteroides stercoris mimotope
(23). Based on this evidence, environmental factors have the
potential to elicit autoreactive immune responses. In this scenario,
environmental cues could be a requirement or a contributing factor
for neoepitope formation in the pancreas.
DOES NEOEPITOPE GENERATION LEAD
TO AUTOIMMUNITY AND BETA-CELL
KILLING IN TYPE 1 DIABETES?

The identification and timing of T-cells reactive against antigens in
the pancreas remains a challenging task. Further studies are needed,
as illustrated by the apparent lack of correlation between the
Frontiers in Immunology | www.frontiersin.org 5
presence of antigen-specific cells in the periphery and in the
pancreas (23). Given that most cells present in the islets have
unknown reactivities, it becomes clear that we might be only
looking at the tip of the autoreactive iceberg. Models indicate that
only 1-2% of antigen-specific cells are enough to achieve effective
killing (82). On the other hand, if this is the case, why does it take so
long for T-cells to kill their target? It could be that T-cell access to
islets is asynchronous due to the expression of different antigens in
different islets, at different times. Or perhaps T-cells are not attracted
to a given islet unless there is inflammation or a triggering event
locally, one that might be able to generate neoantigens.
Furthermore, there is little clinical evidence to suggest whether
these processes are taking place before disease onset, at a later stage
of the disease, or both. A recent longitudinal study on individuals at-
risk indicate the presence of neoepitopes in early stages of T1D.
Individuals progressing to T1D showed a predominant pro-
inflammatory T-cell reactivity against few of the HIPs analyzed (55).

It is clear that individuals carrying certain HLAs are prone to
autoreactivity. In this context, it is tempting to speculate that the
fragility of beta-cells and their susceptibility to environmental
insults and conditions of incremental stress are likely to further
unbalance an already compromised genetic system. Considering
that neoepitopes are likely to arise before or during disease
development, we envision a scenario in which beta-cells
themselves actively contribute to neoepitope formation. The
upregulation of HLA-I in the islets prior to clinical diagnosis is
a good indicator of the potential capacity of beta-cells to present
self-epitopes to the immune system, a phenomenon that is not
well understood, but that many are actively investigating.

In this regard, and closing the speculative circle, we
hypothesize that an environmental insult (i.e. viral infection/s)
could induce an anti-viral response and the local production of
cytokines (i.e. type I interferons). Anti-viral response molecules
can induce the upregulation of HLA-I. At the same time, viruses
could induce a translational arrest in beta-cells, hampering
insulin production. Also, other forms of environmental stress,
such as chemicals, dietary components may cause an initial
trigger leading to ER or oxidative stress.

These environmental insults may lead to the formation of a
first wave of non-conventional proteins. Impaired clearance of
such stressed or dying beta-cells expressing modified proteins
will cause activation of APCs and presentation of neoepitopes
to CD4+ T-cells, which in turn can trigger several immune
responses, including B cell activation with autoantibody
production, and the activation of antigen-specific effector T
cells that can directly kill beta-cells presenting modified islet
peptides. This first cascade of immune activation may in this way
cause further beta-cell stress or death, generating an autoreactive
loop, with further modification of beta-cell proteins and disease
exacerbation. Moreover, epitope spreading to native epitopes
may further amplify the immune response (Yang et al,
submitted). This proposed model could provide evidence for a
role of neoepitopes both in initiation and exacerbation of disease
(Figure 2A). It may indeed be that different ways of stress are
needed to activate specific types of PTMs, at different times and
with unknown duration, during the disease course.
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FIGURE 2 | Proposed model of neoepitope generation and roadmap to their identification and utility in T1D. (A) Schematic representation of how neoepitope
generation could lead to autoimmunity and beta-cell killing in T1D. Genetic predisposition, metabolism, environmental insults and immune inflammation are some of
the factors that may lead to the formation of a first wave of non-conventional proteins. Impaired clearance of such stressed or dying beta-cells expressing modified
proteins will cause activation of APCs and presentation of neoepitopes to T-cells, which can trigger several immune responses. This first cascade of immune
activation may cause further beta-cell stress or death, generating an autoreactive loop, with further modification of beta-cell proteins and disease exacerbation. This
proposed model could provide evidence for a role of neoepitopes both in initiation and exacerbation of disease. It may indeed be that different ways of stress are
needed to activate specific types of PTMs, at different times and with unknown duration, during the disease course. (B) Proposed roadmap to identification and
utility of neoepitopes in T1D. Multiple neoepitopes have been identified in T1D and yet their precise role in the disease remains ambiguous. We envision two major
areas of research: 1) to improve the identification of neoepitopes and to better delineate their role in disease pathogenesis; 2) to evaluate their use as biomarkers and
their therapeutic utility.
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WHERE DO WE GO FROM HERE?

To get a full picture of the neoepitope landscape, more studies
should be carried out evaluating such responses in the early stages of
T1D and through their progression to T1D to further delineate and
describe the importance and timing of neoepitope formation in
T1D. Elucidating their role in pathogenesis may also enable their
use to improve the current staging paradigm, which is largely based
on the presence of autoantibodies to classical islet antigens. Finally,
while antigen-specific approaches have shown limited efficacy to
date in T1D prevention and treatment, it is feasible that targeting
neoepitopes in addition to or instead of classic antigens may provide
a better therapeutic benefit.

Understanding how neoantigens are involved in the break of
tolerance will lead us towards tolerogenic therapies for T1D.
Multiple antigens have been used in T1D trials (83, 84). While no
trial achieved its primary outcome, two trials have shown partial
successes. First, in a trial where oral insulin was administered to
individuals with stage 1 T1D, a pre-defined subgroup had a
significantly delayed time to diabetes development (85).
Furthermore, in a trial with intranodal injection of GAD65, a
predefined subgroup showed preservation of beta-cell function
(https://www.diamyd.com/docs/pressClips.aspx?ClipID=3768129).
Other groups are exploring combination of antigens and/or
antigens plus immunomodulators. Given the limited success of
single native antigen in inducing tolerance, the presence of epitope
spreading in T1D and the evidence for neoantigen generation and
autoreactivity, it is quite feasible that targeting multiple (neo)
antigens could aid in promoting antigenic tolerance.

Based on current evidence, we wish to outline two major areas of
research to better delineate their exact role, which is a prerequisite
for their therapeutic utility (Figure 2B). First, to identify novel
epitopes that are most relevant to T1D progression, it will be
necessary to develop and use novel detection and analysis
methods with improved sensitivity and capacity to identify the
nature of the peptides that are presented (86). In turn, being able to
assay for T-cell reactivity, even in the periphery, remains a major
challenge. The identification of novel epitopes could open
opportunities for the characterization of disease subtypes and
broaden our understanding of the disease pathogenesis. More
efforts on the assessment of circulating antibodies and T-cell
reactivity in longitudinal samples are needed to fully understand
the timing and nature of neoepitope autoreactivity. Although
sample volume continues to be a limitation, especially in studies
of pediatric population, we anticipate that new technologies will be
able to significantly improve our capacity to detect autoreactive cells
in these challenging samples.
Frontiers in Immunology | www.frontiersin.org 7
It is conceivable that neoepitopes may be used alone or in
conjugation with other antigens as biomarkers for disease
severity and/or progression, with evident potential to become
immune-modifying therapies to induce tolerance in T1D. We
could imagine a scenario in which each diabetic patient has its
own antigenic profile, which could be used towards personalized
medicine. However, more robust preclinical models or in vitro
systems to test antigenic candidates should be developed prior to
entering clinical studies. In all, neoepitopes possess a yet
untapped mechanism to provide better biomarkers for staging
progression as well as therapeutic targets, and could be the key to
understanding the loss of tolerance in T1D.
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